首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The heat budget of the upper Arctic Ocean is examined in an ensemble of coupled climate models under idealised increasing CO2 scenarios. All of the experiments show a strong amplification of surface air temperatures but a smaller increase in sea surface temperature than the rest of the world as heat is lost to the atmosphere as the sea-ice cover is reduced. We carry out a heat budget analysis of the Arctic Ocean in an ensemble of model runs to understand the changes that occur as the Arctic becomes ice free in summer. We find that as sea-ice retreats heat is lost from the ocean surface to the atmosphere contributing to the amplification of Arctic surface temperatures. Furthermore, heat is mixed upwards into the mixed layer as a result of increased upper ocean mixing and there is increased advection of heat into the Arctic as the ice edge retreats. Heat lost from the upper Arctic Ocean to the atmosphere is therefore replenished by mixing of warmer water from below and by increased advection of warm water from lower latitudes. The ocean is therefore able to contribute more to Arctic amplification.  相似文献   

2.
The atmospheric general circulation model EC-EARTH-IFS has been applied to investigate the influence of both a reduced and a removed Arctic sea ice cover on the Arctic energy budget and on the climate of the Northern mid-latitudes. Three 40-year simulations driven by original and modified ERA-40 sea surface temperatures and sea ice concentrations have been performed at T255L62 resolution, corresponding to 79?km horizontal resolution. Simulated changes between sensitivity and reference experiments are most pronounced over the Arctic itself where the reduced or removed sea ice leads to strongly increased upward heat and longwave radiation fluxes and precipitation in winter. In summer, the most pronounced change is the stronger absorption of shortwave radiation which is enhanced by optically thinner clouds. Averaged over the year and over the area north of 70° N, the negative energy imbalance at the top of the atmosphere decreases by about 10?W/m2 in both sensitivity experiments. The energy transport across 70° N is reduced. Changes are not restricted to the Arctic. Less extreme cold events and less precipitation are simulated in sub-Arctic and Northern mid-latitude regions in winter.  相似文献   

3.
The recent decline in Arctic sea-ice cover (SIC) shows seasonal and regional characteristics. The retreat of summer sea ice has occurred mainly in the Pacific sector of the Arctic. In this study, using the moving t-test, we found an abrupt change event in the long-term sea-ice area in the Pacific sector in summer 1989. This event was linked to the phase shift of the Arctic Oscillation (AO) or the Northern Annular Mode (NAM). Corresponding with the AO/NAM phase shift from negative to positive, the area of the northern hemisphere stratospheric polar vortex decreased abruptly in winter 1988/89. Comparisons of two periods before (1979–1988) and after (1989–1993) the abrupt decrease in sea ice show that an anomalous winter sea level pressure (SLP) was induced by changes in the polar vortex leading to an anomalous cyclonic ice drift in the Pacific sector. The changes in SLP and wind field persisted into the following spring, resulting in a decrease in SIC and warming of the surface air temperature (SAT). The influence of the spring SLP and SAT on ice persisted into the following summer. Meanwhile, the increased summer net surface heat flux over the ocean and sea ice as a result of the decreased spring ice cover further contributed to the summer sea-ice melt.  相似文献   

4.
A coupled atmosphere-ocean-sea ice model is applied to investigate to what degree the area-thickness distribution of new ice formed in open water affects the ice and ocean properties. Two sensitivity experiments are performed which modify the horizontal-to-vertical aspect ratio of open-water ice growth. The resulting changes in the Arctic sea-ice concentration strongly affect the surface albedo, the ocean heat release to the atmosphere, and the sea-ice production. The changes are further amplified through a positive feedback mechanism among the Arctic sea ice, the Atlantic Meridional Overturning Circulation (AMOC), and the surface air temperature in the Arctic, as the Fram Strait sea ice import influences the freshwater budget in the North Atlantic Ocean. Anomalies in sea-ice transport lead to changes in sea surface properties of the North Atlantic and the strength of AMOC. For the Southern Ocean, the most pronounced change is a warming along the Antarctic Circumpolar Current (ACC), owing to the interhemispheric bipolar seasaw linked to AMOC weakening. Another insight of this study lies on the improvement of our climate model. The ocean component FESOM is a newly developed ocean-sea ice model with an unstructured mesh and multi-resolution. We find that the subpolar sea-ice boundary in the Northern Hemisphere can be improved by tuning the process of open-water ice growth, which strongly influences the sea ice concentration in the marginal ice zone, the North Atlantic circulation, salinity and Arctic sea ice volume. Since the distribution of new ice on open water relies on many uncertain parameters and the knowledge of the detailed processes is currently too crude, it is a challenge to implement the processes realistically into models. Based on our sensitivity experiments, we conclude a pronounced uncertainty related to open-water sea ice growth which could significantly affect the climate system sensitivity.  相似文献   

5.
Actual and insolation-weighted Northern Hemisphere snow cover and sea ice are binned by latitude bands for the years 1973–2002. Antarctic sea-ice is also analyzed for the years 1980–2002. The use of insolation weighting provides an improved estimate of the radiative feedbacks of snow cover and sea-ice into the atmosphere. One conclusion of our assessment is that while a decrease in both areal and insolation-weighted values have occurred, the data does not show a monotonic decrease of either Arctic sea-ice or Northern Hemisphere snow cover. If Arctic perennial sea-ice is decreasing since the total reduction in areal coverage is relatively small, a large portion of it is being replenished each year such that its radiative feedback to the atmosphere is muted. Antarctic sea-ice areal cover shows no significant long-term trend, while there is a slight decrease in the insolation-weighted values for the period 1980–2002. From the early 1990s to 2001, there was a slight increase in both values. The comparison of general circulation model simulations of changes over the last several decades to observed changes in insolation-weighted sea-ice and snow cover should be a priority research topic.  相似文献   

6.
Although the bulk aerodynamic transfer coefficients for sensible (C H ) and latent (C E ) heat over snow and sea ice surfaces are necessary for accurately modeling the surface energy budget, they have been measured rarely. This paper, therefore, presents a theoretical model that predicts neutral-stability values of C H and C E as functions of the wind speed and a surface roughness parameter. The crux of the model is establishing the interfacial sublayer profiles of the scalars, temperature and water vapor, over aerodynamically smooth and rough surfaces on the basis of a surface-renewal model in which turbulent eddies continually scour the surface, transferring scalar contaminants across the interface by molecular diffusion. Matching these interfacial sublayer profiles with the semi-logarithmic inertial sublayer profiles yields the roughness lengths for temperature and water vapor. When coupled with a model for the drag coefficient over snow and sea ice based on actual measurements, these roughness lengths lead to the transfer coefficients. C E is always a few percent larger than CH. Both decrease monotonically with increasing wind speed for speeds above 1 m s–1, and both increase at all wind speeds as the surface gets rougher. Both, nevertheless, are almost always between 1.0 × 10–3 and 1.5 × 10–3.  相似文献   

7.
Aircraft observations of the atmospheric boundary layer (ABL) over Arctic sea ice were made during non-stationary conditions of cold-air advection with a cloud edge retreating through the study region. The sea-ice concentration, roughness, and ABL stratification varied in space. In the ABL heat budget, 80% of the Eulerian change in time was explained by cold-air advection and 20% by diabatic heating. With the cloud cover and inflow potential temperature profile prescribed as a function of time, the air temperature and near-surface fluxes of heat and momentum were well simulated by the applied two-dimensional mesoscale model. Model sensitivity tests demonstrated that several factors can be active in generating unstable stratification in the ABL over the Arctic sea ice in March. In this case, the upward sensible heat flux resulted from the combined effect of clouds, leads, and cold-air advection. These three factors interacted non-linearly with each other. From the point of view of ABL temperatures, the lead effect was far less important than the cloud effect, which influenced the temperature profiles via cloud-top radiative cooling and radiative heating of the snow surface. The steady-state simulations demonstrated that under overcast skies the evolution towards a deep, well-mixed ABL may take place through the merging of two mixed layers one related to mostly shear-driven surface mixing and the other to buoyancy-driven top-down mixing due to cloud-top radiative cooling.  相似文献   

8.
Along with significant changes in the Arctic climate system, the largest year-to-year variation in sea-ice extent (SIE) has occurred in the Laptev, East Siberian, and Chukchi seas (defined here as the area of focus, AOF), among which the two highly contrasting extreme events were observed in the summers of 2007 and 1996 during the period 1979–2012. Although most efforts have been devoted to understanding the 2007 low, a contrasting high September SIE in 1996 might share some related but opposing forcing mechanisms. In this study, we investigate the mechanisms for the formation of these two extremes and quantitatively estimate the cloud-radiation-water vapor feedback to the sea-ice-concentration (SIC) variation utilizing satellite-observed sea-ice products and the NASA MERRA reanalysis. The low SIE in 2007 was associated with a persistent anticyclone over the Beaufort Sea coupled with low pressure over Eurasia, which induced anomalous southerly winds. Ample warm and moist air from the North Pacific was transported to the AOF and resulted in positive anomalies of cloud fraction (CF), precipitable water vapor (PWV), surface LWnet (down-up), total surface energy and temperature. In contrast, the high SIE event in 1996 was associated with a persistent low pressure over the central Arctic coupled with high pressure along the Eastern Arctic coasts, which generated anomalous northerly winds and resulted in negative anomalies of above mentioned atmospheric parameters. In addition to their immediate impacts on sea ice reduction, CF, PWV and radiation can interplay to lead to a positive feedback loop among them, which plays a critical role in reinforcing sea ice to a great low value in 2007. During the summer of 2007, the minimum SIC is 31 % below the climatic mean, while the maximum CF, LWnet and PWV can be up to 15 %, 20 Wm?2, and 4 kg m?3 above. The high anti-correlations (?0.79, ?0.61, ?0.61) between the SIC and CF, PWV, and LWnet indicate that CF, PWV and LW radiation are indeed having significant impacts on the SIC variation. A new record low occurred in the summer of 2012 was mainly triggered by a super storm over the central Arctic Ocean in early August that caused substantial mechanical ice deformation on top of the long-term thinning of an Arctic ice pack that had become more dominated by seasonal ice.  相似文献   

9.
A regional sea-ice?Cocean model was used to investigate the response of sea ice and oceanic heat storage in the Hudson Bay system to a climate-warming scenario. Projections of air temperature (for the years 2041?C2070; effective CO2 concentration of 707?C950?ppmv) obtained from the Canadian Regional Climate Model (CRCM 4.2.3), driven by the third-generation coupled global climate model (CGCM 3) for lateral atmospheric and land and ocean surface boundaries, were used to drive a single sensitivity experiment with the delta-change approach. The projected change in air temperature varies from 0.8°C (summer) to 10°C (winter), with a mean warming of 3.9°C. The hydrologic forcing in the warmer climate scenario was identical to the one used for the present climate simulation. Under this warmer climate scenario, the sea-ice season is reduced by 7?C9?weeks. The highest change in summer sea-surface temperature, up to 5°C, is found in southeastern Hudson Bay, along the Nunavik coast and in James Bay. In central Hudson Bay, sea-surface temperature increases by over 3°C. Analysis of the heat content stored in the water column revealed an accumulation of additional heat, exceeding 3?MJ?m?3, trapped along the eastern shore of James and Hudson bays during winter. Despite the stratification due to meltwater and river runoff during summer, the shallow coastal regions demonstrate a higher capacity of heat storage. The maximum volume of dense water produced at the end of winter was halved under the climate-warming perturbation. The maximum volume of sea ice is reduced by 31% (592?km3) while the difference in the maximum cover is only 2.6% (32,350?km2). Overall, the depletion of sea-ice thickness in Hudson Bay follows a southeast?Cnorthwest gradient. Sea-ice thickness in Hudson Strait and Ungava Bay is 50% thinner than in present climate conditions during wintertime. The model indicates that the greatest changes in both sea-ice climate and heat content would occur in southeastern Hudson Bay, James Bay, and Hudson Strait.  相似文献   

10.
Synoptic-scale atmospheric circulation patterns drive wind forcing of dynamic and thermodynamic processes in Arctic sea ice. Synoptic typing and compositing are common techniques used to identify a limited number of prevailing weather classifications that govern a region's climate. This work investigates atmospheric circulation patterns (surface to 250?hPa) for the southern Beaufort Sea and corresponding surface wind regimes within each synoptic type. Significant changes (p?<?0.05) in relative frequencies of a number of synoptic types were attributed to declining summer sea ice. Corresponding upper-level circulation anomalies show increasingly meridional atmospheric circulation. Synoptic Types 9 and 11 were identified as key October-November-December circulation features that represent deepening of the Aleutian low with concomitant strengthening of pressure gradients over the southern Beaufort Sea. Classification of coastal-based wind observations shows a shift towards increased easterly wind forcing. A case study of surface wind data from the CCGS Amundsen (2009–2011) provided a direct example of the surface wind regime within the marginal ice zone within each synoptic type during a period of reduced Arctic sea-ice cover.  相似文献   

11.
Recent work in modelling climatic changes due to increased atmospheric CO2 has shown the maximum change to occur in the polar regions as a result of seasonal reductions in sea ice coverage. Typically, sea ice thermodynamics is modelled in a very simple way, whereby the storage of both sensible and latent heat within the ice is ignored, and the effects of snow cover on conductivity and on surface albedo and of oceanic heat flux on bottom ablation may also be neglected. This paper considers whether omission of these processes is justified within the context of quantitatively determining regional climatic changes. A related question, whether omission of ice dynamics can be justified, is not considered.Relatively complete one-dimensional models of sea-ice thermodynamics have previously been developed and tested for a variety of environmental conditions by Maykut and Untersteiner (1969, 1971) and by Semtner (1976). A simpler model which neglects the storage of sensible and latent heat is described in the Appendix to Semtner (1976). In that model, the errors in annual-mean ice thickness which would arise from neglect of heat storage can be compensated by increases in albedo and in conductivity. Here we examine the seasonal cycle of ice thickness predicted by such a model and find significant errors in phase (one month lead) and in amplitude (50% overestimate). The amplitude errors are enhanced as snowfall and oceanic heat flux diminish (or are neglected). This suggests that substantial errors may occur in climate simulations which use very simple formulations of sea ice thermodynamics, whereby early and excessive melting exaggerates the seasonal disappearance of sea ice.To illustrate the above point, two models are configured to examine the local response of Arctic sea ice to a quadrupling of atmospheric CO2. The first model neglects a number of physical processes and mimics the behavior of sea ice found in Manabe and Stouffer (1980), both for present and enhanced levels of CO2. The more complete second model gives a better simulation of Arctic ice for the present level of CO2 and shows a reduced response to CO2 quadrupling relative to that in Manabe and Stouffer (1980). In particular, the change in surface temperature is cut by a factor of two. In view of this result, a more complete treatment of sea ice thermodynamics would seem warranted in further studies of climate change. Only a minor computational increase is required.A portion of this study is supported by the U.S. Department of Energy as a part of its Carbon Dioxide Research Program.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

12.
Observations made on 8 and 9 May 1988 by aircraft and two ships in and around the marginal ice zone of the Fram Strait during on-ice air flow under cloudy and cloud-free conditions are presented.The thermodynamic modification of the air mass moving from the open water to the ice over horizontal distances of 100–300 km is only a few tenth of a degree for temperature and a few tenth of a gram per kilogram for specific humidity. This is due to the small temperature differences between sea and ice surfaces. During the day, the ice surface is even warmer than the sea surface. The stably stratified 200–400 m deep boundary layer is often topped by a moisture inversion leading to downward fluxes of sensible as well as latent heat.The radiation and energy balance at the surface are measured as functions of ice cover, cloud cover and sun elevation angle. The net radiationR Nis the dominating term of the energy budget. During the day, the difference ofR Nbetween clear and overcast sky is only a few W/m2 over ice, but 100–200 W/m2 over water. During the night,R Nover ice is more sensitive to cloud cover.The kinematic structure is characterized by strong shears of the longitudinal and the transversal wind component. The profile of the latter one shows an inflection point near the top of the boundary layer. Dynamically-driven roll circulations are numerically separated from the mean flow. The secondary flow patterns have wavelengths of about 1 km and contribute substantially to the total variances and covariances.  相似文献   

13.
Snow depth over sea ice is an essential variable for understanding the Arctic energy budget.In this study,we evaluate snow depth over Arctic sea ice during 1993-2014 simulated by 31 models from phase 6 of the Coupled Model Intercomparison Project(CMIP6)against recent satellite retrievals.The CMIP6 models capture some aspects of the observed snow depth climatology and variability.The observed variability lies in the middle of the models’simulations.All the models show negative trends of snow depth during 1993-2014.However,substantial spatiotemporal discrepancies are identified.Compared to the observation,most models have late seasonal maximum snow depth(by two months),remarkably thinner snow for the seasonal minimum,an incorrect transition from the growth to decay period,and a greatly underestimated interannual variability and thinning trend of snow depth over areas with frequent occurrence of multi-year sea ice.Most models are unable to reproduce the observed snow depth gradient from the Canadian Arctic to the outer areas and the largest thinning rate in the central Arctic.Future projections suggest that snow depth in the Arctic will continue to decrease from 2015 to 2099.Under the SSP5-8.5 scenario,the Arctic will be almost snow-free during the summer and fall and the accumulation of snow starts from January.Further investigation into the possible causes of the issues for the simulated snow depth by some models based on the same family of models suggests that resolution,the inclusion of a hightop atmospheric model,and biogeochemistry processes are important factors for snow depth simulation.  相似文献   

14.
A climate model experiment was conducted using the HadCM3 climate model and a scenario in which the atmospheric CO2 concentration was increased over 70 years from pre-industrial concentrations to 4 times this level and then stabilised for more than a 1,000 years. During the period of stabilisation the global atmospheric surface temperatures continued to rise as the deep oceans adjusted towards a new equilibrium. However, even after 1,000 years this new equilibrium had not been reached. During the first 600 years, Arctic and Antarctic winter sea ice thickness and area covered declined with a significant impact on the global radiation budget. After this period the area of the Arctic covered by sea ice entered a 150 years period during which time it underwent a series of oscillations. Following the oscillation the centre of the Arctic basin became ice free throughout the year. A sensitivity experiment demonstrates that although the sea ice extent can be greatly reduced through the artificial heating of the mixed layer, prior to the onset of the oscillatory phase the ice recovers over 15 years. Understanding the causes of this oscillatory phase may elucidate the mechanisms of variability in the Arctic in the present climate and in future policy relevant scenarios. We have investigated the atmospheric and oceanic forcing on the ice during the oscillatory phase, and find that the behaviour is linked to a redistribution of Arctic Ocean heat stores.  相似文献   

15.
The surface energy budget is closely related to freeze-thaw processes and is also a key issue for land surface process research in permafrost regions.In this study,in situ data collected from 2005 to 2015 at the Tanggula site were used to analyze surface energy regimes,the interaction between surface energy budget and freeze-thaw processes.The results confirmed that surface energy flux in the permafrost region of the Qinghai-Tibetan Plateau exhibited obvious seasonal variations.Annual average net radiation(Rn)for 2010 was 86.5 W m-2,with the largest being in July and smallest in November.Surface soil heat flux(G0)was positive during warm seasons but negative in cold seasons with annual average value of 2.7 W m-2.Variations in Rn and G0 were closely related to freeze-thaw processes.Sensible heat flux(H)was the main energy budget component during cold seasons,whereas latent heat flux(LE)dominated surface energy distribution in warm seasons.Freeze-thaw processes,snow cover,precipitation,and surface conditions were important influence factors for surface energy flux.Albedo was strongly dependent on soil moisture content and ground surface state,increasing significantly when land surface was covered with deep snow,and exhibited negative correlation with surface soil moisture content.Energy variation was significantly related to active layer thaw depth.Soil heat balance coefficient K was>1 during the investigation time period,indicating the permafrost in the Tanggula area tended to degrade.  相似文献   

16.
Arctic sea ice and Eurasian climate: A review   总被引:12,自引:0,他引:12  
The Arctic plays a fundamental role in the climate system and has shown significant climate change in recent decades,including the Arctic warming and decline of Arctic sea-ice extent and thickness. In contrast to the Arctic warming and reduction of Arctic sea ice, Europe, East Asia and North America have experienced anomalously cold conditions, with record snowfall during recent years. In this paper, we review current understanding of the sea-ice impacts on the Eurasian climate.Paleo, observational and modelling studies are covered to summarize several major themes, including: the variability of Arctic sea ice and its controls; the likely causes and apparent impacts of the Arctic sea-ice decline during the satellite era,as well as past and projected future impacts and trends; the links and feedback mechanisms between the Arctic sea ice and the Arctic Oscillation/North Atlantic Oscillation, the recent Eurasian cooling, winter atmospheric circulation, summer precipitation in East Asia, spring snowfall over Eurasia, East Asian winter monsoon, and midlatitude extreme weather; and the remote climate response(e.g., atmospheric circulation, air temperature) to changes in Arctic sea ice. We conclude with a brief summary and suggestions for future research.  相似文献   

17.
Sea ice formed over shallow Arctic shelves often entrains sediments resuspended from the sea floor. Some of this sediment-laden ice advects offshore into the Transpolar Drift Stream and the Beaufort Gyre of the Arctic Basin. Through the processes of seasonal melting at the top surface, and the freezing of clean ice on the bottom surface, these sediments tend, over time, to concentrate at the top of the ice where they can affect the surface albedo, and thus the absorbed solar radiation, when the ice is snow free. Similarly, wind-blown dust can reduce the albedo of snow. The question that is posed by this study is what is the impact of these sediments on the seasonal variation of sea ice, and how does it then affect climate? Experiments were conducted with a coupled energy balance climate-thermodynamic sea ice model to examine the impact of including sediments in the sea ice alone and in the sea ice and overlying snow. The focus of these experiments was the impact of the radiative and not the thermal properties of the sediments. The results suggest that if sea ice contains a significant amount of sediments which are covered by clean snow, there is only a small impact on the climate system. However, if the snow also contains significant sediments the impact on sea ice thickness and surface air temperature is much more significant.  相似文献   

18.
The snow/sea-ice albedo was measured over coastal landfast sea ice in Prydz Bay, East Antarctica(off Zhongshan Station)during the austral spring and summer of 2010 and 2011. The variation of the observed albedo was a combination of a gradual seasonal transition from spring to summer and abrupt changes resulting from synoptic events, including snowfall, blowing snow, and overcast skies. The measured albedo ranged from 0.94 over thick fresh snow to 0.36 over melting sea ice. It was found that snow thickness was the most important factor influencing the albedo variation, while synoptic events and overcast skies could increase the albedo by about 0.18 and 0.06, respectively. The in-situ measured albedo and related physical parameters(e.g., snow thickness, ice thickness, surface temperature, and air temperature) were then used to evaluate four different snow/ice albedo parameterizations used in a variety of climate models. The parameterized albedos showed substantial discrepancies compared to the observed albedo, particularly during the summer melt period, even though more complex parameterizations yielded more realistic variations than simple ones. A modified parameterization was developed,which further considered synoptic events, cloud cover, and the local landfast sea-ice surface characteristics. The resulting parameterized albedo showed very good agreement with the observed albedo.  相似文献   

19.
 Recent observational and numerical studies of the maritime snow cover in the Antarctic suggest that snow on top of sea ice plays a major role in shaping the seasonal growth and decay of the ice pack in the Southern Ocean. Here, we make a quantitative assessment of the importance of snow accumulation in controlling the seasonal cycle of the ice cover with a coupled snow–sea-ice–upper-ocean model. The model takes into account snow and ice sublimation and snow deposition by condensation. A parametrisation of the formation of snow ice (ice resulting from the freezing of a mixture of snow and seawater produced by flooding of the ice floes) is also included. Experiments on the sensitivity of the snow–sea-ice system to variations in the sublimation/condensation rate, the precipitation rate, and the amount of snowfall transported by the wind into leads are discussed. Although we focus on the model response in the Southern Hemisphere, results for the Arctic are also discussed in some cases to highlight the relative importance of the processes under study in both hemispheres. It is found that the snow loss by sublimation can account for the removal of 0.45 m of snow per year in the Antarctic and that this loss significantly affects the total volume of snow ice. A precipitation decrease of 50% is conducive to large reductions in the Antarctic snow and snow-ice volumes, but it leads only to an 8% decrease in the annual mean ice volume. The Southern Ocean ice pack is more sensitive to increases in precipitation. For precipitation rates 1.5 times larger than the control ones, the annual mean snow, ice, and snow-ice volumes augment by 30, 20, and 180%, respectively. It is also found that the transfer to the ocean of as much as 50% of the precipitating snow as a result of wind transport has almost negligible effects on the total ice volume. All the experiments exhibit a marked geographical contrast in the ice-cover response, with a much larger sensitivity in the western sector of the Southern Ocean than in the eastern sector. Our results suggest that snow-related processes are of secondary importance for determining the sensitivity of the Arctic sea ice to environmental changes but that these processes could have an important part to play in the response of the Antarctic sea-ice cover to future, or current, climatic changes. Received: 30 June 1997/Accepted: 2 October 1998  相似文献   

20.
The 2009 ArcticNet expedition was a field campaign in the Amundsen Gulf–eastern Beaufort Sea region from mid-July to the beginning of November aboard the CCGS Amundsen that provided an opportunity to describe the all-sky surface radiation and the clear-sky surface energy budgets from summer to freeze-up in the data sparse western maritime Arctic. Because the fractional area of open water was generally larger than the fractional area of ice floes, the net radiation at the water surface controlled the radiation budget. Because the water albedo is much less than the albedo of the ice floes, the extent and duration of open water in summer is an important albedo feedback mechanism. From summer to freeze-up, the net all-sky shortwave radiation declined steadily as the solar angle lowered, while coincidently the net all-sky longwave radiation became increasingly negative. The all-sky net surface radiation switched from positive in summer to negative during the freeze-up period. From summer to freeze-up, both upward and downward turbulent heat fluxes occurred. In summer, a positive surface energy budget residual contributed to the melting of ice floes and/or to the warming of the Arctic Ocean's mixed layer. During the freeze-up period, with temperatures below approximately ?5°C, the residuals were mainly negative suggesting that heat loss from the ocean's mixed layer and heat released by the phase change of water were significant components of the energy budget's residual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号