首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This article reviews evidence for 16th century glacial fluctuations in the western Swiss and the French Alps. Previously available sources and new historical sources, as well as dendrochronological investigations of larches that were destroyed by glacier advances (Great Aletsch Glacier), have shed much light in recent years on glacial movements in the 16th century. Many of the earliest know Records for glacial activity in the Western Alps date from the end of the 16th century and refer to outbursts of glacier dammed lakes (Allalin Glacier, Giétro Glacier, Rutor Glacier). Only few but very important evidence in the first half of the 16th century refer directly to glacial extension as in the case of the Lower Grindelwald Glacier and the Rhone Glacier. The drastic change in climate starting in 1565 which cause the remarkable advance of Alpine glaciers can be easily seen in the tree-ring curves (maximum density, tree ring width) of larches (Larix decidua Mill.) in the Alps.  相似文献   

2.
Temperature reconstructions for recent centuries provide a historical context for the warming over the twentieth century. We reconstruct annual averaged surface temperatures of the past 400?years on hemispherical and global scale from glacier length fluctuations. We use the glacier length records of 308 glaciers. The reconstruction is a temperature proxy with decadal resolution that is completely independent of other temperature records. Temperatures are derived from glacier length changes using a linear response equation and an analytical glacier model that is calibrated on numerical model results. The global and hemispherical temperatures reconstructed from glacier length fluctuations are in good agreement with the instrumental record of the last century. Furthermore our results agree with existing multi-proxy reconstructions of temperature in the pre-instrumental period. The temperature record obtained from glacier fluctuations confirms the pronounced warming of the twentieth century, giving a global cumulative warming of 0.94?±?0.31?K over the period 1830–2000 and a cumulative warming of 0.84?±?0.35?K over the period 1600–2000.  相似文献   

3.
A nonlinear backpropagation network (BPN) has been trained with high-resolution multiproxy reconstructions of temperature and precipitation (input data) and glacier length variations of the Alpine Lower Grindelwald Glacier, Switzerland (output data). The model was then forced with two regional climate scenarios of temperature and precipitation derived from a probabilistic approach: The first scenario (“no change”) assumes no changes in temperature and precipitation for the 2000–2050 period compared to the 1970–2000 mean. In the second scenario (“combined forcing”) linear warming rates of 0.036–0.054°C per year and changing precipitation rates between −17% and +8% compared to the 1970–2000 mean have been used for the 2000–2050 period. In the first case the Lower Grindelwald Glacier shows a continuous retreat until the 2020s when it reaches an equilibrium followed by a minor advance. For the second scenario a strong and continuous retreat of approximately −30 m/year since the 1990s has been modelled. By processing the used climate parameters with a sensitivity analysis based on neural networks we investigate the relative importance of different climate configurations for the Lower Grindelwald Glacier during four well-documented historical advance (1590–1610, 1690–1720, 1760–1780, 1810–1820) and retreat periods (1640–1665, 1780–1810, 1860–1880, 1945–1970). It is shown that different combinations of seasonal temperature and precipitation have led to glacier variations. In a similar manner, we establish the significance of precipitation and temperature for the well-known early eighteenth century advance and the twentieth century retreat of Nigardsbreen, a glacier in western Norway. We show that the maritime Nigardsbreen Glacier is more influenced by winter and/or spring precipitation than the Lower Grindelwald Glacier.  相似文献   

4.
Summary We analyse the spatial representation of five previously published multi-century to millennial length dendroclimatological reconstructions of Fennoscandian summer temperatures. The reconstructions, ranging from local to regional scale, were based on either tree-ring width (TRW) or maximum latewood density (MXD) data or on a combination of the two. TRW chronologies are shown to provide reasonably good spatial information mainly for July temperatures, but a combination of TRW and MXD yields a better spatial representation for the whole summer season (June–August). A multiple-site reconstruction does not necessarily provide better spatial representation than a single site reconstruction, depending on the criterion for selecting data and also on the strength of the climate signal in the tree-ring data. In a new approach to analyse the potential for further developing Fennoscandian temperature reconstructions, we selected from a network of TRW and MXD chronologies those having the strongest temperature information a priori, to obtain a strong common climate signal suitable for a regional-scale reconstruction. Seven separate, but not independent, reconstructions based on progressively decreasing numbers of chronologies were created. We show that it is possible to improve the spatial representation of available reconstructions back to around AD 1700, giving high correlations (>0.7) with observed summer temperatures for nearly the whole of Fennoscandia, and even higher correlations (>0.85) over much of central-northern Fennoscandia. Further sampling of older trees (e.g. dry-dead and subfossil wood) would be needed to achieve the same high correlations prior to AD 1700. Our analysis suggests that it should be possible to select a few key sites for improving the reconstructions before AD 1700. Since tree-ring data from northern Fennoscandia are used in all available hemispheric-scale temperature reconstructions for the last millennium, there is also a potential for slightly improving the quality of the hemispheric-scale reconstructions, by including an improved reconstruction for Fennoscandia. However, adding new chronologies from previously unsampled regions would potentially improve hemispheric-scale temperature reconstructions more substantially. Authors’ addresses: Isabelle Gouirand, Anders Moberg, Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden; Hans W. Linderholm, Regional Climate Group, Department of Earth Sciences, G?teborg University, SE-405 30 G?teborg, Sweden; Barbara Wohlfarth, Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.  相似文献   

5.
Temperature is often seen as the dominant control on inter-decadal glacier volume changes. However, despite regional warming over the past half-century, the glaciers of Mount Shasta have continued to expand following a contraction during a prolonged drought in the early twentieth century, indicating a greater sensitivity to precipitation than temperature. We use the 110 year record of fluctuations in Mount Shasta’s glaciers and climate to calibrate numerical glacier models of the two largest glaciers. The reconstructed balance and volume histories show a much greater correlation to precipitation than temperature and significant correlation to oscillatory modes of Pacific Ocean climate. An approximately 20% increase in precipitation is needed for every 1°C increase in temperature to maintain stability. Under continued historical trends, oscillations in climate modes and random variability will dominate inter-decadal variability in ice volume. Under the strong warming trend predicted by a regional climate model, the temperature trend will be the dominant forcing resulting in near total loss of Mount Shasta’s glaciers by the end of the twenty-first century.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

6.
The understanding of the ongoing climate change needs high-resolution records of the past, which are difficult to obtain in north-central China. Historical documents are unique materials for high-resolution (up to season) climate change reconstruction. Here, we report an attempt of quantitative climate reconstruction covering the main part of north-central China, by combining historical drought/flood index and tree-ring data. The rigorous verification tests confirm the fidelity of transfer functions used in the reconstructions. The precipitation and temperature anomalies/intervals were then defined based on the reconstructions. Finally, the intensity of several big droughts recorded in historical documents was re-examined and the dominant and recessive patterns of heat/water changes within the study area were identified. We concluded that (1) the droughts, occurred during the years of 1484 AD, 1585–1587 AD, 1689–1691 AD, 1784–1786 AD and 1876–1878 AD, were the results of rainless and torrid combination; (2) the droughts, occurred during the years of 1560–1561 AD, 1599–1601 AD, 1609 AD, 1615–1617 AD, 1638–1641 AD and 1899–1901 AD, were first caused by rainless summer, and then controlled by low precipitation and/or high temperature; (3) the droughts, occurred during the years of 1527–1529 AD, 1720–1722 AD, 1813–1814 AD, 1856–1857 AD and 1926–1930 AD, were first caused by torrid summer, and then controlled by both low precipitation and high temperature; (4) the dominant climate pattern within the study area consisted of warm–dry and cold–wet alternations, and the recessive pattern consisted of cold–dry and warm–wet alternations. We also showed that the drought/flood index is a valuable climate proxy in quantitative reconstructions, especially in places where tree-ring data is not available.  相似文献   

7.
In Iceland, there are numerous examples of glacier advances dated to the latter half of the last century. However, in marked contrast to the Alps and northern Europe, the record of historical-age moraines before ca. 1850 is rather sparse. This paper examines to what extent this pattern reflects the actual history of glacier fluctuations, and to what extent it could be a function of preservation and dating of the geomorphological record. Measurements of Rhizocarpon geographicum sp. lichen thalli on ice-marginal moraines and sandur form the basis for the late "Little Ice Age" glacial chronology in south Iceland. Recent studies have converged on the view of a maximum glacier extent in the late nineteenth century, and not during earlier and possibly colder parts of the "Little Ice Age". Here, results of independent dating of moraine ridges and a jökulhlaup deposit demonstrate that conventional lichenometric techniques tend to cluster dates of these landforms to the 1860s-1880s, underestimating tephrochronological dates on the same landforms by >100 yr in some cases. A mid-eighteenth century glacial maximum may be better represented in the landform record than hitherto thought, with implications for reconstruction of North Atlantic circulation patterns.  相似文献   

8.
Flood hazard is expected to increase in the context of global warming. However, long time-series of climate and gauge data at high-elevation are too sparse to assess reliably the rate of recurrence of such events in mountain areas. Here paleolimnological techniques were used to assess the evolution of frequency and magnitude of flash flood events in the North-western European Alps since the Little Ice Age (LIA). The aim was to document a possible effect of the post-19th century global warming on torrential floods frequency and magnitude. Altogether 56 flood deposits were detected from grain size and geochemical measurements performed on gravity cores taken in the proglacial Lake Blanc (2170?m?a.s.l., Belledonne Massif, NW French Alps). The age model relies on radiometric dating (137Cs and 241Am), historic lead contamination and the correlation of major flood- and earthquake-triggered deposits, with recognized occurrences in historical written archives. The resulting flood calendar spans the last ca 270?years (AD 1740–AD 2007). The magnitude of flood events was inferred from the accumulated sediment mass per flood event and compared with reconstructed or homogenized datasets of precipitation, temperature and glacier variations. Whereas the decennial flood frequency seems to be independent of seasonal precipitation, a relationship with summer temperature fluctuations can be observed at decadal timescales. Most of the extreme flood events took place since the beginning of the 20th century with the strongest occurring in 2005. Our record thus suggests climate warming is favouring the occurrence of high magnitude torrential flood events in high-altitude catchments.  相似文献   

9.
A portion of the debate about climate reconstructions of the past millennium, and in particular about the well-known Mann-Bradley-Hughes (“MBH” 1998, 1999) reconstructions, has become disconnected from the goal of understanding natural climate variability. Here, we reflect on what can be learned from recent scientific exchanges and identify important challenges that remain to be addressed openly and productively by the community. One challenge arises from the real, underlying trend in temperatures during the instrumental period. This trend can affect regression-based reconstruction performance in cases where the calibration period does not appropriately cover the range of conditions encountered during the reconstruction. However, because it is tied to a unique spatial pattern driven by change in radiative balance, the trend cannot simply be removed in the method of climate field reconstruction used by MBH on the statistical argument of preserving degrees of freedom. More appropriately, the influence from the trend can be taken into account in some methods of significance testing. We illustrate these considerations as they apply to the MBH reconstruction and show that it remains robust back to AD 1450, and given other empirical information also back to AD 1000. However, there is now a need to move beyond hemispheric average temperatures and to focus instead on resolving climate variability at the socially more relevant regional scale.  相似文献   

10.
Climate variability, coupled with increasing demand is raising concerns about the sustainability of water resources in the western United States. Tree-ring reconstructions of stream flow that extend the observational record by several centuries provide critical information on the short-term variability and multi-decadal trends in water resources. In this study, precipitation sensitive Douglas-fir (Pseudotsuga menzeisii) tree ringrecords are used to reconstruct annual flow of the Yellowstone River back to A.D. 1706. Linkages between precipitation in the Greater Yellowstone Region and climate variability in the Pacific basin were incorporated into our model by including indices Pacific Ocean interannual and decadal-scale climatic variability, namely the Pacific Decadal Oscillation and the Southern Oscillation. The reconstruction indicates that 20th century streamflow is not representative of flow during the previous two centuries. With the exception of the 1930s, streamflow during the 20th century exceeded average flows during the previous 200 years. The drought of the 1930s resulted in the lowest flows during the last three centuries, however, this probably does not represent a worst-case scenario for the Yellowstone as other climate reconstructions indicate more extreme droughts prior to the 18th century.  相似文献   

11.
The longest chronology from New Zealand so faris from Libocedrus bidwillii Hook. f. (i.e.,from AD 1992 back to AD 1140, a span of 853 years). A subset of 11 chronologies was selected from anetwork of 23 sites to reconstruct past temperaturesbased on the similarity of significant responsefunctions. A comparison of climate data overdifferent seasons with these 11 chronologies wascarried out using a bootstrap transfer function. Average late-summer (February–March) temperature wasselected for reconstruction based on independentverification results. The reconstructed temperaturewas then presented for the period back to AD 1720. The chronologies reconstructed years experiencing hotsummers better than cold summers. The power spectrumof the reconstructed temperatures showed periodicitiessimilar to those of the observed temperatures. Reconstructed temperatures were significantlycorrelated with other proxy climate reconstructionsderived from tree rings in New Zealand. However,unlike the other tree ring-based reconstructions, theLibocedrus bidwillii series reconstructed boththe 1950s and 1970s warming periods. The resultsalso compared very favourably with other palaeoclimateevidence.  相似文献   

12.
天山乌鲁木齐河源1号冰川消融对气候变化的响应   总被引:5,自引:0,他引:5  
目前气候变暖导致的冰川退缩,引起了全世界的广泛关注。 以新疆天山乌鲁木齐河源1号冰川为例,根据1958年以来的观测资料,研究了冰川消融对气候变化的响应。结果表明,近50 a来冰川在表面粒雪特征、成冰带、冰川温度、面积、厚度及末端位置等方面发生了显著变化,而这些变化均与气温的升高有着密切的联系;20世纪80年代以来的快速升温,使冰川的退缩出现了加速趋势,冰川融水径流量也呈加速增大趋势。  相似文献   

13.
We present an annually resolved reconstruction of spring-summer precipitation variability in East Anglia, UK (52–53°N, 0–2°E) for the period AD 900–2009. A continuous regional network of 723 living (AD 1590–2009) and historical (AD 781–1790) oak (Quercus sp.) ring-width series has been constructed and shown to display significant sensitivity to precipitation variability during the March-July season. The existence of a coherent common growth signal is demonstrated in oaks growing across East Anglia, containing evidence of near-decadal aperiodic variability in precipitation throughout the last millennium. Positive correlations are established between oak growth and precipitation variability across a large region of northwest Europe, although climate-growth relationships appear time transgressive with correlations significantly weakening during the early twentieth century. Examination of the relationship between oak growth, precipitation, and the North Atlantic Oscillation (NAO), reveals no evidence that the NAO plays any significant role in the control of precipitation or tree growth in this region. Using Regional Curve Standardisation to preserve evidence of low-frequency growth variability in the East Anglian oak chronology, we produce a millennial length reconstruction that is capable of explaining 32–35% of annual-to-decadal regional-scale precipitation variance during 1901–2009. The full length reconstruction indicates statistically significant anomalous dry conditions during AD 900–1100 and circa-1800. An apparent prolonged wetter phase is estimated for the twelfth and thirteen centuries, whilst precipitation fluctuates between wetter and drier phases at near centennial timescales throughout the fourteenth to seventeenth centuries. Above average precipitation reconstructed for the twenty-first century is comparable with that reproduced for the 1600s. The main estimated wet and dry phases reconstructed here appear largely coherent with an independent tree-ring reconstruction for southern-central England.  相似文献   

14.
To investigate climate variability in Asia during the last millennium, the spatial and temporal evolution of summer (June–July–August; JJA) temperature in eastern and south-central Asia is reconstructed using multi-proxy records and the regularized expectation maximization (RegEM) algorithm with truncated total least squares (TTLS), under a point-by-point regression (PPR) framework. The temperature index reconstructions show that the late 20th century was the warmest period in Asia over the past millennium. The temperature field reconstructions illustrate that temperatures in central, eastern, and southern China during the 11th and 13th centuries, and in western Asia during the 12th century, were significantly higher than those in other regions, and comparable to levels in the 20th century. Except for the most recent warming, all identified warm events showed distinct regional expressions and none were uniform over the entire reconstruction area. The main finding of the study is that spatial temperature patterns have, on centennial time-scales, varied greatly over the last millennium. Moreover, seven climate model simulations, from the Coupled Model Intercomparison Project Phase 5 (CMIP5), over the same region of Asia, are all consistent with the temperature index reconstruction at the 99 % confidence level. Only spatial temperature patterns extracted as the first empirical orthogonal function (EOF) from the GISS-E2-R and MPI-ESM-P model simulations are significant and consistent with the temperature field reconstruction over the past millennium in Asia at the 90 % confidence level. This indicates that both the reconstruction and the simulations depict the temporal climate variability well over the past millennium. However, the spatial simulation or reconstruction capability of climate variability over the past millennium could be still limited. For reconstruction, some grid points do not pass validation tests and reveal the need for more proxies with high temporal resolution, accurate dating, and sensitive temperature signals, especially in central Asia and before AD 1400.  相似文献   

15.
We present a millennial long dendroclimatic reconstruction of spring/summer precipitation for southern-central England. Previous research identified a significant moisture stress signal in ring-width data measured from oak trees growing in southern England. In this study, we build upon this earlier work, specifically targeting south-central England, to derive a well replicated oak ring-width composite chronology using both living and historical material. The data-set includes 352 living trees (AD 1629–2009) and 1540 individual historical series (AD 663–1925). The period expressed by at least 50 trees in any year is AD 980–2009. Calibration experiments identify the optimal seasonal predictand target as March–July precipitation (1901–2007: r2 = 0.33). However, comparison with the long Kew Gardens precipitation record indicates a weakening in tree-growth/climate response from ~1800 to 1920 which we speculate may be related to smoke and sulphur dioxide (SO2) emissions at that time which may have also contributed to a decrease in tree productivity. The time-series derived using the regional curve standardisation method to capture lower frequency information shows a mediaeval period with alternating multi-decade-long dry and wet periods, with AD 1153–1172 being the wettest reconstructed 20-year period in the whole record. Drier conditions are prevalent from ~1300 to the early sixteenth century followed by a period of increasing precipitation levels. The most recent four centuries of the record appear similar to the mediaeval period with multiple decade-long dry and wet periods. The late twentieth century is the second reconstructed wettest period. These centennial hydroclimatic trends are in broad agreement with independent regional scale hydroclimatic reconstructions from tree-ring (East Anglia), historical, speleothem and peat water level proxy archives in the United Kingdom and appear coupled with reconstructed sea surface temperature changes in the North Atlantic which in turn influence the Atlantic meridional overturning circulation and westerly airflow across the UK.  相似文献   

16.
During the summer of 1994, a meteorological experiment(PASTEX) was performed over the Pasterze Glacier,Austria. In this paper we describe the averagehorizontal and vertical structure of the atmosphericboundary layer (ABL) above the melting glacier, aswell as its diurnal variation during a period of fairweather. It was found that very persistent glacierwinds with a vertical extent of 100 m dominate thesummertime structure of the ABL, because the gravityforce acting on the near surface air parcels is manytimes larger than the synoptic-scale pressuregradient. During fair weather, we find a welldeveloped mountain-valley wind circulation above thekatabatic layer. During daytime, the valley wind advectswarm and humid air from the ice-free valley towardsthe glacier, limiting the development of the glacierwind. During the night, the downslope flows thatdevelop above the ice-free valley walls (mountainwind) merge with the glacier wind and enhance thedownslope transport of air. The associated subsidenceis the most probable cause for the drying of the lowerpart of the atmosphere during the night. Duringperiods of weak synoptic winds, the glacier windeffectively generates turbulence in the stronglystratified surface layer. On average, the turbulentfluxes of sensible and latent heat provide 25% of thetotal melting energy at the surface of the glaciertongue, and the influence of the glacier winds on thesurface energy budget can therefore not beneglected.  相似文献   

17.
The Bologna meteorological record is one of the oldest and most complete among the series already collected for Europe. Data from the regions south of the Alps being extremely sparse, this station is of great importance for all climatic reconstructions dating as far back as the beginning of the 18th century. The focus here is on the temperature series, because it presents some a priori problems with respect to the series analysis itself. These problems relate to the homogeneity of the temperature record, which is affected by the use of different thermometers within the record, the statistical reconstruction of the thermometric scales, and the drift in calibration of one of these instruments. After correcting for these heterogeneities, the temperature series indicate a thermal behaviour in agreement with other historical European sources. The Bologna series is characterised by a warm period during the first decades of the 18th century, with large decreases in temperature in 1740 and 1742, and a positive trend from 1742 to the end of the record. The behaviour of the Bologna temperature series is in good agreement with the series for Central England, De Bilt (Netherlands) and Padua (Italy).  相似文献   

18.
Three new 159-year long reconstructions of spring, summer, and growing season precipitation totals were developed for northeastern Kansas and northwestern Missouri from five station clusters (Lawrence, Leavenworth, and Manhattan, Kansas; Miami and Oregon, Missouri). Nonstandard observation practices are inherent in the early meteorological data, which can induce an undercount in precipitation measurements, particularly during the cool season. Threshold analyses of these five station clusters indicated undercount can be lessened for daily precipitation totals of 0.50 in. and greater during the warm season (“half-inch threshold”). Therefore, “adjusted reconstructions” of total precipitation for the spring (AMJ), summer (JA), and growing season (AMJJA) were derived using the “half-inch threshold” totals and an estimate of the missing amount between 0.00 and 0.50 in. based on an average of the modern observations at each station (or the nearest available station). The new precipitation reconstructions suggest that the most severe spring drought may have occurred during the mid-19th century, although the potential for undercount is likely highest during the spring season. The most severe summer precipitation deficit is estimated during the 1930s Dust Bowl drought, followed by the summer drought of the 1910s. When precipitation is totaled for the entire growing season, the mid-19th century and Dust Bowl droughts were of approximately equal magnitude and duration in this reconstruction. However, the integration of precipitation and temperature into seasonal measures of effective moisture, using a new 19th century temperature reconstruction for northeastern Kansas, indicates that the 1930s growing season moisture deficit was the most severe and sustained since 1855, highlighting the extraordinarily high temperatures recorded during the 1930s Dust Bowl drought.  相似文献   

19.
We present a significant update to a millennial summer temperature reconstruction (1073–1983) that was originally published in 1997. Utilising new tree-ring data (predominantly Picea engelmannii), the reconstruction is not only better replicated, but has been extended (950–1994) and is now more regionally representative. Calibration and verification statistics were improved, with the new model explaining 53% of May–August maximum temperature variation compared to the original (39% of April–August mean temperatures). The maximum latewood density data, which are weighted more strongly in the regression model than ringwidth, were processed using regional curve standardisation to capture potential centennial to millennial scale variability. The reconstruction shows warm intervals, comparable to twentieth century values, for the first half of the eleventh century, the late 1300s and early 1400s. The bulk of the record, however, is below the 1901–1980 normals, with prolonged cool periods from 1200 to 1350 and from 1450 to the late 19th century. The most extreme cool period is observed to be in the 1690s. These reconstructed cool periods compare well with known regional records of glacier advances between 1150 and the 1300s, possibly in the early 1500s, early 1700s and 1800s. Evidence is also presented of the influence of solar activity and volcanic events on summer temperature in the Canadian Rockies over the last 1,000 years. Although this reconstruction is regional in scope, it compares well at multi-decadal to centennial scales with Northern Hemisphere temperature proxies and at millennial scales with reconstructions that were also processed to capture longer timescale variability. This coherence suggests that this series is globally important for the assessment of natural temperature variability over the last 1,000 years.Authors are listed alphabetically  相似文献   

20.
A new reconstruction of the climate and sea-ice record for Iceland from medieval times to A.D. 1780 is presented, based on all available documentary sources. The importance of careful historical analysis to separate reliable from unreliable material is stressed, and these reconstructions are the first to have been produced using only reliable data. The major previous works on the subject (those of Thoroddsen, Koch, and Bergþórsson), which all include unreliable material, are discussed. Prior to A.D. 1600 the data are not considered to be full enough to permit a quantitative interpretation. For the period A.D. 1601 to 1780 decadal temperature and sea-ice indices are given.Although there is very little evidence for the first few centuries of settlement in Iceland (from c. 870 to c. 1170) the data suggest a fairly mild climatic period. Cold periods occurred around 1200, and at the end of the thirteenth century. The fourteenth century was very variable with a cold period in the 1350s to c. 1380. Between 1430 and c. 1560 there are very few contemporary sources and it is difficult to draw any conclusions on the climate during this time. The latter part of the sixteenth century was undoubtedly cold. From 1601 there are sufficient data to permit a decade by decade analysis. This shows a mild period between 1640 and 1670, and severe decades in the 1630s, 1690s, 1740s, and 1750s. Year to year and decade to decade variability is appreciable. The correlation between temperature and sea ice is not perfect but is still quite strong (similar to today). Because data have been gathered from different regions of Iceland it has been possible to demonstrate the spatial variability of Iceland's climate during the period 1601 to 1780. For example, during 1660 to 1700 there was a cooling in the north and west but warming in the south. The 1690s, the coldest decade of the Little Ice Age in Europe, was extremely cold in the west of Iceland, but less severe elsewhere.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号