首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The longest chronology from New Zealand so faris from Libocedrus bidwillii Hook. f. (i.e.,from AD 1992 back to AD 1140, a span of 853 years). A subset of 11 chronologies was selected from anetwork of 23 sites to reconstruct past temperaturesbased on the similarity of significant responsefunctions. A comparison of climate data overdifferent seasons with these 11 chronologies wascarried out using a bootstrap transfer function. Average late-summer (February–March) temperature wasselected for reconstruction based on independentverification results. The reconstructed temperaturewas then presented for the period back to AD 1720. The chronologies reconstructed years experiencing hotsummers better than cold summers. The power spectrumof the reconstructed temperatures showed periodicitiessimilar to those of the observed temperatures. Reconstructed temperatures were significantlycorrelated with other proxy climate reconstructionsderived from tree rings in New Zealand. However,unlike the other tree ring-based reconstructions, theLibocedrus bidwillii series reconstructed boththe 1950s and 1970s warming periods. The resultsalso compared very favourably with other palaeoclimateevidence.  相似文献   

2.
Summary We analyse the spatial representation of five previously published multi-century to millennial length dendroclimatological reconstructions of Fennoscandian summer temperatures. The reconstructions, ranging from local to regional scale, were based on either tree-ring width (TRW) or maximum latewood density (MXD) data or on a combination of the two. TRW chronologies are shown to provide reasonably good spatial information mainly for July temperatures, but a combination of TRW and MXD yields a better spatial representation for the whole summer season (June–August). A multiple-site reconstruction does not necessarily provide better spatial representation than a single site reconstruction, depending on the criterion for selecting data and also on the strength of the climate signal in the tree-ring data. In a new approach to analyse the potential for further developing Fennoscandian temperature reconstructions, we selected from a network of TRW and MXD chronologies those having the strongest temperature information a priori, to obtain a strong common climate signal suitable for a regional-scale reconstruction. Seven separate, but not independent, reconstructions based on progressively decreasing numbers of chronologies were created. We show that it is possible to improve the spatial representation of available reconstructions back to around AD 1700, giving high correlations (>0.7) with observed summer temperatures for nearly the whole of Fennoscandia, and even higher correlations (>0.85) over much of central-northern Fennoscandia. Further sampling of older trees (e.g. dry-dead and subfossil wood) would be needed to achieve the same high correlations prior to AD 1700. Our analysis suggests that it should be possible to select a few key sites for improving the reconstructions before AD 1700. Since tree-ring data from northern Fennoscandia are used in all available hemispheric-scale temperature reconstructions for the last millennium, there is also a potential for slightly improving the quality of the hemispheric-scale reconstructions, by including an improved reconstruction for Fennoscandia. However, adding new chronologies from previously unsampled regions would potentially improve hemispheric-scale temperature reconstructions more substantially. Authors’ addresses: Isabelle Gouirand, Anders Moberg, Department of Physical Geography and Quaternary Geology, Stockholm University, SE-106 91 Stockholm, Sweden; Hans W. Linderholm, Regional Climate Group, Department of Earth Sciences, G?teborg University, SE-405 30 G?teborg, Sweden; Barbara Wohlfarth, Department of Geology and Geochemistry, Stockholm University, SE-106 91 Stockholm, Sweden.  相似文献   

3.
Tree-ring estimates of Pacific decadal climate variability   总被引:10,自引:0,他引:10  
 Decadal-scale oscillatory modes of atmosphere-ocean variability have recently been identified in instrumental studies of the Pacific sector. The regime shift around 1976 is one example of such a fluctuation, which has been shown to have significantly impacted climate and the environment along the coastline of the western N and S Americas. The length of meteorological data for the Pacific and western Americas critically limits analyses of such decadal-scale climate variability. Here we present reconstructions of the annual Pacific Decadal Oscillation (PDO) index based on western North American tree-ring records which account for up to 53% of the instrumental variance and extend as far back as AD 1700. The PDO reconstructions indicate that decadal-scale climatic shifts have occurred prior to the period of instrumental record. Evaluation of temperature and precipitation-sensitive tree-ring series from the northeast Pacific as well as these reconstructions reveals evidence for a shift towards less pronounced interdecadal variability after about the middle 1800s. Our analyses also suggest that sites from both the northeast Pacific coast as well as the subtropical Americas need to be included in proxy data sets used to reconstruct the PDO. Received: 15 September 2000 / Accepted: 30 March 2001  相似文献   

4.
Historical and proxy records document that there is a substantial asynchronous development in temperature, precipitation and glacier variations between European regions during the last few centuries. The causes of these temporal anomalies are yet poorly understood. Hence, highly resolved glacier reconstructions based on historical evidence can give valuable insights into past climate, but they exist only for few glaciers worldwide. Here, we present a new reconstruction of length changes for the Glacier des Bossons (Mont Blanc massif, France), based on unevaluated historical material. More than 250 pictorial documents (drawings, paintings, prints, photographs, maps) as well as written accounts have been critically analysed, leading to a revised picture of the glacier’s history, especially from the mid-eighteenth century up to the 1860s. Very important are the drawings by Jean-Antoine Linck, Samuel Birmann and Eugène Viollet-le Duc, which depict meticulously the glacier’s extent during the vast advance and subsequent retreat during the nineteenth century. The new glacier reconstruction extends back to AD 1580 and proves maxima of the Glacier des Bossons around 1610/1643, 1685, 1712, 1777, 1818, 1854, 1892, 1921, 1941, and 1983. The Little Ice Age maximum extent was reached in 1818. Until the present, the glacier has lost about 1.5 km in length, and it is now shorter than at any time during the reconstruction period. The Glacier des Bossons reacts faster than the nearby Mer de Glace (glacier reconstruction back to AD 1570 available). The Mont Blanc area is, together with the valley of Grindelwald in the Swiss Alps (two historical glacier reconstructions available back to AD 1535, and 1590, respectively), among the two regions that are probably best-documented in the world regarding historical glacier data.  相似文献   

5.
In the eastern Mediterranean in general and in Turkey in particular, temperature reconstructions based on tree rings have not been achieved so far. Furthermore, centennial-long chronologies of stable isotopes are generally also missing. Recent studies have identified the tree species Juniperus excelsa as one of the most promising tree species in Turkey for developing long climate sensitive stable carbon isotope chronologies because this species is long-living and thus has the ability to capture low-frequency climate signals. We were able to develop a statistically robust, precisely dated and annually resolved chronology back to AD 1125. We proved that variability of δ13C in tree rings of J. excelsa is mainly dependent on winter-to-spring temperatures (January–May). Low-frequency trends, which were associated with the medieval warm period and the little ice age, were identified in the winter-to-spring temperature reconstruction, however, the twentieth century warming trend found elsewhere could not be identified in our proxy record, nor was it found in the corresponding meteorological data used for our study. Comparisons with other northern-hemispherical proxy data showed that similar low-frequency signals are present until the beginning of the twentieth century when the other proxies derived from further north indicate a significant warming while the winter-to-spring temperature proxy from SW-Turkey does not. Correlation analyses including our temperature reconstruction and seven well-known climate indices suggest that various atmospheric oscillation patterns are capable of influencing the temperature variations in SW-Turkey.  相似文献   

6.
To investigate climate variability in Asia during the last millennium, the spatial and temporal evolution of summer (June–July–August; JJA) temperature in eastern and south-central Asia is reconstructed using multi-proxy records and the regularized expectation maximization (RegEM) algorithm with truncated total least squares (TTLS), under a point-by-point regression (PPR) framework. The temperature index reconstructions show that the late 20th century was the warmest period in Asia over the past millennium. The temperature field reconstructions illustrate that temperatures in central, eastern, and southern China during the 11th and 13th centuries, and in western Asia during the 12th century, were significantly higher than those in other regions, and comparable to levels in the 20th century. Except for the most recent warming, all identified warm events showed distinct regional expressions and none were uniform over the entire reconstruction area. The main finding of the study is that spatial temperature patterns have, on centennial time-scales, varied greatly over the last millennium. Moreover, seven climate model simulations, from the Coupled Model Intercomparison Project Phase 5 (CMIP5), over the same region of Asia, are all consistent with the temperature index reconstruction at the 99 % confidence level. Only spatial temperature patterns extracted as the first empirical orthogonal function (EOF) from the GISS-E2-R and MPI-ESM-P model simulations are significant and consistent with the temperature field reconstruction over the past millennium in Asia at the 90 % confidence level. This indicates that both the reconstruction and the simulations depict the temporal climate variability well over the past millennium. However, the spatial simulation or reconstruction capability of climate variability over the past millennium could be still limited. For reconstruction, some grid points do not pass validation tests and reveal the need for more proxies with high temporal resolution, accurate dating, and sensitive temperature signals, especially in central Asia and before AD 1400.  相似文献   

7.
Two European temperature reconstructions for the past half-millennium, January-to-April air temperature for Stockholm (Sweden) and seasonal temperature for a Central European region, both derived from the analysis of documentary sources and long instrumental records, are compared with the output of climate simulations with the model ECHO-G. The analysis is complemented by comparisons with the long (early)-instrumental record of Central England Temperature (CET). Both approaches to study past climates (simulations and reconstructions) are burdened with uncertainties. The main objective of this comparative analysis is to identify robust features and weaknesses in each method which may help to improve models and reconstruction methods. The results indicate a general agreement between simulations obtained with temporally changing external forcings and the reconstructed Stockholm and CET records for the multi-centennial temperature trend over the recent centuries, which is not reproduced in a control simulation. This trend is likely due to the long-term change in external forcing. Additionally, the Stockholm reconstruction and the CET record also show a clear multi-decadal warm episode peaking around AD 1730, which is absent in the simulations. Neither the reconstruction uncertainties nor the model internal climate variability can easily explain this difference. Regarding the interannual variability, the Stockholm series displays, in some periods, higher amplitudes than the simulations but these differences are within the statistical uncertainty and further decrease if output from a regional model driven by the global model is used. The long-term trend of the CET series agrees less well with the simulations. The reconstructed temperature displays, for all seasons, a smaller difference between the present climate and past centuries than is seen in the simulations. Possible reasons for these differences may be related to a limitation of the traditional ‘indexing’ technique for converting documentary evidence to temperature values to capture long-term climate changes, because the documents often reflect temperatures relative to the contemporary authors’ own perception of what constituted ‘normal’ conditions. By contrast, the amplitude of the simulated and reconstructed inter-annual variability agrees rather well.  相似文献   

8.
We describe an improved tree-ring reconstruction of mean warm-season (November–April) temperatures for Tasmania from Huon pine. This record extends back to 1600 BC and is based on a tree-ring chronology that was processed to retain as much low-frequency variance as possible. The resulting reconstruction explains 46.6% of the variance and verifies significantly when compared to withheld instrumental data. Cross-spectral analysis of actual and estimated temperatures over the 1886–1991 common period indicates that most of the unexplained variance is at periods < 12 years in length. At periods > 12 years, the squared coherency ranges between 0.6–0.8, and the cross-spectral gain indicates that the amplitude of the reconstruction is a nearly unbiased estimate of the true temperature amplitude. Therefore, this reconstruction should be especially useful for studying multi-decadal temperature variability in the Tasmanian sector of the Southern Hemisphere over the past 3592 years. To this end, we examined the time evolution of low-frequency temperature amplitude fluctuations and found evidence for a 35% amplitude reduction after AD 100 that persisted until about AD 1900. Since that time, the low-frequency temperature amplitude has systematically increased. We also show how this reconstruction is related to large-scale sea surface temperatures (SST) in the Indian Ocean and eastward to the dateline. Pointwise correlations between the Tasmanian record and SSTs reveal a relationship that extends across the southern Indian Ocean and towards the Arabian Sea. This pattern is largely determined by inter-decadal temperature variability, with correlations in this > 10-year bandwidth commonly exceeding 0.6 over most of the southern Indian and southwestern Pacific sectors. A rotated empirical orthogonal function analysis reveals that the pattern of pointwise correlations found between the temperature reconstruction and SSTs is largely explained by the linear combination of three orthogonal modes of SST variability. Received: 12 January 1999 / Accepted: 31 July 1999  相似文献   

9.
The Mann et al. (1998) Northern Hemisphere annual temperature reconstruction over 1400–1980 is examined in light of recent criticisms concerning the nature and processing of included climate proxy data. A systematic sequence of analyses is presented that examine issues concerning the proxy evidence, utilizing both indirect analyses via exclusion of proxies and processing steps subject to criticism, and direct analyses of principal component (PC) processing methods in question. Altogether new reconstructions over 1400–1980 are developed in both the indirect and direct analyses, which demonstrate that the Mann et al. reconstruction is robust against the proxy-based criticisms addressed. In particular, reconstructed hemispheric temperatures are demonstrated to be largely unaffected by the use or non-use of PCs to summarize proxy evidence from the data-rich North American region. When proxy PCs are employed, neither the time period used to “center” the data before PC calculation nor the way the PC calculations are performed significantly affects the results, as long as the full extent of the climate information actually in the proxy data is represented by the PC time series. Clear convergence of the resulting climate reconstructions is a strong indicator for achieving this criterion. Also, recent “corrections” to the Mann et al. reconstruction that suggest 15th century temperatures could have been as high as those of the late-20th century are shown to be without statistical and climatological merit. Our examination does suggest that a slight modification to the original Mann et al. reconstruction is justifiable for the first half of the 15th century (∼+0.05), which leaves entirely unaltered the primary conclusion of Mann et al. (as well as many other reconstructions) that both the 20th century upward trend and high late-20th century hemispheric surface temperatures are anomalous over at least the last 600 years. Our results are also used to evaluate the separate criticism of reduced amplitude in the Mann et al. reconstructions over significant portions of 1400–1900, in relation to some other climate reconstructions and model-based examinations. We find that, from the perspective of the proxy data themselves, such losses probably exist, but they may be smaller than those reported in other recent work. The National Center for Atmospheric Research is sponsored by the National Science Foundation, USA. The authors contributed equally to the development of the research presented.  相似文献   

10.
We review here proxy records of temperature and precipitation in China during the Holocene, especially the last two millennia. The quality of proxy data, methodology of reconstruction, and uncertainties in reconstruction were emphasized in comparing different temperature and precipitation reconstruction and clarifying temporal and spatial patterns of temperature and precipitation during the Holocene. The Holocene climate was generally warm and wet. The warmest period occurred in 9.6-6.2 cal ka BP, whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.0-5.0 cal ka BP. There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes. During past two millennia, a warming trend in the 20th century was clearly detected, but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene. Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900), but the warming of the Medieval Warm Period (AD 900-AD 1300) was not distinct in China, especially west China. The spatial pattern of precipitation showed significant regional differences in China, especially east China. The modern warm period has lasted 20 years from 1987 to 2006. Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

11.
The Mediterranean has been identified as particularly vulnerable to climate change, yet a high-resolution temperature reconstruction extending back into the Medieval Warm Period is still lacking. Here we present such a record from a high-elevation site on Mt. Smolikas in northern Greece, where some of Europe’s oldest trees provide evidence of warm season temperature variability back to 730 CE. The reconstruction is derived from 192 annually resolved, latewood density series from ancient living and relict Pinus heldreichii trees calibrating at r1911–2015 = 0.73 against regional July–September (JAS) temperatures. Although the recent 1985–2014 period was the warmest 30-year interval (JAS Twrt.1961–1990 = + 0.71 °C) since the eleventh century, temperatures during the ninth to tenth centuries were even warmer, including the warmest reconstructed 30-year period from 876–905 (+ 0.78 °C). These differences between warm periods are statistically insignificant though. Several distinct cold episodes punctuate the Little Ice Age, albeit the coldest 30-year period is centered during high medieval times from 997–1026 (− 1.63 °C). Comparison with reconstructions from the Alps and Scandinavia shows that a similar cold episode occurred in central Europe but was absent at northern latitudes. The reconstructions also reveal different millennial-scale temperature trends (NEur = − 0.73 °C/1000 years, CEur = − 0.13 °C, SEur = + 0.23 °C) potentially triggered by latitudinal changes in summer insolation due to orbital forcing. These features, the opposing millennial-scale temperature trends and the medieval multi-decadal cooling recorded in Central Europe and the Mediterranean, are not well captured in state-of-the-art climate model simulations.  相似文献   

12.
Monthly temperature series for Central Europe back to AD 1500 are developed from documentary index series from Germany, Switzerland and the Czech Republic (1500–1854) and 11 instrumental temperature records (1760–2007). Documentary evidence from the Low Countries, the Carpathian Basin and Poland are used for cross-checking for earlier centuries. The instrumental station records are corrected for inhomogeneities, including insufficient radiation protection of early thermometers and the urban heat island effect. For overlapping period (1760–1854), the documentary data series correlate with instrumental temperatures, most strongly in winter (86% explained variance in January) and least in autumn (56% in September). For annual average temperatures, 81% of the variance is explained. Verification statistics indicate high reconstruction skill for most months and seasons. The last 20 years (since 1988) stand out as very likely the warmest 20-year period, accounting for the calibration uncertainty and decreases in proxy data quality before the calibration period. The new reconstruction displays a previously unobserved long-term decrease in DJF, MAM and JJA temperature variability over last five centuries. Compiled monthly, seasonal and annual series can be used to improve the robustness of gridded large-scale European temperature reconstructions and possible impact studies. Further improvement of the reconstruction would be achieved if documentary data from other European countries are further developed.  相似文献   

13.
Local to regional climate anomalies are to a large extent determined by the state of the atmospheric circulation. The knowledge of large-scale sea level pressure (SLP) variations in former times is therefore crucial when addressing past climate changes across Europe and the Mediterranean. However, currently available SLP reconstructions lack data from the ocean, particularly in the pre-1850 period. Here we present a new statistically-derived 5° × 5° resolved gridded seasonal SLP dataset covering the eastern North Atlantic, Europe and the Mediterranean area (40°W–50°E; 20°N–70°N) back to 1750 using terrestrial instrumental pressure series and marine wind information from ship logbooks. For the period 1750–1850, the new SLP reconstruction provides a more accurate representation of the strength of the winter westerlies as well as the location and variability of the Azores High than currently available multiproxy pressure field reconstructions. These findings strongly support the potential of ship logbooks as an important source to determine past circulation variations especially for the pre-1850 period. This new dataset can be further used for dynamical studies relating large-scale atmospheric circulation to temperature and precipitation variability over the Mediterranean and Eurasia, for the comparison with outputs from GCMs as well as for detection and attribution studies.  相似文献   

14.
We review here proxy records of temperatare and precipitation in China during the Holocene,especially the last two millennia.The quality of proxy data,methodology of reconstruction,and uncertainties in reconstruction were emphasized in comparing different temperatare and precipitation reconstruction and clarilying temporal and spatial patterns of temperature and precipitation during the Holocene.The Holocene climate was generally warm and wet.The warmest period occurred in 9.6-6.2 cal ka BP,whereas a period of maximum monsoon precipitation started at about 11.0 cal ka BP and lasted until about 8.O-5.0 cal ka BP.There were a series of millennial-scale cold or dry events superimposed on the general trend of climate changes.During past two millennia,a warming trend in the 20th century was clearly detected,but the warming magnitude was smaller than the maximum level of the Medieval Warm Period and the Middle Holocene.Cold conditions occurred over the whole of China during the Little Ice Age (AD 1400-AD 1900),but the warming of the Medieval Warm Period(AD 900-AD 1300)was not distinct in China,especially west China.The spatial pattern of precipitation showed significant regional differences in China,especially east China.The modern warm period has lasted 20、years from 1987 to 2006.Bi-decadal oscillation in precipitation variability was apparent over China during the 20th century. Solar activity and volcanic eruptions both were major forcings governing the climate variability during the last millennium.  相似文献   

15.
Temperature reconstructions from Europe for the past 500 years based on documentary and instrumental data are analysed. First, the basic documentary data sources, including information about climate and weather-related extremes, are described. Then, the standard palaeoclimatological reconstruction method adopted here is discussed with a particular application to temperature reconstructions from documentary-based proxy data. The focus is on two new reconstructions; January–April mean temperatures for Stockholm (1502–2008), based on a combination of data for the sailing season in the Stockholm harbour and instrumental temperature measurements, and monthly Central European temperature (CEuT) series (1500–2007) based on documentary-derived temperature indices of the Czech Republic, Germany and Switzerland combined with instrumental records from the same countries. The two series, both of which are individually discussed in greater detail in subsequent papers in this special edition, are here compared and analysed using running correlations and wavelet analysis. While the Stockholm series shows a pronounced low-frequency component, the CEuT series indicates much weaker low-frequency variations. Both series are analysed with respect to three different long-period reconstructions of the North Atlantic Oscillation (NAO) and are compared with other European temperature reconstructions based on tree-rings, wine-harvest data and various climate multiproxies. Correlation coefficients between individual proxy-based series show weaker correlations compared to the instrumental data. There are also indications of temporally varying temperature cross-correlations between different areas of Europe. The two temperature reconstructions have also been compared to geographically corresponding temperature output from simulations with global and regional climate models for the past few centuries. The findings are twofold: on the one hand, the analysis reinforces the hypothesis that the index-data based CEuT reconstruction may not appropriately reflect the centennial scale variations. On the other hand, it is possible that climate models may underestimate regional decadal variability. By way of a conclusion, the results are discussed from a broader point of view and attention is drawn to some new challenges for future investigations in the historical climatology in Europe.  相似文献   

16.
High-latitude δ18O archives deriving from meteoric water (e.g., tree-rings and ice-cores) can provide valuable information on past temperature variability, but stationarity of temperature signals in these archives depends on the stability of moisture source/trajectory and precipitation seasonality, both of which can be affected by atmospheric circulation changes. A tree-ring δ18O record (AD 1780–2003) from the Mackenzie Delta is evaluated as a temperature proxy based on linear regression diagnostics. The primary source of moisture for this region is the North Pacific and, thus, North Pacific atmospheric circulation variability could potentially affect the tree-ring δ18O-temperature signal. Over the instrumental period (AD 1892–2003), tree-ring δ18O explained 29 % of interannual variability in April–July minimum temperatures, and the explained variability increases substantially at lower-frequencies. A split-period calibration/verification analysis found the δ18O-temperature relation was time-stable, which supported a temperature reconstruction back to AD 1780. The stability of the δ18O-temperature signal indirectly implies the study region is insensitive to North Pacific circulation effects, since North Pacific circulation was not constant over the calibration period. Simulations from the NASA-GISS ModelE isotope-enabled general circulation model confirm that meteoric δ18O and precipitation seasonality in the study region are likely insensitive to North Pacific circulation effects, highlighting the paleoclimatic value of tree-ring and possibly other δ18O records from this region. Our δ18O-based temperature reconstruction is the first of its kind in northwestern North America, and one of few worldwide, and provides a long-term context for evaluating recent climate warming in the Mackenzie Delta region.  相似文献   

17.
Spatially resolved climate reconstructions are commonly derived from long instrumental series and proxy data via linear regression based approaches that use the main modes of the climate system. Such reconstructions have been shown to underestimate climate variability and are based upon the assumption that the main modes of climate variability are stationary back in time. Climate models simulate physically consistent climate fields but cannot be taken to represent the real past climate trajectory because of their necessarily simplified scope and chaotic internal variability. Here, we present sensitivity tests of, and a 200-year temperature reconstruction from, the PSR (Proxy Surrogate Reconstruction) method. This method simultaneously capitalizes on the individual strengths of instrumental/proxy data based reconstructions and model simulations by selecting the model states (analogs) that are most similar with proxy/instrumental data available at specific places and specific moments of time. Sensitivity experiments reveal an optimal PSR configuration and indicate that 6,500 simulation years of existing climate models provide a sufficient pool of possible analogs to skillfully reconstruct monthly European temperature fields during the past 200?years. Reconstruction verification based upon only seven instrumental stations indicates potential for extensions back in time using sparse proxy data. Additionally the PSR method allows evaluation of single time series, in this case the homogeneity of instrumental series, by identifying inconsistencies with the reconstructed climate field. We present an updated European temperature reconstruction including newly homogenized instrumental records performed with the computationally efficient PSR method that proves to capture the total variance of the target.  相似文献   

18.
Climate change has led to increased temperatures, and simulation models suggest that this should affect crop production in important agricultural regions of the world. Nations at higher latitudes, such as Canada, will be most affected. We studied the relationship between climate variability (temperature and precipitation) and corn yield trends over a period of 33 years for the Monteregie region of south-western Quebec using historical yield and climate records and statistical models. Growing season mean temperature has increased in Monterregie, mainly due to increased September temperature. Precipitation did not show any clear trend over the 33 year period. Yield increased about 118 kg ha−1 year−1 from 1973 to 2005 (under normal weather conditions) due mainly to changes in technology (genetics and management). Two climate variables were strongly associated with corn yield variability: July temperature and May precipitation. These two variables explain more than a half of yield variability associated with climate. In conclusion, July temperatures below normal and May precipitation above normal have negative effects on corn yield, and the growing seasons have warmed, largely due to increases in the September temperature.  相似文献   

19.
Summary Estimates of spring precipitation for the inner Alpine dry valley of the upper Inn (Tyrol, Austria) are made back to A.D. 1724 using a ring width chronology of Scots pine (Pinus sylvestris L.) as predictor. A highly significant agreement in year-to-year ring width changes exists between several chronologies along the dry valley. The dendroclimatic model used for climate reconstruction is a simple linear transfer function that estimates April–June precipitation from current tree-ring width. All verification statistics commonly used in dendroclimatological research are significant ( p < 0.01) and indicate that the reconstructed time series provides valuable information on past spring precipitation variability. Reconstructed spring rainfall deficiencies and surpluses ≥ 20% compared to the long-term mean in 1819, 1832, 1834, 1865, 1885, and in 1780, 1782, 1821, 1853, 1910, respectively, are also documented by local historical records. Furthermore, a comparison is made with an independent climate reconstruction based on historical weather indices valid for the northern side of the Swiss Alps. A fairly good agreement is found between both spring rainfall reconstructions at low frequency intervals during 1755–1862 and 1919–1981. This preliminary study shows that tree-rings can be used to reconstruct spring rainfall variability for inner Alpine dry valleys. Received December 18, 2000 Revised May 28, 2001  相似文献   

20.
Prior to the 20th century Northern Hemisphere average surface air temperatures have varied in the order of 0.5 °C back to AD 1000. Various climate reconstructions indicate that slow cooling took place until the beginning of the 20th century. Subsequently, global-average surface air temperature increased by about 0.6 °C with the 1990s being the warmest decade on record. The pattern of warming has been greatest over mid-latitude northern continents in the latter part of the century. At the same time the frequency of air frosts has decreased over many land areas, and there has been a drying in the tropics and sub-tropics. The late 20th century changes have been attributed to global warming because of increases in atmospheric greenhouse gas concentrations due to human activities. Underneath these trends is that of decadal scale variability in the Pacific basin at least induced by the Interdecadal Pacific Oscillation (IPO), which causes decadal changes in climate averages. On interannnual timescales El Niño/Southern Oscillation (ENSO) causes much variability throughout many tropical and subtropical regions and some mid-latitude areas. The North Atlantic Oscillation (NAO) provides climate perturbations over Europe and northern Africa. During the course of the 21st century global-average surface temperatures are very likely to increase by 2 to 4.5 °C as greenhouse gas concentrations in the atmosphere increase. At the same time there will be changes in precipitation, and climate extremes such as hot days, heavy rainfall and drought are expected to increase in many areas. The combination of global warming, superimposed on decadal climate variability (IPO) and interannual fluctuations (ENSO, NAO) are expected lead to a century of increasing climate variability and change that will be unprecedented in the history of human settlement. Although the changes of the past and present have stressed food and fibre production at times, the 21st century changes will be extremely challenging to agriculture and forestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号