首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 375 毫秒
1.
2011年浙江省出现了自1999年以来最典型、最强的梅雨降水集中期,连续4次强降水过程造成旱涝急转.本文利用NCEP再分析资料对2011年浙江梅汛期前后大尺度环流背景进行了分析并与历史同期进行了对比,同时又对4次强降水过程的梅雨锋结构进行了诊断分析.结果表明:(1)中高纬环流急转前后都具有很大的经向度,但由急转前的“三槽三脊”转变为“两槽一脊”,梅汛期为单阻形势,贝加尔湖阻塞高压前的西北气流为梅雨提供了冷空气条件.梅汛期印缅槽和西太平洋副热带高压较急转前明显加深、加强,偏强的印缅槽和西太平洋副热带高压有利于在副热带高压西北侧建立持久、稳定的水汽通道,西南气流与偏东气流在浙江构成准纬向切变,使得大量暖湿气流辐合上升,青藏高压北侧的偏北大风造成高层强烈辐散,这都为暴雨提供了良好的动力和水汽条件.(2)暴雨主要出现在梅雨锋前沿,梅雨锋区的上升运动与南北两支下沉气流相配合,北支携带冷空气向梅雨锋输送,南支与梅雨锋区上升气流构成经向垂直反环流,加强了锋区的上升运动.(3)4次暴雨过程梅雨锋都为相当位温密集带,在对流层低层垂直方向上近似直立分布.由于受冷空气影响,第一、三、四次过程梅雨锋区具有较明显的温度梯度,低层锋区向北倾斜;相反,没有冷空气的作用,第二次过程锋区无温度梯度,梅雨锋向南倾斜.  相似文献   

2.
形成2015年浙江省梅汛期暴雨的控制环流及梅雨锋结构   总被引:3,自引:3,他引:0  
本文利用NCEP/NCAR全球再分析逐日资料、地面观测资料和自动站降水资料,在分析了2015年浙江省梅汛期强降水特征、水汽输送和局地环流的基础上,从西南季风进退、副热带高压、南亚高压及西风带波动等方面对2015年形成梅汛期暴雨的控制环流进行了分析。结果表明:2015年整个浙江省梅汛期降水量较常年显著偏多,浙江中部地区降水量比历史同期偏多接近一倍。丰沛的水汽从孟加拉湾经中南半岛向东输送,与西太平洋副热带高压西侧的西南气流相合并,在梅雨锋南侧形成异常辐合,为强降水提供了水汽条件。这次持续强降水由三次强降水过程构成并由西风辐合型锋生引起。第二次强降水过程中大气强对流性不稳定利于梅雨锋上中尺度对流系统发展,导致强降水呈现明显的局地性。而第一次和第三次过程中梅雨带附近大气基本处于对流稳定或中性,以斜压性降水为主。在对流层低层,副高较常年偏东偏南,其西北侧西南暖湿气流与北侧冷空气交汇于浙江省,利于梅汛期强降水集中期的出现。在对流层上层的南亚高压较常年位置偏东,其北侧的西风急流强度偏强,东亚急流核入口区右侧的强辐散利于造成强烈的上升运动。在对流层中层,贝加尔湖阻高的东侧有明显的波动能量向东向南传播并在长江中下游积聚,利于浙江地区扰动的维持,形成持续稳定的梅雨锋和中低空切变线,造成梅雨强降水过程的持续。2015年春夏季热带中东太平洋海温正异常分布有利于梅汛期降水偏多的异常环流的形成。  相似文献   

3.
1999年6月长江中下游梅雨暴雨的环流特征分析   总被引:7,自引:12,他引:7  
隆霄  程麟生  王文 《高原气象》2007,26(3):563-571
利用客观分析资料和加强观测期资料,对1999年6月发生在我国长江流域的持续性梅雨期降水过程的大尺度环流特征进行了分析,结果表明:(1)1999年梅雨期,我国长江中下游强降水带状分布非常明显,强降水主要发生在长江中下游地区,强降水带呈东西向分布,并且雨带的南北边界非常清楚。(2)在对流层低层,从孟加拉湾来的西风气流和西太平洋副热带高压前缘的东南气流在长江流域维持,为此次强暴雨过程产生和发展提供了有利的大尺度条件。高空急流和低空急流的存在和维持为此次梅雨锋暴雨过程的发生提供了有利的抬升机制,而对流层中低层的中性对流不稳定特征则为持续性暴雨过程的发生提供了有利的不稳定机制。(3)梅雨锋区对流层低层的水汽辐合非常明显,水汽输送主要来自孟加拉湾和西太平洋,同时南海季风槽在向梅雨锋区输送水汽的过程中起到了非常重要的作用,它是热带海洋地区向我国内陆输送水汽的通道。(4)平均纬向风速u对流层高层出现了与高空西风急流与高空东风急流相对应的两个强风速核;径向平均风速v在400 hPa以下层次盛行南风,而在400 hPa以上的高层盛行北风;受两侧下沉气流的制约,梅雨锋降水带南北两侧存在位势不稳定层结中的不稳定能量无法释放,因此没有出现明显的降水。  相似文献   

4.
利用常规气象观测资料、NCEP1°×1°的FNL再分析资料和FY-2E卫星云图资料对2017年梅汛期前后浙江中部大尺度环流背景进行分析,同时对梅汛期三次强降水过程的梅雨锋结构、对流层低层风场对中尺度对流系统发展的影响以及中尺度云团特征等进行了诊断分析。结果表明:1)进入梅汛期,贝加尔湖长波脊发展及长久维持,带状分布的西太平洋副热带高压较常年偏强,有利于冷暖空气交汇于浙江一带,形成范围大、持续时间长的强降水;2)在垂直方向上,高空西风急流的入口区右侧与低空急流核左前方相叠加,高低空急流耦合作用明显,为中尺度对流系统维持提供了必备的不稳定机制;3)三次强降水过程均具有正涡度带随时间东移的现象,揭示了梅雨锋区低值系统沿切变线东移的特点。其中,第三次暴雨过程正涡度东移特点最明显,对流层低层的有利动力条件导致中尺度对流系统的发展及强降水的出现;第二次过程的副热带西风急流中心风速明显较第一次和第三次小,但西风急流中心位置南移至30°—35°N,正好位于梅雨锋区上空,补偿了因急流风速减小对高层辐散的影响。  相似文献   

5.
一次梅雨锋暴雨的中尺度对流系统及低层风场影响分析   总被引:2,自引:1,他引:1  
杨舒楠  路屹雄  于超 《气象》2017,43(1):21-33
本文利用常规气象观测资料,地面自动站加密观测资料和FY-2D、FY-2E卫星云图以及NCEP 1°×1°的FNL分析资料、EC 0.25°×0.25°的细网格模式数据等,对2015年6月15—18日梅雨锋暴雨过程的中尺度对流系统(MCS)活动特征、对流层低层风场对MCS发展的影响以及梅雨锋暴雨的垂直环流特征等进行了研究,结果表明:天气尺度梅雨锋上叠加的MCS的产生及向下游移动,以及其在安徽中部到江苏南部正涡度带作用下的发展增强,造成了江苏南部的局地强降水。强降水与中尺度低空急流核的位置吻合较好。在垂直方向上,高空急流入口区右侧与低空急流核左前方叠加,高低空急流耦合作用明显。在降水过程中,对流层低层具有较强的垂直风切变,有利于垂直涡度的增强和MCS的发展。对流层低层的垂直风切变也有利于不同源地的水汽在梅雨锋区汇集。梅雨锋北侧的干冷空气在对流层低(中)层以东北(西北)路径向锋区移动。南侧的暖湿气流沿西南路径移动、抬升,接近锋区后质点在上升过程中逐渐转向东移,在高空急流的抽吸作用下,快速向东流出,近地面层空气存在跨锋面环流。梅雨锋系统垂直方向上的次级环流是高层风场强烈辐散以及空气运动过程中质量补充和循环的结果。  相似文献   

6.
利用常规气象观测资料、NCEP 1°×1°的FNL再分析资料和FY-2E卫星云图资料对2017年梅汛期前后浙江中部大尺度环流背景进行分析,同时对梅汛期三次强降水过程的梅雨锋结构、对流层低层风场对中尺度对流系统发展的影响以及中尺度云团特征等进行了诊断分析。结果表明:1) 进入梅汛期,贝加尔湖长波脊发展及长久维持,带状分布的西太平洋副热带高压较常年偏强,有利于冷暖空气交汇于浙江一带,形成范围大、持续时间长的强降水;2) 在垂直方向上,高空西风急流的入口区右侧与低空急流核左前方相叠加,高低空急流耦合作用明显,为中尺度对流系统维持提供了必备的不稳定机制;3) 三次强降水过程均具有正涡度带随时间东移的现象,揭示了梅雨锋区低值系统沿切变线东移的特点。其中,第三次暴雨过程正涡度东移特点最明显,对流层低层的有利动力条件导致中尺度对流系统的发展及强降水的出现;第二次过程的副热带西风急流中心风速明显较第一次和第三次小,但西风急流中心位置南移至30°—35°N,正好位于梅雨锋区上空,补偿了因急流风速减小对高层辐散的影响。  相似文献   

7.
2015年6月皖江东部地区一次梅雨锋暴雨过程分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用雷达、卫星、地面自动站和NCEP再分析资料,对2015年6月16日皖江东部地区的一次暴雨过程进行分析。结果表明:1) 暴雨过程是在贝加尔湖高压脊稳定维持,以及西太平洋副热带高压稳定少动、500 hPa高空槽东移、低层低涡切变维持和新生、高低空急流耦合、地面中尺度辐合系统稳定维持等十分有利的环流背景形势下产生的。2) 中低层的西南急流旺盛对暴雨过程有重要作用;K指数大值区、800—900 hPa高度内水汽辐合中心与强降水发生区域、时间都有很好的对应关系。高层强辐散中心有利于抽吸机制增强,平均散度的辐合层越厚,强降水越易发生。3) 暴雨产生于梅雨锋南侧湿中性层结。降水增强时,θse锋区增强,低层垂直涡度显著发展,600 hPa高度层以下正涡度增长一倍, 垂直涡度的耦合强迫是湿中性层结下中尺度强暴雨系统发展的动力机制。梅雨锋南侧存在经向垂直反环流,北侧为经向垂直正环流,两支次级环流上升支在暴雨区汇合加强,为大暴雨创造了有利的动力条件。4) 此次暴雨受沿江地区活跃的梅雨锋云带影响,TBB中心值小于-52 ℃的对流云团位于地面辐合线两侧,中尺度雨团位于TBB低值中心梯度区和地面辐合线上及其右侧东南气流中,冷空气南下后雨团位于辐合线北侧东北气流中。5) 发展旺盛、降水效率较高的多个对流单体依次向东移动经过皖江东部地区,形成“列车效应”,造成局地大暴雨。降水强度和西南暖湿气流的强度及持续时间密切相关。  相似文献   

8.
利用常规观测资料、自动气象站降水量以及NCEP FNL再分析资料,对2019年8月6—8日一次持续性东北冷涡暴雨过程成因及特征进行诊断分析。结果表明:暖锋稳定维持在同一区域且不断锋生造成持续性暴雨。强降水出现在850 hPa锋区南侧,呈东西带状分布,暴雨与最大锋生区相对应。大气中层为弱对流不稳定,有利于强降水的维持。高层正位涡大值区向下层扩展,促使中低层涡度增加,在暖锋前形成正涡柱结构,在地面锋区上诱发出气旋性环流,有低压新生。锋区低层的强辐合区位于迎风坡,锋面辐合抬升和地形强迫抬升的共同作用,使低层强辐合区持续3 d维持在同一区域。冷涡东移减弱阶段,台风携带大量暖湿空气北上促使锋区北抬,强降水维持。冷涡新生和维持阶段,T_(850-500)≥25℃,K≥35℃,且有一定的对流有效位能,对暴雨的出现有较好的指示意义。暴雨区东边界的水汽输入最为关键,占到整个水汽输入总量的一半,尽管南边界的总水汽输入量不大,但集中出现在第一个暴雨日,是6日暴雨过程主要水汽贡献者。  相似文献   

9.
利用ERA-interim再分析资料和国家自动站观测资料,分析了四川盆地2020年8月10日~14日一次持续性强降水过程的特征及成因。结果表明:天气尺度系统的有效配合给此次暴雨过程提供了有利的环流背景,在冷空气及西南水汽的汇聚下,触发此次持续性强降水,整个过程可分为4个阶段,降水带自盆地西部向东移动;各暴雨区在强降水时刻,低层正涡度、负散度的强辐合,高层负涡度、正散度的强辐散抽吸作用均利于大气的上升运动,给持续强降水提供动力条件;相较于第二、三阶段,第一、四阶段的涡度、散度及垂直速度数值明显偏小,使得累计降水量偏少;各阶段降水过程的强降水中心、水汽辐合、上升运动区均位于中、低层低值系统(高原低涡、西南低涡、切变线)的东南侧;第二阶段降水过程中较强的水汽辐合及整层大气一致且极强的上升运动将水汽抬升输送至对流层中高层,导致该阶段累计降水量最大。   相似文献   

10.
韩桂荣  何金海  梅伟 《气象科学》2008,28(6):649-654
本文对2003年7月4日-5日江淮梅雨期间的一次特大暴雨过程进行了多尺度的详细分析.环流背景、中尺度对流云团和水汽条件分析表明,这次特大暴雨是在典型梅雨的有利环境背景形势下,由梅雨锋上的中尺度对流系统造成的,地面低压、低层切变线及西南低空急流与这次特大暴雨过程有着密切的关系.强降水中心与中尺度对流云团的关系十分密切,中β尺度云团的生成合并增强,和其中中γ降水系统的存在,导致了降水强度的局地性差异.江淮流域主要表现为经向水汽通量的辐合区,强水汽通量舌与低层高θse的舌区一致,暴雨过程中水汽的快速集中主要是通过风场散度项造成的,局地风场的辐合在水汽快速集中起主要作用.低层充沛的水汽则通过气旋性涡度柱中的强上升气流输送到对流层的中高层.  相似文献   

11.
利用常规气象站资料和美国NCEP/NCAR再分析资料,分析了2010年浙江梅汛期降水特征及南亚高压和高低空急流对梅汛期暴雨的影响。结果表明:(1)2010年浙江入、出梅偏晚,梅期明显偏长;降水偏多,强降水集中在浙江西南部,并逐渐向南北阶梯递减;暴雨过程频繁,降水集中,阶段性明显;(2)梅汛期间南亚高压主体偏强,加强中南北振荡和东西进退明显。高压脊线的南北振荡与强雨带南北摆动有一定的相关性。南亚高压在稳定状态或变化时都可能产生暴雨,暴雨多发生于变化时,且高压的西退与南撤同步,东进与北抬同步;(3)梅汛期高低空急流的演变具有较好的一致性,且与暴雨时空对应较好。暴雨带多处于高空急流的右侧和低空急流轴的左侧,暴雨带随高低空急流的位置变化而南北摆动,同时,低空急流轴到急流北缘与暴雨带有不同程度重叠。高低空急流强度与降雨强度有较密切的关系,高低空急流的水平距离对高低空急流耦合作用有重要影响,进而影响垂直运动发展和降水强度。因此,高低空急流的配置对梅汛期暴雨落区和强度预报有很好的指示意义。  相似文献   

12.
江淮梅雨季节强降雨过程特征分析   总被引:6,自引:2,他引:4  
为了便于识别梅雨季节江淮地区的强降雨过程,促进汛期强降雨过程的预报方法研究,使用中国国家级地面气象站逐日观测资料,提出了一种划分江淮梅雨季节强降雨过程的客观方法,并对江淮梅雨季节内强降雨过程的特征进行了分析。结果表明:该方法能有效划分出江淮梅雨季节的强降雨过程,划分结果与预报业务中的划分结果具有较高的一致性,便于在业务中应用。在江淮梅雨季节内,梅雨期的强降雨过程存在明显的年际变化且与梅雨强、弱密切相关,强梅雨年具有较多的强降雨过程以及过程累积强降雨日,强梅雨年的强降雨过程具有持续性、反复性和频发性的特征。弱梅雨年则相反。近56年来梅雨期强降雨过程累积雨量在整个江淮地区有线性增加的趋势,且江苏南部至浙江北部地区雨量增大的趋势最为显著。梅雨期强降雨过程累积雨量及雨日的空间分布是一致的,最大区域中心均位于安徽西南部、江西东北部及湖北东部等地。按照此客观划分方法确定的梅雨期的强降雨过程累积雨量与梅雨期总雨量具有较为相似的时空变化特征。   相似文献   

13.
一次梅雨暴雨过程的数值模拟   总被引:3,自引:1,他引:2       下载免费PDF全文
运用中尺度暴雨MRM模式,采用常规报文资料作为初始场,对2003年7月8-10日的一次江淮地区暴雨过程进行数值模拟。结果表明:该模式对降水场模拟结果同实况基本相似,模式对暴雨的位置、强度、中心都有较好的模拟,嬲评分较高;西南气流对水汽的输送作用及江淮地区上空水汽通量的高值区,为暴雨的形成与维持提供了重要的水汽条件,水汽辐合区与暴雨落区相对应;中低层辐合、高层辐散的散度垂直分布形势,对暴雨的发生提供了十分有利的动力条件;强降雨出现在低层正涡度中心和负散度中心附近。  相似文献   

14.
湖北一次梅雨大暴雨分析   总被引:2,自引:0,他引:2  
应用加密探空资料、NCEP再分析资料与自动气象站雨量资料,分析2009年6月29日湖北梅雨大暴雨。结果表明:暴雨期间700hPa江淮较长切变线维持准纬向特性,850hPa低空急流北上到江南北部。700hPa鄂西北等地准东西走向θse锋区有所加强并南移,湖北暴雨区位于θse锋区南侧且θse数值有所增加的地区。垂直积分水汽辐合大值区与强降雨带位置对应比较好,且整层水汽辐合比强降雨发生要早6h以上。恩施、武汉两站暴雨发生除了受低层切变线等较大尺度系统影响外,局地气象要素配合也很重要,尤其是低层较为充足的水汽是降雨维持的条件。当高层低槽移过,高、中层之间出现水平风垂直切变后恩施降雨明显加强。武汉站前期高层或中层干空气向下伸展,中、低层不稳定层结加强后降雨发展,其最强降雨和低层冷式切变线过境同时发生。  相似文献   

15.
施曙  赵思雄 《大气科学》1994,18(4):476-484
本文对1986年6月22日出现于长江中游的一次中低压过程进行了诊断分析。这个中低压水平尺度约500km,生命史为一天,但是形成了日降水量263mm的特大暴雨。分析揭示,梅雨锋是一条近于东西走向的正涡度带状分布区。而这一带状区中存在强烈的中尺度水汽通量辐合中心和深厚的上升运动区,有利于中尺度低压的形成。#FKM#FS和θ的剖面表明,条件对称不稳定(CSI)可能是这次梅雨锋暴雨的一种触发机制。此外,由拉格朗日方法对气块三维轨迹的计算表明,来自高低空和不同方向的两支大尺度气流的结合使高空辐散加强,可能对中低压的  相似文献   

16.
一次梅雨锋暴雨过程的模拟诊断分析   总被引:1,自引:3,他引:1  
利用中尺度数值模式MM5对1998年7月28—29日发生于长江中下游的梅雨锋暴雨过程进行了模拟和诊断分析。结果表明,低层温湿扰动对于强对流的发展及暴雨的出现具有重要作用。低空急流核和切变线配合的存在有利于大暴雨的产生。湿位涡场结构在暴雨增幅期与暴雨增幅前期和暴雨减弱期有明显不同。  相似文献   

17.
隆霄  潘维玉  邱崇践  赵建华 《高原气象》2009,28(6):1335-1347
利用常规观测资料\, 卫星观测的高时空分辨率TBB资料以及客观分析资料, 对2002年6月22~23日(“02.6”)一次非典型的梅雨锋暴雨过程进行了天气分析。在此基础上, 利用中尺度数值模式MM5对此次梅雨锋暴雨过程进行了数值模拟, 并分析了暴雨中尺度系统的结构特征。结果表明: (1)天气分析显示, “02.6”梅雨锋暴雨过程与α中尺度低涡的东移发展和对流层低层的两支低空急流的增强发展有关。对流层低层700 hPa为一个缓慢东移与南压的东北西南向冷式切变线, 暖式切变线不太明显, 这与通常的江淮切变线梅雨锋暴雨不同。对流层500 hPa的副热带高压非常强, 高层200 hPa对流层高层的反气旋环流非常强并与高空急流相伴, 南亚高压中心位于我国江南地区。(2)TBB资料分析表明, 此次暴雨过程产生与多个β中尺度系统合并发展成α中尺度系统以及此后从α中尺度系统中不断分裂出β中尺度系统发展演变密切相关; 强中尺度对流系统主要在中尺度低涡冷、 暖切变线的的南侧发生和发展, 并不是在中尺度低涡的冷暖切变线上发展。(3)垂直结构分析显示: 在中尺度系统开始发展阶段, 中尺度系统具有强的垂直于剖面的风分量切变、 低空急流核以及高空强辐散低空强辐合, 这有利于中尺度系统的发展; 当中尺度低涡发展到相对成熟的阶段, 其后部不断分裂出中小尺度系统, 对流层低层的θe具有明显暖心结构, 由于气块绝热上升冷却效应比对流潜热释放作用强, 导致在800~600 hPa层上 θe比环境的低, 加之在强上升运动的顶部两侧的下沉补偿气流也比较弱, 这不利于中尺度低涡的维持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号