首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
大风指平均风速达11m·s-1(6级)或以上的风。伊盟常见的大风有冷锋后偏北大风、高压北部偏西大风、蒙古气旋发展时大风及高压后部偏南大风,这4种大风型中,以前3种大风为主,占大风天气过程的90%强。1伊盟春季大风的气候特点本文统计了从1981~1990年10年中的3~5月份30个  相似文献   

2.
琼州海峡沿岸大风分布规律及影响系统分析   总被引:1,自引:0,他引:1  
郭冬艳  姜涛  陈有龙  辛吉武 《气象》2011,37(11):1372-1379
利用琼州海峡南北沿岸自动气象站2007年9月至2010年8月风向、风速资料,分析了最大风和极大风两种大风事件标准下的海峡沿岸大风分布规律,并基于大风天气影响系统分析南北沿岸大风的差异。结果表明:琼州海峡南侧沿岸大风事件多于北侧沿岸,其中最大风标准下的大风事件南侧沿岸明显多于北侧沿岸,但极大风标准下的大风事件北侧沿岸则多于南侧沿岸,且极大风风速明显偏大;北侧沿岸两种大风事件及南侧沿岸最大风事件均主要出现在秋冬季节,其中,两侧沿岸最大风事件主要由冷空气影响造成,南侧沿岸极大风事件集中出现在秋季,由冷空气影响造成较少;两岸位于海峡东侧入口沿岸的自动站点出现大风频率最高,风速偏大,两侧入口沿岸站点次之,中间沿岸各站出现大风的频率相对较低;海峡南北沿岸出现的大风风向多为北到东风;东路冷空气比西路冷空气更易造成海峡南北沿岸同步大风,琼州海峡对冷空气湍流强度的消弱作用明显。  相似文献   

3.
中国大风集中程度及气候趋势研究   总被引:3,自引:0,他引:3  
邱博  张录军  谭慧慧 《气象科学》2013,33(5):543-548
利用1961—2010年中国553个地面气象站大风资料,并且定义和采用大风集中度和大风集中期的方法,讨论了大风日数年内分布形态的时空特征。结果表明:中国大风日数呈现出西多东少的空间分布特点。近50 a来全国范围内,大风日数都具有减少的变化趋势,其中青藏高原地区减少趋势最显著。在大风天气的年内分布形态上,青藏高原地区出现的大风天气较为集中;而内蒙古地区的大风天气较为分散。青藏高原地区大风集中期最早;而东南沿海地区大风集中期最晚。近50 a来中国大风集中度均有增加的趋势,其中东南沿海地区增加最显著;内蒙古地区和华北地区的大风集中期有显著增加的趋势。同时,西太平洋副热带高压强度、北半球极涡强度和欧亚经向环流型与中国大风集中度的变化关系密切。  相似文献   

4.
利用1961-2015年南疆23个地面气象站大风和沙尘暴资料,采用大风集中度和大风集中期的方法,讨论了年内大风频数的时空分布特征及其对沙尘天气的影响。结果表明:(1)沙尘天气频数和大风天气频数有着良好的正相关关系;南疆沙尘天气年际变化趋势与大风天气基本一致,1979年后发生突变性减少,2000年以后趋于平稳。(2)南疆地区年内大风季节长短较为固定(4-8月),月内大风次数均在20次以上,年内大风天气出现最多的时段主要是5月中下旬到6月初期间,且有提前出现的趋势。(3)盆地北部是大风频发区,大风次数年际变化较为剧烈;盆地南部是大风少发区,大风次数年际变化幅度不大。其中盆地北部等地区(喀什、巴州北部)年内大风天气发生情况较为集中,大风季节较短,爆发期在5月下旬以后;盆地南部等地区(和田、克州等地区)年内大风天气发生情况较为分散,大风季节较长,爆发期主要在5月中旬以前。  相似文献   

5.
自动站大风现象结束时间问题探讨   总被引:1,自引:0,他引:1       下载免费PDF全文
自动站单轨运行后,大风现象起止时间是以自动站采集数据为记录依据。达到大风标准时,观测员可通过自动站监控软件实时数据窗口,观测记录大风现象开始时间,而大风结束时间及再次出现的时间,无法从此窗口观测记录,要根据大风数据文件FJ.TXT推算或从“自动气象站数据质量控制软件”的“大风现象查询”中得到。但从FJ.TXT中推算的大风结束时间有时比从“大风现象查询”记录的大风结束时间落后1min。  相似文献   

6.
北京地区奥运期间大风灾害的定量评估   总被引:5,自引:3,他引:2  
根据北京1971~2006年大风历史资料,对奥运期间(6~10)大风灾害的风险进行了评估.北京的春季大风日数比较多,7~9月大风日数比较少;平均每年6~10月奥运期间出现大风总日数通常为2~3天,最多5天,夏季是适合北京举办奥运会的季节.为了定量评估奥运期间大风灾害的风险,统计了1971~2006年6~10月每次出现大风日的站点数并进行归一化处理,得出奥运期间大风灾害不同等级的空间分布.在大风灾害后果等级小值时,整个北京地区大风灾害风险分布基本一致;在大风灾害后果大值时,北京的大风风险区呈南北走向分布,南部特别是西南部大风风险大,此特点可能与夏季雷雨大风及北京地形有关.  相似文献   

7.
聊城市大风气候统计分析   总被引:3,自引:0,他引:3  
通过对聊城市大风的统计,分析了大风的气候特征,得出了聊城市年平均大风日数、风速、风向有明显的空间变化,大风日数呈逐年下降趋势,大风的日数、风向、风速的月变化明显,并且初步探讨了产生大风的天气形势。  相似文献   

8.
吐鲁番一次典型翻山大风的动力机制分析   总被引:1,自引:0,他引:1  
2004年6月2日吐鲁番盆地出现一场大风。大风引发严重火灾,烧毁民房数百间。这场大风属于典型的翻山大风,预报有一定难度。本文从天气学角度分析了形成这场大风的动力机制,为预报此类天气提供依据。另外,根据大风前期吐鲁番单站天文动力结构特征分析,也解释和印证了这场翻山大风的内在动力机制。  相似文献   

9.
河南大风灾害分布特征及成因分析   总被引:1,自引:1,他引:0  
本文利用全省1961-2006年的大风天气资料和大风灾情资料,对大风灾情发生的地理分布特征,月、季、年的时间变化特征进行统计分析,并对其成因作了进一步研究,结果发现,自20世纪80年代开始,大风灾情日数年际变化大幅度增加,大风日数与大风灾情日数的地理分布基本一致,大风灾情日数季节变化明显.  相似文献   

10.
基于模糊逻辑的雷暴大风和非雷暴大风区分方法   总被引:6,自引:4,他引:2  
周康辉  郑永光  王婷波  蓝渝  林建 《气象》2017,43(7):781-791
雷暴大风往往伴随飑线、阵风锋、龙卷等强对流天气而出现,风速大、发展迅速、突发性强,对生命财产安全造成极大威胁,因此对雷暴大风的监测与预报具有重要的意义。然而,雷暴大风监测一直也是强对流监测的难点。本文在地面气象观测站大风记录的基础上,结合多源数据(包括雷达、卫星、闪电、温度、露点等观测数据),利用模糊逻辑算法,实现雷暴大风与非雷暴大风的有效识别,可对雷暴大风进行实时监测。具体算法为:首先,基于历史样本数据的统计得到各变量的概率分布函数,进而得到各参数隶属度函数;然后采用概率重叠面积方法,确定各项质量控制数据的权重;最后通过选取判断概率阈值Q的方法,区分雷暴大风与非雷暴大风。通过对2010年全国50873条人工观测大风数据的识别结果检验表明,该算法能有效区分雷暴大风与非雷暴大风,当Q选取0.55时,雷暴大风的识别准确率POD约为0.76,误识别率约为0.18,雷暴大风CSI指数约为0.67。文中选取了两次大风过程,算法正确地识别了11个非雷暴大风记录,5个雷暴大风记录。本工作能一定程度上提升雷暴大风的监测效果、完善强对流监测业务体系。  相似文献   

11.
石家庄地区大风日数气候变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
以1972-2009年石家庄地区17个地面观测站大风资料为依据,运用线性倾向估计、Morlet小波分析、Mann-Kendall突变检验等方法对石家庄地区及5个代表站大风日数时空特征进行分析。结果表明:石家庄地区年平均大风日数空间上呈“几”字形分布;5个代表站大风日数气候特征一致:春天多,秋天少。石家庄市的大风日变化显著,白天出现大风的机率明显高于夜间,尤其是10-16时出现最多,占总次数的45.8%。石家庄地区及5个代表站均表现为20世纪70年代大风日数最多,近38 a来大风日数均呈线性减少趋势;同一年代不同区域的大风日数年代平均值存在明显差异。石家庄地区及5个代表站大风日数的周期性特征显著,各站的长、短周期内均处于大风日偏少期;石家庄地区及5个代表站中有4站的年大风日数发生了突变性减少。  相似文献   

12.
通过对库尔勒市 11年大风资料的分析 ,探讨大风的气候统计特征以及形成大风天气形势的特点。同时 ,提出了预报大风的经验方程 ,并用实例进行检验  相似文献   

13.
河北廊坊雷暴大风的气候特征   总被引:1,自引:0,他引:1  
利用1970~2012年廊坊地区9个气象站地面雷暴大风观测资料,采用趋势分析、滑动t检验、小波分析和最大熵谱分析等统计方法,系统分析了该地区雷暴大风天气的时空特征及变化趋势和变化周期。结果表明:廊坊地区的雷暴大风局地性强,43 a间只出现了一次全区性的雷暴大风天气过程,雷暴大风多以单站出现为主。雷暴大风的地域性特征明显,中部的廊坊市及南部的文安、大城站较易出现,而北部发生概率较低。雷暴大风的日、月及年变化特征明显。雷暴与大风主要发生在午后至前半夜,大风发生时间一般落后于雷暴,1 h内的雷暴与10 min以内的大风发生概率最高;雷暴大风3~10月都可出现,主要集中在夏季,发生概率为73.3%;近43 a来,年均雷暴大风日数整体呈现减少趋势,且中部的站点减少趋势最显著,1994年为雷暴大风的显著突变年,其显著变化周期为3.23a。雷暴大风多为"湿"型。  相似文献   

14.
河西走廊东部大风气候特征及预报   总被引:1,自引:0,他引:1  
利用河西走廊东部1971—2010年4个气象站大风(≥6级,即10min平均风速≥10.8~13.8m/s)资料,系统分析了该区大风的时空分布、强度和持续性等气候特征。结果表明,河西走廊东部大风天气主要发生在山区和沙漠边缘;年、年代际大风日数总体呈减少趋势,3—5月是大风的高发期,占全年大风日数的34.8%~56.8%,其次是2月、6月和11月;各强度大风日数的变率较大,随着大风强度的增强,大风日数迅速减少;大风天气具有持续性特征,最大风速大多出现在持续大风时段内。采用2003—2007年逐日20时ECMWF数值预报格点场资料,按照Press准则进行预报因子初选,运用逐步回归预报方法进行预报因子精选,使用最优子集回归建立大风预报方程,并用双评分准则(CSC,couple score criterion)确定各季节各地大风预报全局最优的显著性方程,预报方程通过了α=0.01的显著性检验。预报方程回代拟合率为66.7%~73.4%,预报准确率为58.8%~67.5%,达到了一定的预报水平,可为大风的业务预报提供客观有效的指导产品。采用最大靠近原则确定了大风预报临界值和预报、预警的级别。  相似文献   

15.
分析了河西走廊1980~2010年一日大风持续时间的气候特征。结果表明:河西走廊一日大风平均和最长持续时间的空间分布特征与大风日数基本一致,总体上自东向西、自南向北增多,且随海拔高度的升高而增多。全区年大风平均持续时间在7~207 min之间,平均为65 min。大风一日最长持续时间是1 390 min。酒泉市大部、永昌、民勤和乌鞘岭年大风平均和最长持续时间偏长,其余地方偏短。各季大风平均和最长持续时间,春季最长、冬季次长、夏季最短、秋季次短。年一日大风持续时间的频率为偏态分布,在0~2 h的累积频率为0.67。风速偏小站大风的持续时间基本为0~12 h,风速偏大站大风的持续时间在12~24 h,这说明风速越大,大风的持续时间越长。  相似文献   

16.
数值模式预报是阵风预报的重要途径之一,对“中国气象局北京快速更新循环数值预报系统(简称CMA北京模式)”中AFWA、UPP、IUM三种阵风诊断方案在北京地区大风预报中的性能进行了分析评估。两次大风过程的分析以及各季节大风预报的批量试验检验结果显示:三种方案的阵风预报存在明显差异,IUM方案的阵风预报能力优势明显。IUM方案对冷空气大风和雷暴大风预警都有较好的指示意义。其对2020年3月18日冷空气大风过程中大风起始时间、大风区位置和演变以及过程极大风速均有较好的预报效果,对2020年8月2日雷暴大风过程中大风区范围预报偏大且位置存在偏差,但对大风预警的指示意义最强。IUM方案的阵风风速预报整体偏强,但对各个季节达到或超过5级阵风的等级预报较为准确。总体而言,IUM方案对北京地区大风预报性能较好,基于该方案制作的阵风预报产品可为大风预报提供有力支撑。   相似文献   

17.
老风口生态区偏东大风统计特征分析   总被引:3,自引:0,他引:3  
特殊的地理位置和不同环流形势的共同作用,造就了老风口地区大风及偏东大风。文中通过对实测风相关资料的统计分析,并结合气象学原理,揭示出了老风口风区大风及偏东大风发展维持的主要特征和基本规律。  相似文献   

18.
于慧珍  马艳  韩旭卿 《气象科技》2023,51(1):94-103
以山东半岛南部沿海为例,利用旋转T模态主成分分析方法和欧洲中期天气预报中心第5代大气再分析资料(ERA5)对大风的环流形势和成因进行研究。结果表明:(1)形成大风的天气型有5种,按大风日数从多到少依次为西北路冷高压型、低压槽后型、低压槽前型、江淮气旋型和北路冷高压型,与不同天气型下大风发生的概率大小顺序一致。(2)冷高压型(包括西北路冷高压型和北路冷高压型)的冬季大风最多,低压槽型(包括低压槽前型和低压槽后型)的春季大风最多,江淮气旋型的春、秋季大风最多。(3)高空冷平流、地面冷高压和动量下传是西北路冷高压型大风的成因;高空冷平流和地面冷高压是北路冷高压型大风的成因;高空暖平流、入海高压和东北低压是低压槽前型大风的成因;高空冷平流、地面冷高压和东北低压是低压槽后型大风的成因;受高空正涡度平流和暖平流影响,气旋发展并向东北方向移动在半岛南部形成大的气压梯度是江淮气旋型大风的成因。  相似文献   

19.
利用1971—2009年河南省110个气象站观测资料,采用气候统计学分析方法,对河南省大风日数时间演变、空间分布及与扬沙和沙尘暴日数的关系进行分析。结果表明:近39a来,河南省年平均大风日数以2.2d/10a的速率显著减少;四季大风日数亦均呈显著减少,表现出春季(0.8d/10a)大于冬季(0.6d/10a)大于秋季(0.4d/10a)大于夏季(0.3d/10a)的特征。无论在年尺度还是季尺度,河南省大风日数表现出随年代增加而减少的趋势。河南省大风天气主要出现在春季和冬季,集中于春季(3—5月),占全年的40.8%,秋季最少;4月最多(15.5%)9,月最少(1.9%)。河南省大风日数的空间分布与地形有很大关系,大风日数较多的区域主要分布在太行山东南部以及海拔自低至高的河南省中北部地区,而在地势较为平坦的东部地区和山系较多海拔较高的西部地区相对较少。1971—2009年,河南省年平均扬沙日数和沙尘暴日数随时间增加均显著减少,其减少速率分别为0.4d/10a和0.3d/10a。相关分析表明,年平均扬沙日数和沙尘暴日数与年平均大风日数平均呈极显著正相关,其相关系数分别为0.88和0.75;大风日数随时间的变化对沙尘天气随时间的变化具有显著作用,大风日数的减少是沙尘天气减少的主要原因。  相似文献   

20.
新疆大风的时空统计特征   总被引:16,自引:2,他引:16  
统计了1961-1999年39a新疆90个气象观测站的气表-1资料,给出新疆大风的时空分布特征,结果表明:(1)年平均大风日数的高值区在北疆西北部,东疆和南疆西部,阿拉山口,达坂城大风最多,准噶尔盆地中心,塔里木盆地南缘最少。(2)大风年总日数的变化有明显的波动性,大部分地区80年代起大风日数有减少的趋势。(3)春,夏季大风最多,以5,6月最为频敏,大风主要出现在上年10时到午夜23时,半数以上的大风持续时间在1h以上,以0.5h以内最多。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号