首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Using observations and reanalysis data, this study investigates the interannual relationship between the winter Aleutian Low(AL) and the rainfall anomalies in the following summer in South China(SC). Results show that the winter AL is significantly positively(negatively) correlated with the SC rainfall anomalies in the following July(August). Specifically, SC rainfall anomalies have a tendency to be positive(negative) in July(August) when the preceding winter AL is stronger than normal. The winter AL-related atmospheric circulation anomalies in the following summer are also examined. When the winter AL is stronger, there is a significant anticyclonic(cyclonic) circulation anomaly over the subtropical western North Pacific in the following July(August). Southerly(northerly) wind anomalies to the west of this anomalous anticyclonic(cyclonic) circulation increase(decrease) the northward moisture transportation and contribute to the positive(negative) rainfall anomalies over SC in July(August). This study indicates that the AL in the preceding winter can be used as a potential predictor of the rainfall anomalies in the following July and August over SC.  相似文献   

2.
强弱南海夏季风活动及大气季节内振荡   总被引:26,自引:0,他引:26  
应用NCEP再分析资料和中国降水资料,分析研究了对应南海强、弱夏季风的环流形势及其与之相应的中国东部的降水异常。其结果表明,由强、弱夏季风所引起的中国气候异常是完全不同(甚至反相)的。分析大气季节内振荡(ISO)的活动还表明,对应大气强(弱)南海夏季风,南海地区 850 hPa也有强(弱)大气 ISO;而强、弱南海夏季风环流(200 hPa和 850 hPa)主要由异常的大气ISO所激发。本研究还揭示了南海地区大气ISO的变化往往与江淮地区大气ISO的变化反相,例如南海地区的强(弱)大气ISO常与江淮流域的弱(强)大气ISO相对应。对于大气ISO的强度,一般多表现出局地激发特征,经向传播相对较弱。  相似文献   

3.
利用1983-2012年NCEP/NCAR、NCEP/DOE、ECMWF再分析月平均资料,及中国160站月平均气温和降水量资料,利用统计学方法从大气环流、降水及温度等方面对高原夏季风与南海夏季风的关系进行了探讨。结果表明:高原夏季风与南海夏季风呈负相关关系,且大气环流及对流活动存在显著性差异。高原夏季风偏强(弱)同时南海夏季风偏弱(强)时,同期中国大部分地区的500hPa高度场偏低(高),南海地区500hPa高度场偏高(低);欧亚大陆低纬地区大部为偏东(西)风,南海地区处于反气旋(气旋)环流中。青藏高原主体地区上升运动较弱(强),南海中心区域上升运动均较弱(强),长江中下游地区降水增加(减少),华南降水减少(增加)。中国大部分地区气温较低(高),华南地区气温较高(低)。  相似文献   

4.
Interannual variation in summer rainfall over South China (SC) was investigated on the monthly timescale.It was found that monthly rainfall from May to August exhibits different features of variation,and the amounts are basically independent of each other.There is a significant negative correlation,however,between May and July SC rainfall,which is partially related to the developing phases of ENSO events.It was also found that stronger (weaker) lower-tropospheric winds over SC and the upstream parts are responsible for more (less) SC rainfall in every month from May to August.Despite this monthly consistent enhancement of horizontal winds,the wind anomalies exhibit distinct differences between May-June and July-August,due to the remarkable change in climatological winds between these two periods.More SC rainfall is associated with a lower-tropospheric anticyclonic anomaly over the SCS and the Philippine Sea in May and June,but with a cyclonic anomaly centered over SC in July and August.  相似文献   

5.
The relationship between the tropical intra-seasonal oscillation (ISO) and tropical cyclones (TCs) activities over the South China Sea (SCS) is investigated by utilizing the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) global reanalysis data and tropical cyclone best-track data from 1949 to 2009. The main conclusions are: (1) A new ISO index is designed to describe the tropical ISO activity over the SCS, which can simply express ISO for SCS. After examining the applicability of the index constructed by the Climate Prediction Center (CPC), we find that the convection spatial scale reflected by this index is too large to characterize the small-scale SCS and fails to divide the TCs activities over the SCS into active and inactive categories. Consequently, the CPC index can’t replace the function of the new ISO index; (2) The eastward spread process of tropical ISO is divided into eight phases using the new ISO index, the phase variation of which corresponds well with the TCs activities over the SCS. TCs generation and landing are significantly reduced during inactive period (phase 4-6) relative to that during active period (phase 7-3); (3) The composite analyses indicate distinct TCs activities over the SCS, which is consistent with the concomitant propagation of the ISO convective activity. During ISO active period, the weather situations are favorable for TCs development over the SCS, e.g., strong convection, cyclonic shear and weak subtropical high, and vice versa; (4) The condensation heating centers, strong convection and water vapor flux divergence are well collocated with each other during ISO active period. In addition, the vertical profile of condensation heat indicates strong ascending motion and middle-level heating over the SCS during active period, and vice versa. Thus, the eastward propagation of tropical ISO is capable to modulate TCs activities by affecting the heating configuration over the SCS.  相似文献   

6.
利用1985—2015年6—8月登陆中国东南部(福建和浙江)的35个西北行热带气旋(TC)和站点观测的日降水量,根据区域TC过程降水量,分为强降水、适量降水和弱降水TC,分析影响各级TC降水的环境场异常特征及其季节内振荡(ISO)的调制作用。(1)对流层低层850 hPa表现为中心位于福建东部强的气旋异常,来自孟加拉湾和南海强水汽输送在中国东南部产生强的水汽辐合促使TC强降水的发生,其中10~20天和30~60天ISO的环流和水汽输送都有贡献,但东南部的水汽辐合主要受10~20天ISO的影响;与TC强降水相比,TC弱降水对应的异常气旋和水汽辐合明显减弱。(2)影响TC强降水的10~20天ISO环流异常在TC登陆过程,自菲律宾群岛附近向西北方向传播至中国东南部,30~60天ISO环流异常自南海向东北偏北方向传播至台湾西南部,且环流异常强度不断加强。(3)影响TC弱降水的10~20天ISO环流异常自菲律宾西部向北传播,30~60天ISO环流异常自南海南部向东北方向传播。   相似文献   

7.
利用中国测站的逐日降水资料和NCEP/NCAR再分析资料,分析了近35年华南降水季节演变的年代际变化特征及其相关的大气环流异常特征。华南地区降水季节分布型在1990年代初期发生了年代际转变,其中,华南西部降水在1990年之前为双峰型分布,1990年之后变为以6月为峰值的单峰型分布;华南东部降水在1990年之前是以5月、8月为峰值的弱双峰型分布,1990年之后变为以6月、8月为峰值的显著双峰型分布。华南东、西部降水季节分布的年代际变化分别与华南全区6月降水量的年代际增加以及8月华南东、西部降水显著反相的年代际变化(东多西少)密切相关。1990年之后,大雨及以上强降水事件发生频率的增强是导致上述年代际变化的主要原因。华南6月降水年代际的增强与南海区域的西北太平洋副热带高压(简称西太副高)脊线位置的年代际异常偏南密切相关。7月华南地区降水的年代际增加与西太副高年代际东撤及影响华南地区的热带气旋频数年代际增多有关。8月华南东、西部降水显著反相的年代际变化(东多西少),一方面受印度洋及南海上空夏季风年代际减弱的影响,使得输送到华南西部的水汽减少,另一方面西太副高的年代际增强并西伸,使得源自副高西南侧的水汽更直接输送至华南东部地区有关;同时也与登陆和影响华南东、西部的热带气旋的年代际增多和减少有关。   相似文献   

8.
This study investigates the relationship between the soil temperature in May and the East Asian summer monsoon (EASM) precipitation in June and July using station observed soil temperature data over Northwest China from 1971 to 2000.It is found that the memory of the soil temperature at 80-cm depth can persist for at least 2 months,and the soil temperature in May is closely linked to the EASM precipitation in June and July.When the soil temperature is warmer in May over Northwest China,less rainfall occurs over the Yangtze and Huaihe River valley but more rainfall occurs over South China in June and July.It is proposed that positive anomalous soil temperature in May over Northwest China corresponds to higher geopotential heights over the most parts of the mainland of East Asia,which tend to weaken the ensuing EASM.Moreover,in June and July,a cyclonic circulation anomaly occurs over Southeast China and Northwest Pacific and an anticyclonic anomaly appears in the Yangtze and Huaihe River valley at 850 hPa.All the above tend to suppress the precipitation in the Yangtze and Huaihe River valley.The results also indicate that the soil temperature in May over Northwest China is closely related to the East Asia/Pacific (EAP) teleconnection pattern,and it may be employed as a useful predictor for the East Asian summer monsoon rainfall.  相似文献   

9.
南海夏季风演变的气候学特征   总被引:17,自引:2,他引:17  
王启  丁一汇 《气象学报》1997,55(4):466-483
本文总结南海北部地区夏季风演变的气候学特征,发现南海地区5月第3候对流层高层东风和北风爆发,对流层低层西风第1次跃升,东亚经向季风环流圈开始形成,这可以成为南海地区夏季风爆发的标志。对流层低层西风在6月中旬开始的第2次连续跃升对应江淮地区的梅雨爆发期。类似地,中国大陆夏季对流层低层5月初和6月初有两次爆发性增暖过程,第2次比第1次强烈得多。南海北部地区对流层低层纬向风速、比湿盛夏呈双峰型,纬向风速峰值分别出现在6月第5候和8月第4候,比湿峰值分别出现在6月第6候和8月第5候。比湿突升对应纬向风速突升,但略落后于风速峰值出现的时间。南海北部地区季风爆发前,温度是波动式上升的,南海季风爆发后,温度是波动式下降的。中国大陆东部及南海地区夏季对流层低层比湿分布有3次突变,即4月中旬南海北部比湿突增,并开始出现高比湿中心,而南海南部为最大比湿中心;5月中旬最大比湿中心已从南海南部跳到了南海北部-华南并向江淮流域扩展;6月中旬江淮流域比湿突增并一直维持到8月,同时南海南部高比湿带消失。而5月中旬OLR有一次突变,OLR低值区爆发性向北扩张,这对应于南海地区夏季风的爆发。而孟加拉湾地区夏季风演变的气候学特征与南海地区有较  相似文献   

10.
According to the basic characteristics of the activities of summer monsoon in the South China Sea,Standardized index,Is,has been designed that integrates a dynamic factor(southwesterly component) and a thermodynamic factor(OLR) for the indication of summer monsoon in the South China Sea,With the index determined for individual months of June,July and August and the entire summertime from 1975 to 1999,specific months and years are indicated that are either strong or weak in monsoon intensity,The variation is studied for the patterns and Is‘s relationship is revealed with the onset of summer monsoon and the precipitation in Guang-dong province and China.The results show that there are quasi-10 and quasi-3-4 year cycles in the interannual variation of the monsooon over the past 25 years.When it has an early(late)onset,the summer monsoon is usually strong (weak),In the strong(weak)monsoon,years,precipitation tends to be more(less)in the first raining season of the year but normal or less(normal)in the second,in the province,but it would be more(less) in northeastern China and most parts of the northern china and south of the lower reaches of the Changjiang River and less(more)in the middle and lower reaches of the river,western part of northern China and western China.  相似文献   

11.
冬季风异常年份的环流特征及其与华南前汛期降水的关系   总被引:3,自引:0,他引:3  
本文分析了1963—1982年资料,研究了冬季风异常年份的环流特征及其与华南初夏降水的关系。结果表明:冬季风强年,500百帕西太平洋副高偏弱,亚洲西风环流弱,东亚槽南伸,200百帕115°E西风急流强而偏北。冬季风弱年的环流特征与此相反。强冬季风年后期环流演变特点,中高纬度环流逐渐向夏季型过渡,而副热带环流则变化强烈。弱冬季风年后期中高纬度环流在2月下旬至3月上旬有一个反复的过程,副热带环流则是逐步增强北上的。强冬季风年初夏500百帕西太平洋副高较正常年偏强,位置偏北,西脊点偏东,100百帕南亚高压偏西,华南及珠江三角洲前汛期降水偏少。弱冬季风年初夏环流特点与此相反,华南及珠江三角洲前汛期降水偏多。   相似文献   

12.
The timing of the South Asian High (SAH) establishment over the Indochina Peninsula (IP) from April to May and its relations to the setup of the subsequent tropical Asian summer monsoon and precipitation over eastern-central China in summer are investigated by using NCEP/NCAR daily reanalysis data, outgoing longwave radiation (OLR) data and the daily precipitation data from 753 weather stations in China. It is found that the transitions of the zonal wind vertical shear and convection establishment over tropical Asia are earlier (later) in the years of early (late) establishment of SAH. In the lower troposphere, anti-cyclonic (cyclonic) anomaly circulation dominates the equatorial Indian Ocean. Correspondingly, the tropical Asian summer monsoon establishes earlier (later). Furthermore, the atmospheric circulation and the water vapor transport in the years of advanced SAH establishment are significantly different from the delayed years in Asia in summer. Out-of-phase distribution of precipitation in eastern-central China will appear with a weak (strong) SAH and western Pacific subtropical high, strong (weak) ascending motion in the area south of Yangtze River but weak (strong) ascending motion in the area north of it, and cyclonic (anti-cyclonic) water vapor flux anomaly circulation from the eastern-central China to western Pacific. Accordingly, the timing of the SAH establishment at the upper levels of IP is indicative of the subsequent onset of the tropical Asian summer monsoon and the flood-drought pattern over eastern-central China in summer.  相似文献   

13.
Datasets of equivalent temperature of black body (TBB) and sea surface temperature (SST) ranging from 1980 to 1997 are used to diagnose and analyze the characteristics of frequency spectrum and strength of intraseasonal variation of convection. The relationship between the strength of intraseasonal oscillation of convection, strength of convection itself and SST in the South China Sea (SCS) is studied. It is shown that, there are distinguishable annual, interannual and interdecadal variations in both strength and frequency spectrum of intraseasonal variation of convection in SCS. There are connections between strength of convection, strength of ISO1 in the summer half (s.h.) year and SST in ensuing winter half (w.h.) year in SCS. The strong (weak) convection and strong (weak) ISO1 are associated with negative (positive) bias of SST in ensuing w.h. year in SCS.  相似文献   

14.
1 INTRODUCTIONSituated in the region of East Asian Monsoon(EAM), weather and climate in China are deeplyinfluenced by the activities of EAM. Especially inflood seasons, distribution of precipitation, movementof rain-bands and occurrence of droughts and fl…  相似文献   

15.
Detailed spatiotemporal structures for the submonthly-scale (7–25 days) intraseasonal oscillation (ISO) in summer monsoon rainfall and atmospheric circulation were investigated in South Asia using high-quality rainfall and reanalysis datasets. The Meghalaya–Bangladesh–coast of the western Myanmar (MBWM) region is the predominant area of submonthly-scale ISO in the Asian monsoon regions. The distinct rainfall ISO is caused by a remarkable alternation of low-level zonal wind between westerly and easterly flows around the Gangetic Plain on the same timescales. In the active ISO phase of the MBWM, a strong low-level westerly/southwesterly flows around the plain and a center of cyclonic vorticity appears over Bangladesh. Hence, a local southerly flows toward the Meghalaya Plateau and there is strong southwesterly flow towards the coast along southeastern Bangladesh and western Myanmar, resulting in an increase in orographic rainfall. Rainfall also increases over the lowland area of the MBWM due to the low-level convergence in the boundary layer under the strong cyclonic circulation. The submonthly-scale low-level wind fluctuation around the MBWM is caused by a westward moving n = 1 equatorial Rossby (ER) wave. When the anticyclonic (cyclonic) anomaly related to the ER wave approaches the Bay of Bengal from the western Pacific, humid westerly/southwesterly (easterly/southeasterly) flows enhance around the Gangetic Plain on the northern fringe of the anticyclone (cyclone) and in turn promote (reduce) rainfall in the MBWM. Simultaneously, robust circulation signals are observed over the mid-latitudes. In the active phase, cyclonic anomalies appear over and around the TP, having barotropic vertical structure and also contributing to the enhancement of low-level westerly flow around the Gangetic Plain. In the upper troposphere, an anticyclonic anomaly is also observed upstream of the cyclonic anomaly over the TP, having wavetrain structure. The mid-latitude circulation around the TP likely helps to induce the distinct ISO there in conjunction with the equatorial waves. Thus, the distinct ISO in the MBWM is strongly enhanced locally (~500 km) by the terrain features, although the atmospheric circulation causing the ISO has a horizontal scale of ~6,000 km or more, extending across the whole Asian monsoon system from the tropics to mid-latitudes.  相似文献   

16.
基于1998—2011年的TRMM卫星逐日降水资料、NCEP/NCAR大气再分析资料以及向外长波辐射(OLR)资料,利用小波分析、Butterworth带通滤波、EOF分析以及合成分析的方法,对秋季(9—10月)南海北部地区(10°—24°N,100°—120°E)持续性强降水的低频特征进行分析。结果表明,秋季南海北部降水存在显著的准双周振荡特征,主要表现为南海北部地区一致变化型和南海东北部地区和中南半岛沿海地区反相变化型两个模态。其中,第一模态的低频降水主要集中在中南半岛沿岸附近的南海中西部,第二模态则主要集中在南海东北部。进一步对与这两种模态相关联的大气环流和OLR的低频场进行合成分析。结果表明,第一模态的对流层低层准双周低频信号主要来源于南半球近赤道上空,该地区异常强对流活动产生的波列和气旋性环流越赤道进入南海并加强传播至南海北部。而第二模态则来源于南海中南部和吕宋岛东侧西太平洋上空,异常强对流和气旋性环流的合并加强并传播至南海东北部。  相似文献   

17.
The Northwest Pacific (NWP) circulation (subtropical high) is an important component of the East Asian summer monsoon system. During summer (June–August), anomalous lower tropospheric anticyclonic (cyclonic) circulation appears over NWP in some years, which is an indicative of stronger (weaker) than normal subtropical high. The anomalous NWP cyclonic (anticyclonic) circulation years are associated with negative (positive) precipitation anomalies over most of Indian summer monsoon rainfall (ISMR) region. This indicates concurrent relationship between NWP circulation and convection over the ISMR region. Dry wind advection from subtropical land regions and moisture divergence over the southern peninsular India during the NWP cyclonic circulation years are mainly responsible for the negative rainfall anomalies over the ISMR region. In contrast, during anticyclonic years, warm north Indian Ocean and moisture divergence over the head Bay of Bengal-Gangetic Plain region support moisture instability and convergence in the southern flank of ridge region, which favors positive rainfall over most of the ISMR region. The interaction between NWP circulation (anticyclonic or cyclonic) and ISMR and their predictability during these anomalous years are examined in the present study. Seven coupled ocean–atmosphere general circulation models from the Asia-Pacific Economic Cooperation Climate Center and their multimodel ensemble mean skills in predicting the seasonal rainfall and circulation anomalies over the ISMR region and NWP for the period 1982–2004 are assessed. Analysis reveals that three (two) out of seven models are unable to predict negative (positive) precipitation anomalies over the Indian subcontinent during the NWP cyclonic (anticyclonic) circulation years at 1-month lead (model is initialized on 1 May). The limited westward extension of the NWP circulation and misrepresentation of SST anomalies over the north Indian Ocean are found to be the main reasons for the poor skill (of some models) in rainfall prediction over the Indian subcontinent. This study demonstrates the importance of the NWP circulation variability in predicting summer monsoon precipitation over South Asia. Considering the predictability of the NWP circulation, the current study provides an insight into the predictability of ISMR. Long lead prediction of the ISMR associated with anomalous NWP circulation is also discussed.  相似文献   

18.
利用NOAA逐日海表面温度(sea surface temperature,SST)资料、NCEP/NCAR逐日风场和比湿资料以及中国国家气象信息中心提供的逐日降水资料,研究了西北太平洋气候SST的低频周期,进一步分析了夏季西北太平洋SST季节内振荡与中国东部同期降水异常的关系。结果表明:夏季西北太平洋季节内SST异常影响中国东部同期季节内降水最显著的三个区域为:长江中游及华南沿海;江淮流域;华北大部。其影响途径主要是通过西北太平洋季节内海温与850 h Pa环流场之间相互作用,在东亚沿岸自南向北逐渐形成气旋—反气旋—气旋(反气旋—气旋—反气旋)的波列结构,引起东亚沿海局地水汽的辐合辐散,使得中国东部夏季季节内雨带从江淮流域向华北推进(从华北南撤到长江中游及华南沿海地区)。  相似文献   

19.
The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific–Japan or East Asia–Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.  相似文献   

20.
This study identifies a decadal shift of summer surface air temperature (SAT) over Northeast Asia,including southeastern parts of Russia,Mongolia and northern China,around the mid-1990s.The results suggest that the SAT over the Northeast Asia experienced a significant warming after 1994 relative to that before 1993.This decadal shift also extends to northern China,and leads to a warmer summer over Northeast China and North China after the mid-1990s.The decadal warming over Northeast Asia is found to concur with the enhancement of South China rainfall around the mid-1990s.On the one hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift only in summer,but not in other seasons.On the other hand,both the Northeast Asian SAT and South China rainfall exhibit this mid-1990s decadal shift not only in the summer seasonal mean,but also in each month of summer (June,July and August).Furthermore,the decadal warming is found to result from an anticyclonic anomaly over Northeast Asia,which can be interpreted as the response to the increased precipitation over South China,according to previous numerical results.Thus,we conclude that the warming shift of summer Northeast Asian SAT around the mid-1990s was a remote response to the increased precipitation over South China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号