首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
一次川东大暴雨过程的中尺度分析   总被引:11,自引:2,他引:11       下载免费PDF全文
利用观测资料和MM5中尺度非静力模式产生的客观分析资料, 分析了2004年9月3~5日出现在川东地区大暴雨过程的大尺度环流特征和主要的中尺度天气系统及其结构。分析表明:中纬度低压槽的东移与西伸加强的副热带高压在青藏高原北部地区形成了有利于高原切变线和西南低涡生成发展的环流条件;西南低涡东侧的暖式切变线是对流活动最活跃的区域, 强降水主要出现在暖式切变线上;西南低涡是一个主要出现在对流层中低层的涡旋系统, 与大暴雨区相对应的整层强上升运动是低涡切变线南北两侧的正反向垂直环流共同作用的结果。  相似文献   

2.
利用肇庆市2008—2017年近10年20个典型切变线暴雨过程的降水量资料,通过EOF分析等方法研究了暴雨的空间分布特征,并在此基础上对比分析不同分布雨型的环流背景场特征。分析结果表明:(1) EOF展开方法表明肇庆切变线暴雨前3个特征向量累积方差贡献比例为93. 6%。(2)切变线暴雨过程出现频率最多的3种分布雨型为:全市一致偏多(少)型(南部变率高于北部)、南多(少)北少(多)型、南北多(少)中部少(多)型。(3)第1模态最大正负相关的2个典型个例环流场特征的主要区别在于高空槽南伸位置和切变线移动路径以及西南气流的强弱;第2模态的区别在于切变线南压滞留的位置和时间差异;第3模态区别在于切变线是否断裂为东西两段以及低层风速风向辐合区域的差异。  相似文献   

3.
2009年11月10—12日陕西特大暴雪诊断分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用常规观测资料、NCEP再分析资料、FY-2C卫星资料,对2009年11月9—12日陕西大范围特大暴雪过程进行了诊断分析,结果表明:500 hPa短波槽、700、850 hPa切变线是这次暴雪的主要影响系统,中尺度对流云团是造成此次暴雪的直接原因。尺度分离的流场能清晰地分辨中尺度天气系统,强降水中心与中尺度对流云团和云顶亮温的冷中心有较好的对应。暴雪区发生在ζMPV1为正值中心的东侧,ζMPV2的负值区。湿斜压性的增强主要是由于抬升的暖气流偏南风与低空冷气流偏北风之间形成较强的风向垂直切变,同时暴雪区附近存在较大的▽θse所致。强降雪过程中垂直螺旋度正值区长轴始终与低层切变线走向一致,且位于切变线的东侧。  相似文献   

4.
三次高原切变线过程演变特征及其对降水的影响   总被引:1,自引:0,他引:1  
为了揭示高原切变线的动、热力等特征,进一步认识高原切变线线演变机制,应用MICAPS资料、NCEP 1°×1°再分析资料和风云卫星红外亮温资料,选取出现在初夏(2008年5月19 22日)、盛夏(2007年7月1 3日)和夏末(2009年9月19 21日)的三次高原切变线个例,对夏季高原切变线不同时期、不同发展阶段的演变特征及其对降水影响进行了分析。结果表明:(1)当切变线两侧南北风速减弱,特别是北风风速减弱时,切变线过程趋于减弱。冷暖空气势力强弱影响切变线所处位置,初夏和盛夏切变线位置偏北,夏末切变线位置偏南。(2)切变线活动期间有正涡度、辐合上升运动与切变线配合。当切变线减弱消失,辐合带先于正涡度带减弱消失。切变线附近多正涡度中心和辐合中心,可能与低涡活动有关。盛夏和夏末切变线正涡度辐合中心东移特征明显,辐合上升区更为偏东且较强。(3)切变线附近通常有TBB-20℃的带状或块状区域,切变线维持发展阶段,TBB进一步降低,盛夏切变线和形成初期的夏末切变线多TBB低值中心,对流活动比较旺盛。(4)由于地形的阻挡和加热,高原东坡和南坡是大气不稳定能量聚集地。盛夏在切变线附近近地层聚集的高温、高湿能量明显。初夏切变线引发的降水以稳定性降水为主,降水量小,呈零散分布,盛夏和夏末切变线引发降水其对流不稳定降水特征明显,带来的降水更强、范围更广,呈带状分布在切变线附近。(5)500 hPa切变线也是水汽聚集带,切变线附近上空的水汽和不稳定能量聚集,正涡度东传和对流发展是切变线引发强降水的重要机制。  相似文献   

5.
万雪丽 《贵州气象》2005,29(Z1):35-36
从天气学角度出发,对2005年4月28日晚贵阳市区遭受的强雷暴天气进行环境场分析,得出这次强雷暴天气是高原东侧短波槽在低层切变线上扰动生成局地中小尺度气旋形成强烈的对流天气.强雷暴天气产生前地面持续的增温,低层扰动逆温层的存在,使得大气低层积聚大量不稳定能量,同时持续加强的西南暖湿气流为强雷暴天气的发生提供了充足的水汽.  相似文献   

6.
张小玲  程麟生 《高原气象》2000,19(3):285-294
利用引入三相云显式降水方案后改进和发展的中尺度模式(MM4)模拟输出资料,对“96.1”高原暴雪切变线发生、发展的结构进行了运动学和动力学诊断。涡度场演变指出,高原上局地涡度中心和涡度带的生成和发展不仅与暴雪切变线的形成和发展密切相关,而且有预测切变线生成的先兆意义;涡度场、散度场、垂直速度场当位温场的剖面结构诊断表明,运动场的热力场的相互配置与耦合关系极有得暴雪切变线及暴雪形成与维持;涡度变率诊  相似文献   

7.
LAPS分析场资料在暴雨中尺度分析中的应用   总被引:8,自引:1,他引:7       下载免费PDF全文
利用常规地面探测、高密度自动雨量站、高空探测资料,并且融合多普勒雷达拼图产品,LAPS可输出比较精细的分析场。针对2008年6月21~22日一次暴雨天气过程,基于LAPS不同时空分辨率的中尺度分析场,分析了雷达回波、风场、高度场以及物理量场,比较不同时空分辨率LAPS分析场之间的差异。结果表明:(1)此次强降水过程可划分为2个阶段。第一阶段雨量集中在沿淮地区,呈纬向带状分布;第二阶段集中在大别山地区,其雨强更大,是中尺度局地性降水。(2)大别山区的地形抬升对低涡增强或减弱的演变具有重要影响,是低涡增强、发展的触发机制。当低涡接近大别山区时,低涡明显加强;当低涡逐渐远离大别山区时,低涡则减弱。(3)第一阶段有风的切变线,第二阶段有风的辐合,说明风场的辐合和切变促进云和降水的发生、发展,因此它们是产生暴雨的触发条件。(4)高分辨率的LAPS结果对于风场和云的变化刻画地更为细致。雷达回波发生在风的切变线处,或者风场辐合处;大别山区暴雨过程中,在其西侧有闭合性的涡旋,低涡缓慢东移,回波位于涡旋东侧,强降水发生在低涡东侧。(5)K指数、沙氏指数、整层可降水量与这次大别山地区暴雨过程具有较好的对应关系,与暴雨落区基本相同。这些指数在暴雨落区预报与应用方面具有一定参考价值。  相似文献   

8.
利用临沂新一代天气雷达(CINRAD/SC)观测资料和 MM5 模式产品及 Micaps 常规资料,具体分析了2005年9月20日和2006年7月3日发生在临沂市的冷式和暖式切变线暴雨到大暴雨过程的异同.分析表明两种切变线暴雨雷达回波都表现为和切变线走向一致的积层混合云降水云系,有较大范围,长度远大于宽度,对应于切变线成带絮状回波,最大回波强度相同,移速慢等特点.由于冷、暖式切变线结构上存在差异,冷式切变线暴雨低层有明显的东北气流冷垫,物理量场由低到高向北倾斜,加强了其动力上升运动;水汽输送依赖于对流层中层的西南急流,雨强的增大和高空急流的向下发展有关系.暖式切变线物理量场呈垂直分布,高低空配置利于上升运动维持,暴雨的水汽输送不仅依赖于对流层中层的西南急流,还依赖于低空西南急流,雨强的增大和中高空急流风速辐合中心的建立有关.结构的不同表现在雷达回波上不同特点为冷式切变线强回波单体或短带位于切变线南侧,而暖式切变线强回波单体或短带基本位于切变线雨带的中间.  相似文献   

9.
梅雨期高层流场对低层急流及中尺度系统影响的数值试验   总被引:3,自引:1,他引:3  
翟国庆  高坤  孙淑清 《气象学报》1997,55(6):714-725
用中尺度模式对一次江淮流域暴雨过程进行了数值试验,并研究了对流层高层青藏高压东侧偏北大风的强弱与低层流场及中尺度系统发生及至降水过程的影响。试验不仅较成功地模拟了本次暴雨过程及相应的系统,而且揭示出较强的高空偏北大风将引起对低空急流的加强。而更为重要的是低层切变线的出现以及其上中尺度涡旋的发生。上下风场所构成的垂直反环流圈大大有利于对流的发展,特别是在切变线地区的上升支,带有明显的中尺度特征。  相似文献   

10.
利用MICAPS系统的各种传真资料和实况观测资料,对2003年7月25~27日发生在呼伦贝尔市岭东的强降雨天气过程的环流背景和物理量场进行分析。结果指出:由于副热带高压的北抬加强,西南边缘的偏南气流为降雨区提供了充沛的水汽和能量,加之地形的阻挡作用,有利于水汽在大兴安岭东侧积累;对流层低层切变线上的扰动为降水提供了触发机制,从而产生了较强的降水。  相似文献   

11.
生成于东部平原地区的江淮切变线和西部青藏高原地区的高原切变线,都处在东亚副热带相同纬度带上。为深化对地形高度迥异的江淮切变线和高原切变线的认识与理解,基于ERA-interim再分析资料和合成分析方法,从切变线与暴雨关系、切变线三维结构特征、切变线附近风场与环流特征以及切变线结构演变中的热力机制等方面对二者进行对比研究。结果表明:(1)江淮切变线分为暖切变线、冷切变线、准静止切变线和低涡切变线4类,高原切变线分为高原横切变线和高原竖切变线2类。江淮切变线与高原切变线均与暴雨关系密切,夏季,有近70%的江淮切变线会产生暴雨,暖切变线暴雨对江淮地区切变线暴雨的雨量贡献最大,低涡切变线暴雨的降水强度最大但发生频率较低;近60%的高原横切变线给高原主体地区带来暴雨,超过55%的竖切变线造成高原东侧及其邻近地区暴雨。(2)江淮切变线与高原切变线均为边界层系统,特征层次分别位于850 hPa和500 hPa。时空尺度上,江淮冷切变线和高原横切变线水平尺度分别可达1000 km和2000 km,垂直伸展厚度分别可达5 km和2 km,生命期分别可达48 h和96 h;江淮切变线和高原横切变线在垂直方向上均有从低到高向北倾斜的特征。(3)江淮冷切变线与高原横切变线风场与环流特征存在差异,江淮冷切变线北侧为东北风,南侧为西南风;高原横切变线东、西两段风场有所不同,其西段类似于江淮冷切变线,东段在不同发展阶段风场有明显变化。(4)江淮冷切变线与高原横切变线的动力结构和热力结构存在差异。动力结构上,二者均位于正涡度带内,正涡度中心强度都在强盛阶段达到最大。热力结构上,江淮冷切变线附近低空锋区特征明显,其西段位于暖湿区内,东段位于干冷区内;高原横切变线南侧具有明显的高温、高湿特征,切变线北侧存在锋区结构。(5)切变线附近的大气非绝热加热与高原横切变线和江淮冷切变线演变关系密切,垂直非均匀加热作用是高原横切变线和江淮冷切变线发展增强最为重要的因子。二者热力结构有差异,减弱机制不同,干冷空气的侵入会导致高原横切变线强度减弱甚至消亡,江淮冷切变线的强度减弱则与南方暖湿空气的向北侵入有关。   相似文献   

12.
为了研究20世纪80年代以来的江淮切变线及暴雨的气候态特征,从而为未来的江淮切变线暴雨的业务预报和科研提供参考,利用欧洲中心风场再分析资料和地面气象站基本气象要素日值数据集(V3.0)的降水资料,通过纬向风的经向切变、相对涡度和纬向0风速线3个客观判据,统计了1981—2013年6—7月江淮地区暴雨、切变线以及切变线暴雨。结果表明:1981—2013年6—7月,江淮地区有30.2 d出现暴雨,有33.2 d出现切变线,22.0d出现切变线暴雨,切变线暴雨日数占切变线日数的近2/3,占暴雨日数的近3/4;6—7月江淮地区出现切变线和暴雨的日数有不显著的年际增长趋势,增长率比江淮切变线暴雨大一个量级,而后者的日数在近33年基本维持不变。江淮地区的切变线日数、暴雨日数和切变线暴雨日数2000年前年际波动较大,2000年后年际波动较小。6—7月江淮地区的暴雨日数、切变线日数和切变线暴雨日数均存在一定的年代际变化特征,且三者的年代际变化特征较为一致,在1981—2007年,江淮地区降水量的年代际变化与暴雨日数、切变线日数和切变线暴雨日数的年代际变化较为一致。1995年前,6—7月江淮切变线暴雨日数存在2—3年的周期,1995年后没有显著的周期。在6月上中旬和7月中下旬,江淮切变线暴雨日数存在2—4 d的周期,在6月下旬到7月上旬,江淮切变线暴雨日数不存在明显周期,切变线暴雨日数在梅雨期内稳定维持,且江淮切变线暴雨最集中发生在6月下旬到7月上旬的梅雨期内,说明梅雨期降水以切变线引发的降水为主。  相似文献   

13.
为了研究20世纪80年代以来的江淮切变线及暴雨的气候态特征,从而为未来的江淮切变线暴雨的业务预报和科研提供参考,利用欧洲中心风场再分析资料和地面气象站基本气象要素日值数据集(V3.0)的降水资料,通过纬向风的经向切变、相对涡度和纬向0风速线3个客观判据,统计了1981—2013年6—7月江淮地区暴雨、切变线以及切变线暴雨。结果表明:1981—2013年6—7月,江淮地区有30.2 d出现暴雨,有33.2 d出现切变线,22.0 d出现切变线暴雨,切变线暴雨日数占切变线日数的近2/3,占暴雨日数的近3/4;6—7月江淮地区出现切变线和暴雨的日数有不显著的年际增长趋势,增长率比江淮切变线暴雨大一个量级,而后者的日数在近33年基本维持不变。江淮地区的切变线日数、暴雨日数和切变线暴雨日数2000年前年际波动较大,2000年后年际波动较小。6—7月江淮地区的暴雨日数、切变线日数和切变线暴雨日数均存在一定的年代际变化特征,且三者的年代际变化特征较为一致,在1981—2007年,江淮地区降水量的年代际变化与暴雨日数、切变线日数和切变线暴雨日数的年代际变化较为一致。1995年前,6—7月江淮切变线暴雨日数存在2—3年的周期,1995年后没有显著的周期。在6月上中旬和7月中下旬,江淮切变线暴雨日数存在2—4 d的周期,在6月下旬到7月上旬,江淮切变线暴雨日数不存在明显周期,切变线暴雨日数在梅雨期内稳定维持,且江淮切变线暴雨最集中发生在6月下旬到7月上旬的梅雨期内,说明梅雨期降水以切变线引发的降水为主。   相似文献   

14.
为了研究20世纪80年代以来的江淮切变线及暴雨的气候态特征,从而为未来的江淮切变线暴雨的业务预报和科研提供参考,利用欧洲中心风场再分析资料和地面气象站基本气象要素日值数据集(V3.0)的降水资料,通过纬向风的经向切变、相对涡度和纬向0风速线3个客观判据,统计了1981—2013年6—7月江淮地区暴雨、切变线以及切变线暴雨。结果表明:1981—2013年6—7月,江淮地区有30.2 d出现暴雨,有33.2 d出现切变线,22.0d出现切变线暴雨,切变线暴雨日数占切变线日数的近2/3,占暴雨日数的近3/4;6—7月江淮地区出现切变线和暴雨的日数有不显著的年际增长趋势,增长率比江淮切变线暴雨大一个量级,而后者的日数在近33年基本维持不变。江淮地区的切变线日数、暴雨日数和切变线暴雨日数2000年前年际波动较大,2000年后年际波动较小。6—7月江淮地区的暴雨日数、切变线日数和切变线暴雨日数均存在一定的年代际变化特征,且三者的年代际变化特征较为一致,在1981—2007年,江淮地区降水量的年代际变化与暴雨日数、切变线日数和切变线暴雨日数的年代际变化较为一致。1995年前,6—7月江淮切变线暴雨日数存在2—3年的周期,1995年后没有显著的周期。在6月上中旬和7月中下旬,江淮切变线暴雨日数存在2—4 d的周期,在6月下旬到7月上旬,江淮切变线暴雨日数不存在明显周期,切变线暴雨日数在梅雨期内稳定维持,且江淮切变线暴雨最集中发生在6月下旬到7月上旬的梅雨期内,说明梅雨期降水以切变线引发的降水为主。  相似文献   

15.
对我国梅雨次天气尺度系统的一些认识   总被引:7,自引:0,他引:7  
为说明本文研究问题的基本观点,首先简略讨论了梅雨次天气尺度扰动的一些基本的天气动力学特点。继而综合讨论一批梅雨期暴雨个例分析的结果。对于青藏高原东侧的西南低涡和夏季江淮切变线发生的机制——特别是高原的动力和热力影响在其中起着什么样的作用;暖性低涡东移和切变线向东延伸的机制;江淮切变线维持的机制;低涡转化为江淮气旋波的天气动力过程等问题,提出一些新的探索性的意见。  相似文献   

16.
利用实况资料,分析了2004年12月20日-22日出现在华北地区的大到暴雪天气的干侵入特征,得出:a)此次降雪主要受中层切变线影响,降雪带与切变线相对应,强降雪中心就出现在切变线交汇的东南到东侧.b)此次降雪过程中,干冷空气主要来自对流层高层,分3路持续入侵,与3条切变线密切对应,而中低层西南和南2支暖湿气流在对流层中层耦合加强,与于冷空气交汇,产生强降雪;强降雪落区位于相对湿度梯度最大处的湿区一侧且有强风辐合的区域.c)随着中层切变线的东移发展,湿不稳定增强并向下延伸,高位涡区向东输送并向下传播,从而触发不稳定能量释放,导致强降雪.d)对流层高层持续的干侵入,使得中低层切变线稳定维持,有利于其前方西南急流的稳定加强和对流性不稳定的持续发展,是导致强降雪持续、增幅的重要原因.  相似文献   

17.
利用NCEP/NCAR逐日6h分析资料和常规观测资料,分析了2011年2月25日一28日山西连续降雪天气过程(以下简称2.25降雪)。①2.25降雪过程经历了三个阶段:2月25日为回流降雪阶段,26日一27日为倒槽冷锋与回流降雪共同影响降雪阶段,28日为低空切变线影响降雪阶段。②2.25降雪过程涵盖了华北地区大到暴雪的三个类型:回流类降雪、倒槽冷锋类降雪、低空切变线类降雪。③通过温湿场分析得出,对于低空切变线类降雪,对流层中层的湿核对降雪的开始有一定的指示意义。降雪未开始之前对流层中层有湿核,随着时间的推移,湿核向低层扩展,整个对流层中低层变为高湿区,降雪开始。当对流层中层变为干区,并向低层扩展,降雪过程结束。对于回流类降雪,低层回流对回流降雪起到冷垫的作用。④通过涡度场分析得出,对流层低层的负绝对涡度中心对其东侧的降水有指示意义,如果其东侧对流层低层配合有正涡度核,降雪强度较大,维持时间较长。⑤地面层出现的负绝对涡度中心说明近地面层有小高压系统的存在,这是因为低层回流冷垫作用形成的孤立小高压体。⑥28日降雪维持机制是条件性对称不稳定。  相似文献   

18.
陈乾 《气象学报》1980,38(4):321-330
1976年8月2日,甘肃省中部地区发生了一次暴雨。在热带东风带中,当西移的倒槽和高原北部东移的低涡相结合时,就会使倒槽强烈发展并伸入内陆。倒槽东侧深厚的东南气流,造成该区深厚的位势不稳定,并使水汽输入到西北区东部,它与冷锋后部的西北气流相遇后,产生大范围水汽通量的辐合,这是本次暴雨的大尺度条件。 次天气尺度的低涡是产生这次暴雨的直接影响系统。当对流层上部的扰动与低层扰动上下叠置,形成一个深厚的次天气尺度低涡时,易产生对流性暴雨。 次天气尺度的低涡,是雨团迅猛加强的背景,南移的低层切变线起触发作用,而该地早先存在的一个暖湿的地方性中低压,则是合适的局地环境场。当低层切变线移入此中低压时,往往造成中尺度雨团的合併,出现急骤加强,形成暴雨。  相似文献   

19.
青藏高原切变线暴雪中尺度分析及其涡源研究   总被引:29,自引:11,他引:18  
利用天气图和T63资料分析1996年1月中旬青海牧区降雪过程,指出这场暴雪是由于北支冷空气和南支暖湿气流结合形成具有中-α尺度结构的高原切变线引发的暴雪过程,其主要触发信号是切变线高层正变涡。诊断表明,对高层正变涡起主要贡献的是平流项和扭转项,此两项正贡献都号背景场上青藏高原南北两支西风争流适当配置相互作用有关。  相似文献   

20.
一次广西暴雨过程的数值模拟及低涡系统分析   总被引:2,自引:1,他引:1  
应用WRF中尺度数值模式对2008年6月12日广西地区的一次大暴雨过程进行了模拟,利用模式输出资料,对引发这次大暴雨的西南低涡的演变情况及其物理场特征进行了分析。结果表明,低涡暴雨的发生具有明显的不均匀性,暴雨主要出现在低涡东侧暖区切变线附近;暴雨过程中充沛的水汽主要来源于孟加拉湾和中国南海,水汽的辐合不仅是涡旋区降水的必要条件,还是低涡发展加强的一个有利因素;强降水与强上升运动及正涡度区有很好的对应关系,低涡低层有强不稳定能量积聚也是造成此次大暴雨的重要原因之一。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号