首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
1999-2003年我国气溶胶光学厚度的变化特征   总被引:9,自引:2,他引:7  
利用我国70站1999-2003年1月、4月、7月、10月月平均水汽压和能见度资料,反演得到各站大气气溶胶光学厚度(AOD,aerosol optical depth),分析了气溶胶光学厚度的变化特征。结果表明:中国多年平均大气气溶胶光学厚度的分布是以四川盆地为中心向四周减少,长江中下游和广东沿海为两个次大值中心,而东北和西北大部分地区以及云南等地AOD较小;各季节AOD的空间分布都有所不同;近5aAOD有弱增加趋势;月平均气溶胶光学厚度与能见度有较好的负相关关系。  相似文献   

2.
20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析   总被引:29,自引:3,他引:29  
利用中国北京等 41个甲种日射站 1 979~ 1 990年太阳直接辐射日总量和日照时数等资料 ,配合同期 TOMS version - 7臭氧观测资料 ,反演了 41个站逐年、逐月 0 .75μm大气气溶胶的平均光学厚度值 (Aerosol Optical Depth,AOD) ,据此分析了 1 2 a来中国大气气溶胶的变化和时空平均分布特征。结果表明 :中国大气气溶胶光学厚度 AOD的多年平均分布是以四川盆地为中心向四周减少 ,南疆盆地和长江中游武汉附近为另两个大值中心 ;长江中下游大部分地区、山东半岛以及广东沿海等 ,AOD值亦较大 ;而东北大部、西北大部、云南和福建沿海等地 AOD较小。AOD各月平均分布有所不同。中国绝大部分地区春季 AOD值最大 ,最小值则各地不同。 1 979~ 1 990年 ,青藏高原、四川盆地西部、贵州北部、长江中下游大部分地区、山东半岛和南疆盆地西部等 ,AOD呈增长趋势。而东北地区、西北地区大部、云贵高原和广西西部以及华东沿海等地 AOD呈减小势态。中国地区 AOD的季节变化曲线大体可分为单峰、一峰一谷、两峰一谷和多峰等 4种类型  相似文献   

3.
中国地区大气气溶胶辐射强迫及区域气候效应的数值模拟   总被引:47,自引:5,他引:42  
利用太阳直接辐射日总量和日照时数等多年观测资料,反演了中国地区大气气溶胶0.75 μm光学厚度的年、月平均值,分析了我国大气气溶胶状况的时空分布特征。据此,在中国区域气候模式中考虑气溶胶的辐射影响,模拟中国地区气溶胶直接辐射强迫的大小及气候响应的季节变化特征。计算结果表明: 我国大气气溶胶光学厚度多年平均分布状况是以四川盆地为大值中心向四周减少;长江中下游武汉附近和南疆盆地为另两个大值中心;青藏高原为气溶胶低值区;我国绝大部分地区春季气溶胶光学厚度值最大,各地气溶胶光学厚度最小值出现的季节则有所不同。气溶胶辐射强迫介于-5.3~-13 W/m2之间;辐射强迫具有春、夏季大,秋、冬季小,冬季南方偏大,夏季北方偏大的特征。气溶胶辐射强迫的分布与其光学厚度的分布基本一致。由于气溶胶的影响,中国大陆地区地面气温均有所下降,四川盆地到长江中下游地区以及青藏高原北侧到河套地区降温最为明显,分别可达-0.4℃和-0.5℃。气候响应具有明显的季节特征。地面气温的变化除与辐射强迫的大小有关外,还受大气环流的影响。  相似文献   

4.
我国380nm波长气溶胶光学厚度分布特征和演变趋势   总被引:2,自引:2,他引:0       下载免费PDF全文
利用1980—2001年TOMS/ NASA逐月气溶胶光学厚度 (AOD) 资料, 通过EOF, Morlet小波分析、趋势分析和突变检验等方法, 研究了我国大气气溶胶380nm光学厚度的时空分布特征和变化趋势。结果表明:全国全年存在两个范围较大、持续时间较长的AOD高值区:南疆盆地和四川盆地; 绝大部分地区春季AOD值最大, 最小值出现的季节则有所不同; 季节差异随纬度增加而减小; AOD变化具有明显的季节性和年际振荡特征; 年平均AOD呈明显增加趋势, 20世纪80年代末90年代初增加趋势有所减弱。  相似文献   

5.
利用MODIS卫星遥感光学厚度产品,分析了四川盆地光学厚度分布和季节变化特征。由于受沙尘天气的影响,春季四川盆地具有最大的平均光学厚度。盆地内几个大值区中,西部成都一带的中心常年维持,季节变化小;南部中心位于宜宾到重庆沿长江流域一带;东部南充到重庆间的大值中心,季节变化大,在夏季消失。光学厚度分布和季节变化的数据结果为研究区域气候变化提供了依据。  相似文献   

6.
利用2010年9-11月鞍山大气成分监测站CE-318太阳光度计观测资料,依据气溶胶光学厚度测量原理,计算得到2010年鞍山秋季大气气溶胶光学厚度、波长指数等大气光学特性数据,通过统计分析,给出鞍山秋季气溶胶光学特性分布特征。结果表明:随着测量AOD波段的降低,AOD值逐渐增大,9月的AOD平均值最大,10月AOD平均值次之,11月AOD平均值最小。从频率分布看,2010年9月 AOD日均值集中分布在0.4-0.6之间,10月和11月AOD日均值集中分布在0.0-0.4之间,表明10-11月大气较为清洁|波长指数日均值的频率分布说明鞍山秋季大气污染物以细粒子为主。500 nm 的AOD值与波长指数成对数关系,两者在9、10月和11月的相关系数分别为0.5145、0.8412和0.2715;9月AOD与PM10、PM2.5、PM1.0质量浓度为较小负相关,10月和11月AOD与PM10、PM2.5、PM1.0质量浓度成正相关,且10、11月AOD与气溶胶细粒子相关性较为显著。AOD值与能见度在趋势上呈较小的负相关性,可能是由于高层气溶胶粒子对气溶胶光学厚度产生了主要影响。  相似文献   

7.
结合2006年最新的气溶胶排放源资料,以NCEP/NCAR再分析资料为气象场,驱动大气化学传输模式MATCH(Model of Atmospheric Transport and Chemistry),模拟了2006年中国地区硫酸盐、黑碳和沙尘气溶胶的质量浓度分布及其季节变化。模拟的气溶胶光学厚度(AOD)结果与CSHNET观测网数据比较分析后发现,基于21个观测站的61组月平均数据与相应模拟结果的相关系数为0.63。模拟结果表明:2006年中国地区硫酸盐气溶胶高值区主要分布在中国的四川盆地、华北及长江流域等工业较发达地区,而且具有明显的季节变化,四川盆地及长江以南地区,硫酸盐气溶胶1月份浓度高于7月份,长江以北的大部分地区,7月份浓度高于1月份;黑碳气溶胶主要分布在黄河、长江中下游地区及华南等地区,1月份浓度高于7月份;沙尘气溶胶主要分布在内蒙古中部沙漠地区,4月份浓度最高,7月份次之,其他月份较少。  相似文献   

8.
本文利用NASA发布的MODIS气溶胶光学厚度产品,对西南地区2001~2016年气溶胶光度厚度空间分布和时间演变特征进行了分析,研究发现:(1)西南地区年均气溶胶光学厚度空间分布特征整体表现为东部高于西部,海拔低的地区气溶胶光学厚度高于海拔高的地区。高值中心位于四川盆地南部,低值区位于川西高原和云南北部地区。(2)西南地区季节气溶胶光学厚度空间分布特征与年均相似。(3)就西南各地区而言,重庆气溶胶光学厚度最大,其次是四川盆地和贵州地区,再次是云南地区,川西高原地区气溶胶光学厚度最小。(4)2001~2016年,西南地区年均气溶胶光学厚度呈显著减少趋势。夏季和秋季气溶胶光学厚度年际变化浮动较大,也具有显著的减少趋势。   相似文献   

9.
利用中分辨率成像光谱仪(Moderate-resolution Imaging Spectroradiometer,MODIS)大气气溶胶光学厚度产品数据,采用三角剖分算法、最近邻点搜索、插值法和趋势分析法,分析新疆气溶胶光学厚度(Aerosol Optical Depth,AOD)时空变化。结果表明:(1)新疆AOD总体呈下降趋势且地域差异明显,南疆AOD明显高于北疆,高值区主要集中在塔里木盆地边缘和天山北坡经济带。(2)北疆AOD年际变化不明显。2014年最高,2005年最低,年均值在0.15~0.18。南疆则呈明显的年际变化。最高值出现在2006年,为0.42;最低值出现在2017年,为0.22。(3)新疆AOD呈明显季节变化特征。春季最大,秋季最小。(4)2003—2019年南疆环塔里木盆地北部、东南边缘和北疆沿天山北坡经济带AOD增量明显。  相似文献   

10.
采用太湖地区水面光谱数据以及MODIS遥感影像数据,利用辐射传输模式6S,选择自定义气溶胶类型,反演得到太湖地区气溶胶光学厚度(aerosol optical depth,AOD)分布,将其与太阳光度计CE318实测气溶胶光学厚度分别应用于太湖区域的大气校正中,得到不同的水面反射率,并参考实测水面反射率进行对比分析。结果表明:反演的太湖地区气溶胶光学厚度分布较为合理,造成此分布的原因可能是太湖北岸工业较发达,污染较严重。太湖颗粒物的吸收特性和卫星接收到的表观反射率导致反演数据的差异,是反演气溶胶光学厚度分布不均匀的主要原因。使用MODIS数据反演得到的太湖地区AOD进行大气校正,更加精确。该研究方法和结果可为气溶胶光学厚度反演、精确卫星数据大气校正提供参考。  相似文献   

11.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

12.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

13.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

14.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

15.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.SUBMISSIONAll submitted  相似文献   

16.
17.
<正>With the support of specialized funds for national science institutions,the Guangzhou Institute of Tropical and Marine Meteorology,China Meteorological Administration set up in October 2008 an experiment base for marine meteorology and a number of observation systems for the coastal boundary layer,air-sea flux,marine environmental elements,and basic meteorological elements at Bohe town,Maoming city,Guangdong province,in the northern part of the South China Sea.  相似文献   

18.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

20.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号