首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
基于中国气象局龙门云物理野外科学试验基地2DVD(Two-Dimensional Video Disdrometer)雨滴谱观测资料, 分析广东地区2017年5月4日(槽前型飑线)和2017年8月22日(东风型飑线)两次不同飑线系统不同降水类型的雨滴谱特征。根据雨强和雷达反射率随时间变化将降水分成对流降水和层云降水, 同时以20 mm/h为阈值将对流降水划分为对流前沿、对流中心和对流后沿。结果表明, 两次飑线系统在不同降水时期的微物理特征参数变化有所差异。槽前型飑线过程中, 对流降水的粒子分布较为分散, 中等粒径的粒子比重较高, 且对流区前半部分粒子尺寸大于“大陆性”对流特征, 后半部分粒子尺寸小于“海洋性”对流特征; 层云降水的粒子分布较为集中, 小粒径粒子居多。而东风型飑线整个降水时期基本上是由高浓度中小粒径粒子组成, 降水粒子粒径分布较为集中, 对流降水粒子介于“海洋性”和“大陆性”对流区之间。   相似文献   

2.
利用降水现象仪、双偏振雷达、常规气象观测资料和再分析数据,分析了郑州“7·20”极端强降水过程的微物理特征。此次过程受多尺度天气系统的共同影响,为复杂多变的降水微物理特征提供了有利的环境条件。结果表明,此次过程地面雨滴谱分布随时间存在明显变化,雨滴谱参数分布较广,覆盖了从大陆性对流降水至海洋性对流降水的分布区域。20日16—17时最强降水时段,小粒子数密度显著高于东亚地区普通对流性降水的统计结果和华南地区夏季平均值,且存在大量大粒子,保证了极高的降水效率。双偏振雷达参量的垂直结构反演结果显示,对流系统质心低,具有典型的暖云特征;0 ℃层以上冰相过程相对活跃,0 ℃层以下强烈的暖雨过程,大量的冰相粒子落下并融化和低层高效率的雨滴碰并增长过程,导致各尺度高浓度雨滴的生成,最终形成地面的极端强降水。  相似文献   

3.
利用2015—2017年夏季南京地区的雨滴谱数据,对南京在梅雨开始前、梅雨期及梅雨结束后3个不同时段降水的宏微观特征进行分析发现:梅雨开始前对流活动强度偏弱,但对流降水的雨滴平均质量加权直径、分钟级强降水频率和逐小时累积短时强降水的频率为3个时段中最高;天气尺度强迫提供的有利于降水的持续性条件、弱对流强度下充分的凝结过程及微物理相关过程对云粒子的损耗偏弱,是有利于该时段大雨滴形成和降水效率提高的重要因素。梅雨结束后,高温高湿环境易产生剧烈对流活动,导致对流降水的大尺度雨滴样本比例及分钟级极端降水发生频率位于3个时段的首位。层云降水时,梅雨期降水频率、降水率及雨滴尺度平均值均位于首位,小尺度雨滴样本比例最低;有利天气尺度强迫条件下的充分碰并作用是主要原因之一。不同时段雨滴谱谱形参数(μ)与斜率(Λ)之间的二项式关系式的差异与μ的取值有关。  相似文献   

4.
“达维”(2005)台风经过海南岛过程非对称降水的成因分析   总被引:3,自引:1,他引:2  
2005年9月25日08时—27日08时,强台风“达维”从海南岛中部陆地经过的48小时期间,给海南岛带来一次强降水,表现出海南岛南侧降水大于北侧的非对称特征。利用热带测雨雷达资料(TRMM)对这次非对称降水的中尺度特征进行分析,并从次天气尺度系统扰动、垂直风切变、地形作用等方面对其成因进行探讨。结果表明:⑴ 次天气尺度扰动系统为中尺度雨团、中尺度雨带的形成提供了有利的动力条件;⑵ 垂直风切变下风方向左侧有利于对流发展的区域始终位于海南岛南部,导致降水出现非对称特征;⑶ 海南岛山脉地形通过刺激小对流单体的形成与合并发展,从而促进中尺度降水系统形成,最终致使海南岛南部暴雨增幅。   相似文献   

5.
为了研究副热带高压(副高)背景下极端短时强降水系统的动力和云物理结构特征,利用厦门X波段双偏振相控阵雷达观测数据,采用多普勒雷达风场反演技术并结合高精度的地形数据,对2021年8月11日发生在厦门地区的一次极端短时强降水事件进行了分析。研究表明:(1)这次过程发生在副高控制之下,具有弱天气尺度强迫特征。地面辐合线促进了线状对流系统的形成,其后向传播过程导致了局地极端强降水的发生。(2)对流系统的中层存在大粒子累积区,大粒子的下泻导致雨强增大。倾斜上升(下沉)气流的配置使得大粒子的下泻不会影响上升气流,有利于对流系统的发展与维持。下沉气流与偏南气流相遇触发了上游对流系统的发展,形成后向传播。(3)在弱天气尺度系统背景下,局地地形对于降水系统的影响得以凸显。地形造成的低层辐合使得差分反射率因子(ZDR)、差分传播相移率(KDP)等双偏振参数在迎风坡处明显增大,且大值区在此处维持。更大、更浓密的降水粒子形成了极高的降雨效率。(4)暖雨过程和冰相过程在这次极端降水事件中并存,前者对雨水的形成起主导作用,冰相粒子的融化加速了这一进程。(5)强降水时雨滴的破碎和碰并趋于平衡,雨强的增大取决于雨滴浓度的升高。因此,KDP可作为判断雨强是否增大的指标。(6) ZDR柱与KDP柱的演变对于地面雨强的变化具有预示性,特别是在持续降水过程中,ZDR(KDP)柱的再度发展预示着降水系统的再次增强。   相似文献   

6.
利用实时资料、自动站加密资料、FY-2C卫星、宝鸡多普勒雷达等资料,对发生于关中西部宝鸡2012-08-13大暴雨天气成因进行分析,重点揭示其中尺度系统特征。结果表明生命史10 h的中尺度对流系统(MCS)是大暴雨的直接原因。而MCS是天气尺度和中尺度系统共同影响造成的:天气尺度东北急流提供大尺度辐合上升运动动力、水汽输送、辐合,从而使关中水汽、稳定度演变为利于对流性降水天气发生,且携带冷空气触发形成MCS,地面中尺度切变线提供带状辐合使对流组织加强。雷达图上,带状、块状强回波对应强降水,当组合反射率因子40 dBz、垂直液态含水量5 kg.m-2、回波顶高9 km时,雨强≥16 mm/h(出现短时暴雨)。  相似文献   

7.
2014年7月14日高原低涡降水过程观测分析   总被引:3,自引:0,他引:3       下载免费PDF全文
赵平  袁溢 《应用气象学报》2017,28(5):532-543
利用第三次青藏高原大气科学试验的多种雷达、雨滴谱仪以及MODIS卫星观测资料、常规气象站地面和高空观测资料,针对2014年7月14日发生在青藏高原中部那曲地区的一次降水过程,研究了降水的时空变化特征,触发不同阶段降水的天气尺度和中尺度环流系统以及相关的云降水物理特征。从降水演变特征看,这次降水过程包括3个阶段,即发生在下午的强降水阶段和夜间的两个弱降水阶段。从影响系统看,下午的降水主要由天气尺度的高原低涡发展引起,此时那曲位于低涡中心前部的中尺度辐合线上;发生在晚上的降水主要与高原低涡前部的暖湿东南气流爬越地形有关,东南气流为产生降水提供了有利的水汽、大气不稳定和浅薄的动力抬升条件。从云降水微物理特征看,高原低涡降水初期,低涡前部的上升运动深厚,对流发展明显,而后期的对流性减弱。东南气流爬坡引起的地形降水表现出层状云降水的特征,高原低涡降水的雨滴谱分布较宽(0.3~4.9 mm),而夜间降水过程的雨滴谱分布较窄(0.3~2.1 mm)。  相似文献   

8.
利用多源观测资料和WRF中尺度数值模式对2016年8月7日淮北地区一次中尺度对流系统(Mesoscale Convective Systerm,MCS)过程进行诊断分析和模拟。结果表明,本次MCS过程发生在弱天气尺度强迫背景场下,系统性上升运动较弱,对流层低层存在较弱的源自西北太平洋的偏东风转东南风的水汽输送作用;MCS移动和形态变化与地面辐合线演变特征较为一致,地面流场的演变与降水强度之间有着密切的联系;WRF模式较好地模拟出本次降水的分布特征以及MCS演变过程中对流活动和地面辐合线相互作用的特征。模拟结果表明,本次过程中MCS在逐渐南移过程中完成了对流单体的更替,地面辐合线在此过程中发挥重要作用,并且处于不同发展阶段的对流单体环境场的对流不稳定度的垂直分布存在明显差异。  相似文献   

9.
2017年6月22日广东西部经历了一次罕见的极端降水事件(24 h最大累积雨量562.5 mm),刷新了多项当地的历史雨量纪录。本文利用区域自动站、多普勒雷达和风廓线仪等观测资料,分析了这次极端暖区降水的维持机制,并通过二维雨滴谱仪、FY-3B微波湿度计研究了其微物理特征。结果表明:6月21日夜间一条地面中尺度辐合线触发对流单体,导致准静止长生命史MCS(Mesoscale Convective System)的产生和维持。这条辐合线位于天露山附近,处于由降水物蒸发冷却导致的较冷空气堆(较低相当位温)与来自海洋的较暖空气堆(较高相当位温)之间,中尺度辐合线两侧温差约2~3°C,环境大气的特征为对流抑制能量弱,抬升凝结高度低。本次降水事件中,对流云云顶高度较高,降水极值中心位于两个亮温极值中心之间过渡区以西的亮温梯度大值区,可降水量较高。降水雨滴谱在高湿环境中表现为暖性降水特征,最强降水时间段内,小雨滴数浓度超过105 mm?1 m?3,远高于华南地区夏季平均值(约104 mm?1 m?3),且同时存在部分大粒子,从而导致了更高的降水效率和局地强降水。MCS 产生的偏北风冷出流与西南暖湿气流相遇并产生强辐合,持续触发新的对流单体,使得MCS维持准静止,不断地产生降水。  相似文献   

10.
武威  顾佳佳 《气象科学》2021,41(1):108-118
利用常规观测资料、ECMWF ERA-Interim 0.125°×0.125°分析资料、FY-2G卫星云图和多普勒天气雷达资料等,对2017年8月18-19日漯河极端降水的中尺度特征及降水成因进行分析。结果表明:(1)本次过程在200 hPa高空分流区、500 hPa高空槽以及副热带高压、低层急流切变、地面低压倒槽等天气尺度系统合理配置及其相互作用下发生。(2)探空显示漯河上空具有较高的对流潜势,有利于中尺度雨团初生和发展。低层饱和、厚暖云层、弱风切变有利于暴雨云团产生,高CAPE值、高比湿和高降水效率是极端雨团的重要原因。(3)中尺度对流云团一个随槽前西南气流东移北上,一个随低层切变线南压,相向合并发展为MβCS,有利于暴雨云团增强。不同于以往本地区的云团"同向合并",持续的列车效应以及低质心高效率的中尺度对流单体后向传播导致强回波长时间维持,极端降水发展。(4)地面中尺度辐合线和强辐合中心对强降水起到动力触发作用,有利于对流发展。冷池出流与交汇北上的东南风和偏东风相互作用,导致水平温度梯度增大形成和冷池前侧锋生加强,一方面致使雨团组织化发展和单体后向传播,另一方面也在降水区下游触发新生雨团,冷池持续增强。(5)本次过程整层风场较弱,且低层气流传播速度大于引导气流速度,平移与传播方向的反向夹角大,导致两者矢量和大幅度偏离了引导气流方向,同时产生的减速效应导致暴雨中尺度系统移动缓慢,导致极端降水形成。  相似文献   

11.
对近50年来肇州降水的集中度和集中期进行了计算分析,结果表明:近50年来,降水的集中程度有下降的趋势,集中期有提前的趋势。集中度和集中期分别存在着11a和14a左右的年代际尺度周期变化。肇州的年降水量呈下降趋势,肇州降水集中度和集中期与年降水量有很好的正相关性,年降水总量比较大的年份,降水集中程度相对较高。  相似文献   

12.
北京降水特征及北京市观象台降水资料代表性   总被引:2,自引:0,他引:2       下载免费PDF全文
将北京分为城区、郊区、南部山区及北部山区4个区域,利用14个观测站1978—2010年共33年的月降水量资料,分析了不同区域降水年变化和夏季降水特征及其差异。结果表明:各区域年平均降水量存在较大差异,郊区降水量最多 (620 mm),城区与南部山区降水量较少,而北部山区降水量最少 (476 mm);城区与南部山区的年降水量较接近,二者与郊区和北部山区都有显著差异。4个区域的降水量都表现出减少趋势,郊区最明显 (47 mm/10 a),北部山区的减少趋势最小 (0.7 mm/10 a)。对4个区域夏季 (6—9月) 降水量分析发现,城区与南部山区具有较好的一致性,二者与郊区和北部山区具有显著差异。均方根偏差和相关系数的计算结果表明:北京市观象台与城区和南部山区的降水年变化和夏季降水特征差异均不显著,而与郊区和北部山区有显著差异,说明北京市观象台降水资料对城区和南部山区具有最优代表性,而对北部山区和郊区的代表性较差。  相似文献   

13.
中国夏季模式降水方案的应用分析研究   总被引:1,自引:0,他引:1  
通过对我国夏季一次连续降水过程的模拟分析。研究了不同云降水方案在中国区域的应用特征。结果指出,使用不同的积云对流参数化方案。模拟产生的积云降水是有差异的。并且由于积云对流参数化方案的不同,也会引起网格尺度降水产生差异。  相似文献   

14.
锡林郭勒盟近50a降水变化及早涝年分析   总被引:1,自引:0,他引:1  
利用1961—2010年锡林郭勒盟15个气象站的年及夏季(6—8月)逐月降水量资料,分析了锡林郭勒盟降水的时空变化特征和夏季旱涝年。结果表明:锡林郭勒盟降水量总体上呈南多北少,东多西少的分布特征;近50a降水量没有明显的增减变化趋势,但年际波动特征明显,近10a降水量显著减少。用区域夏季降水指数确定出1998年为涝年,而1980、2001、2005和2010年为夏季旱年。  相似文献   

15.
赤道东太平洋海温与中国温度、降水的关系   总被引:16,自引:3,他引:13  
董婕  刘丽敏 《气象》2000,26(2):25-28
根据1951~1998年北太平洋海温和中国温度、降水资料,统计分析了春、夏、秋、冬四季赤道东太平洋海温、厄尔尼诺及拉尼娜事件和中国温度、降水的关系,结果表明:赤道东太平洋海温、厄尔尼诺和拉尼娜事件与中国温度、降水有一定关系,其中与温度冬季关系较好,与降水秋季关系最好。  相似文献   

16.
1960—2008年淮河流域极端降水演变特征   总被引:1,自引:1,他引:0  
采用地理空间统计、时间序列分析和趋势诊断等方法,研究1960—2008年淮河流域极端降水时空演变特征:流域大部分地区全年及四季的极端强降水量、降水强度、强降雨日数无明显变化趋势;≥15 d的持续无降水事件发生次数由南向北递增,平均每年2~5次,冬季最多、夏季最少;≥5 d的持续降水事件由东北向西南递增,平均每年1~8次,潢川—正阳—郑州一线的西北部秋季最多,其他地区夏季最多;40%的站点持续无降水事件有明显增多趋势,气候倾向率为0.22~0.60次/a,且大多在1970s发生气候突变;30%的站点持续降水事件有明显减少趋势,气候倾向率为-0.24~-0.70次/a,普遍无气候突变;持续无降水(降水)事件与年降水总量没有明显的联系。  相似文献   

17.
Through simulation of summer and winter precipitation cases in China, the cloud precipitation schemes of model were examined. Results indicate that it is discrepant between convective precipitation simulated by the Kain-Fritsch (KF) scheme and Betts-Miller (BM) scheme in summer, the former scheme is better than the latter in this case. The ambient atmosphere may be varied by different convective schemes. The air is wetter and the updraft is stronger in the KF scheme than in the BM scheme, which can induce the more grid scale precipitation in the KF scheme, i.e., the different cumulus schemes may have the different and important effect on the grid scale precipitation. However, there is almost no convective rain in winter in northern China, so the effect of cumulus precipitation on the grid scale precipitation can be disregarded. Therefore, the gird scale precipitation is primary in the winter of northern China.  相似文献   

18.
根据郑州站1964—2008年月平均探空资料及地面降水资料,分析了近45a郑州夏季大气可降水量和地面降水量的演变特征,并在此基础上讨论了与该站夏季降水转化率的关系。结果表明:(1)郑州站夏季可降水量和降水量存在明显的年际变化,可降水量存在准2a的振荡,而降水量主要表现出准4~6a的振荡周期;(2)在长期线性趋势上,可降水量呈微弱的下降趋势,而降水量呈线性上升趋势,两者都在1990年代末发生突变;(3)郑州站夏季降水转化率与降水量存在相同的年际振荡周期和线性增加趋势,其降水转化率在21世纪初发生突变。  相似文献   

19.
利用北京地区1977-2013年18个站点逐小时降水资料,将小时降水分为弱降水(第50百分位值以下)、中等强度降水(第50至90百分位值)以及强降水(第90百分位值以上)3个等级,对北京地区山区、郊区以及城区夏季不同强度等级降水变化特征进行了深入细致的分析。结果表明,北京地区夏季降水量存在显著的减少趋势,这种减少趋势主要是由于弱降水和中等强度降水的显著减少引起的,强降水没有表现出明显的增多或减少趋势;与郊区相比,2004年之后城区的强降水对夏季总降水量的贡献越来越大而弱降水的贡献减小。在降水日变化上,不同地区、不同等级的降水存在差异。弱降水存在清晨和夜间双峰值特征,中等强度和强降水只存在夜间单峰值特征。清晨峰值时刻,山区、郊区和城区弱降水都表现出一致的显著减少趋势;夜间峰值时刻,山区的各等级降水变化不显著,而在2004年之后,城区弱降水少于郊区,强降水则多于郊区。北京地区降水过程不对称性特征(降水过程峰值前后差异性)十分明显,其中以强降水的不对称性最强,相对于郊区和山区来说,城区强降水过程的不对称性有增大的趋势。  相似文献   

20.
使用41站日降水资料和NCEP/NCAR再分析月平均资料,研究了长江中下游地区春季降水的时空特征。结果表明,过去50多年来,长江中下游地区春季的雨日、雨量呈整体下降趋势,降水强度呈东减西增的趋势;该区春季连续性降水通常以2 d降水居多,江北地区以连续性中小降水为主,而江南地区则是独立性的强降水居多。春季长江中下游地区在近50 a里呈现出干旱化趋势,其和对流层中高层气温下降关系密切,由于气温相对下降,我国东部上空高层产生气旋性环流异常,不利于降水的发生。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号