首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In this work, the authors investigate changes in the interannual relationship between the East Asian summer monsoon (EASM) and the tropical Indian Ocean (IO) in the late 1970s. By contrasting the correlations of the EASM index (EASMI) with the summer IO sea surface temperature anomaly (SSTA) between 1953–1975 and 1978–2000, a pronounced different correlation pattern is found in the tropical IO. The SSTA pattern similar to the positive Indian Ocean Dipole (IOD) shows a strongly positive correlation with the EASMI in 1953–1975. But in 1978–2000, significant negative correlation appears in the northern IO and the IOD-like correlation pattern disappears. It is indicated that the summer strong IOD events in 1953–1975 can cause a weaker-than-normal western North Pacific (WNP) subtropical high, which tends to favor a strong EASM. In 1978–2000, the connection between the summer IOD and the WNP circulation is disrupted by the climate shift. Instead, the northern IO shows a close connection with the WNP circulation in 1978–2000. The warming over the northern IO is associated with the significant enhanced 500 hPa geopotential height and an anomalous anticyclone over the WNP. The change in the IO–EASM relationship is attributed to the interdecadal change of the background state of the ocean–atmosphere system and the interaction between the ENSO and IO. In recent decades, the tropical IO and tropical Pacific have a warmer mean SST, which has likely strengthened (weakened) the influence of the northern IO (IOD) on the EASM. In addition, due to the increase in the ENSO variability along with the higher mean equatorial eastern Pacific SST in 1978–2000, the influence of ENSO on the East Asian summer circulation experiences a significant strengthening after the late 1970s. Because the warming over the northern IO is associated with the significant warming in the equatorial eastern Pacific, the strengthened ENSO–EASM relationship has likely also contributed to the strengthened relationship between the northern IO and the EASM in 1978–2000.  相似文献   

2.
An observational study covering the period 1950–2002 examines a seasonal reversal in the ENSO rainfall signal in the north-central Philippines. In boreal Summer of El Niño (La Niña) events, above (below) average rainfall typically occurs in this area. Rainfall anomalies of opposite sign develop across the country in the subsequent fall. This study investigates the seasonal evolution of the anomalous atmospheric circulation over the western North Pacific (WNP) during both El Niño and La Niña and places these features in the context of the large-scale evolution of ENSO events, including an analysis of changes in tropical cyclone activity affecting the Philippines. The results show that during boreal summer of El Niño (La Niña) events, a relatively narrow, zonally elongated band of enhanced (reduced) low-level westerlies develops across the WNP which serves to increase (decrease) the summer monsoon flow and moisture flux over the north-central Philippines and is associated with an increase (decrease) in the strength of the WNP monsoon trough via the anomalous relative vorticity. Tropical cyclone activity is shown to be enhanced (reduced) in the study region during boreal summer of El Niño (La Niña) events, which is related to the increase (decrease) of mid-level atmospheric moisture, as diagnosed using a genesis potential index. The subsequent evolution shows development of an anomalous anticyclone (cyclone) over the WNP in El Niño (La Niña) and the well-known tendency for below (above) average rainfall in the fall. Prolonged ENSO events also exhibit seasonal rainfall sign reversals in the Philippines with a similar evolution in atmospheric circulation.  相似文献   

3.
Xinyu LI  Riyu LU 《大气科学进展》2021,38(11):1823-1834
It is well known that on the interannual timescale, the westward extension of the western North Pacific subtropical high(WNPSH) results in enhanced rainfall over the Yangtze River basin(YRB) in summer, and vice versa. This study identifies that this correspondence experiences a decadal change in the late 1970 s. That is, the WNPSH significantly affects YRB precipitation(YRBP) after the late 1970 s(P2) but not before the late 1970 s(P1). It is found that enhanced interannual variability of the WNPSH favors its effect on YRB rainfall in P2. On the other hand, after removing the strong WNPSH cases in P2 and making the WNPSH variability equivalent to that in P1, the WNPSH can still significantly affect YRB rainfall, suggesting that the WNPSH variability is not the only factor that affects the WNPSH–YRBP relationship. Further results indicate that the change in basic state of thermal conditions in the tropical WNP provides a favorable background for the enhanced WNPSH–YRBP relationship. In P2, the lower-tropospheric atmosphere in the tropical WNP gets warmer and wetter, and thus the meridional gradient of climatological equivalent potential temperature over the YRB is enhanced. As a result, the WNPSH-related circulation anomalies can more effectively induce YRB rainfall anomalies through affecting the meridional gradient of equivalent potential temperature over the YRB.  相似文献   

4.
自20世纪70年代末期以来,西北太平洋的热带气旋在全球变暖的背景下主要发生了两种宏观的气候变化:一个是热带气旋生成频数呈现年代际减少,尤其是在东南部海域;另一个则是其生成与活动位置等总体特征有向西北偏移的趋势。本文对这两个方面的研究进展进行了概述。近些年的研究表明,垂直风切变的增强可能是夏秋季热带气旋频数减少的最主要原因,这与太平洋-印度洋海面温度变化导致的大尺度环境变化有密切联系。同样有研究认为北大西洋海面温度的多年代际振荡对近期西北太平洋热带气旋生成频数的减少也非常重要。但西北太平洋西部强热带气旋的频数呈现出增加的趋势,这可能与东亚近海海面温度的显著升高有关,尽管这种变化是否可信仍有争议。近20年来,西北太平洋热带气旋活动普遍出现西北移倾向,包括生成位置和路径位置,这种变化可能受到了ENSO变异及20世纪90年代末期太平洋气候突变的调控。同时,热带环流的极向扩张又导致了热带气旋的有利环境向北扩张,因此西北太平洋热带气旋活动也出现极向迁移的趋势。  相似文献   

5.
利用中国气象局热带气旋(TC)资料、NCEP/NCAR 再分析资料和美国 NOAA 向外长波辐射(OLR)等资料,分析了2010年西北太平洋(WNP)及南海(SCS)热带气旋活动异常的可能成因,讨论了同期大气环流配置和海温外强迫对TC生成和登陆的动力和热力条件的影响。结果表明,2010年生成TC频数明显偏少,生成源地显著偏西,而登陆TC频数与常年持平。导致7~10月TC频数明显偏少的大尺度环境场特征为:副热带高压较常年异常偏强、西伸脊点偏西,季风槽位置异常偏西,弱垂直风切变带位置也较常年偏西且范围偏小,南亚高压异常偏强,贝加尔湖附近对流层低高层均为反气旋距平环流,这些关键环流因子的特征和配置都不利于 TC 在WNP的东部生成。影响TC活动的外强迫场特征为:2010年热带太平洋经历了El Ni?o事件于春末夏初消亡、La Ni?a事件于7月形成的转换;7~10月,WNP海表温度维持正距平,140°E以东为负距平且对流活动受到抑制;暖池次表层海温异常偏暖,对应上空850 hPa为东风距平,有利于季风槽偏西和TC在WNP的西北侧海域生成。WNP海表温度和暖池次表层海温的特征是2010年TC生成频数偏少、生成源地异常偏西的重要外强迫信号。有利于7~10月热带气旋西行和登陆的500 hPa风场特征为:北太平洋为反气旋环流距平,其南侧为东风异常,该东风异常南缘可到25°N,并向西扩展至中国大陆地区;南海和西北太平洋地区15°N以南的低纬也为东风异常;在这样的风场分布型下,TC容易受偏东气流引导西行并登陆我国沿海地区。这是2010年生成TC偏少但登陆TC并不少的重要环流条件。  相似文献   

6.
During the developing phase of central Pacific El Nio(CPEN), more frequent TC genesis over the northwest quadrant of the western North Pacific(WNP) is attributed to the horizontal shift of environmental vorticity field.Such a northwestward shift resembles the La Nia composite, even though factors that cause the shift differ(in the La Nia case the relative humidity effect is crucial). Greater reduction of TC frequency over WNP happened during the decaying phase of eastern Pacific El Nio(EPEN) than CPEN, due to the difference of the anomalous Philippine Sea anticyclone strength. The TC genesis exhibits an upward(downward) trend over the northern(southern) part of the WNP,which is linked to SST and associated circulation changes through local and remote effects.  相似文献   

7.
The significant differences of atmospheric circulation between flooding in the Huaihe and Yangtze River valleys during early mei-yu(i.e.,the East Asian rainy season in June) and the related tropical convection were investigated.During the both flooding cases,although the geopotential height anomalies always exhibit equivalent barotropic structures in middle to high latitudes at middle and upper troposphere,the phase of the Rossby wave train is different over Eurasian continent.During flooding in the Huaihe River valley,only one single blocking anticyclone is located over Baikal Lake.In contrast,during flooding in the Yangtze River valley,there are two blocking anticyclones.One is over the Ural Mountains and the other is over Northeast Asia.In the lower troposphere a positive geopotential height anomaly is located at the western ridge of subtropical anticyclone over Western Pacific(SAWP) in both flooding cases,but the location of the height anomaly is much farther north and west during the Huaihe River mei-yu flooding.Furthermore,abnormal rainfall in the Huaihe River valley and the regions north of it in China is closely linked with the latent heating anomaly over the Arabian Sea and Indian peninsula.However,the rainfall in the Yangtze River valley and the regions to its south in China is strongly related to the convection over the western tropical Pacific.Numerical experiments demonstrated that the enhanced latent heating over the Arabian Sea and Indian peninsula causes water vapor convergence in the region south of Tibetan Plateau and in the Huaihe River valley extending to Japan Sea with enhanced precipitation;and vapor divergence over the Yangtze River valley and the regions to its south with deficient precipitation.While the weakened convection in the tropical West Pacific results in moisture converging over the Yangtze River and the region to its south,along with abundant rainfall.  相似文献   

8.
基于1979-2016年ERA-Interim再分析资料和CAM5.3模式,研究了2016年和1998年北大西洋海温异常对中国夏季降水以及大尺度环流的可能影响及其机制。结果表明,这两年前夏(6-7月)长江中下游及其以南地区降水均异常偏多,但1998年降水异常较2016年更为显著。后夏(8月),2016年长江以南地区降水异常偏多,长江-黄河流域降水异常偏少,而1998年降水异常分布与之相反。2016年和1998年夏季中国东部降水异常的差异与西北太平洋对流层低层异常反气旋以及欧亚中高纬度环流变化的共同作用直接相关。敏感性数值试验的结果表明,北大西洋海温异常的显著差异是导致2016年和1998年夏季中国东部降水以及大尺度环流异常存在明显差异的重要原因之一。一方面,北大西洋海温异常可以通过改变欧亚中高纬度环流进而对中国夏季降水产生影响。1998年北大西洋海温异常自热带至副极地呈类似"+ - +"型分布,这种海温异常型能够在前夏欧亚中高纬度地区激发出双阻型的环流异常响应。2016年北大西洋海温异常自热带至副极地呈相对弱的"- + -"型分布,欧亚中高纬度环流异常响应总体偏弱。另一方面,北大西洋海温异常还可以通过影响热带纬向环流进而对西北太平洋对流层低层异常反气旋起调制作用。1998年北大西洋海温异常对夏季西北太平洋异常反气旋起增强作用,这与热带印度洋-太平洋海温的强迫作用相协调。然而,2016年北大西洋海温异常则有利于西北太平洋异常反气旋的减弱,这与热带印度洋-太平洋海温的强迫作用相反。因此,在这3个大洋的协同作用下,2016年和1998年前夏西北太平洋异常反气旋均偏强,但前者的振幅弱于后者。在后夏,1998年西北太平洋对流层低层仍受异常反气旋控制,2016年则为异常气旋控制。   相似文献   

9.
2008年广东“史上最强龙舟水”的气候成因   总被引:8,自引:6,他引:2  
分析了2008年广东“史上最强龙舟水”的气候成因。结果表明:(1)从2007年8月持续到2008年5月的拉尼娜事件,是强降水的主要气候诱因,在其影响下,西太平洋暖池一带热带对流活跃,有利于不稳定能量向北输送;西太平洋副热带高压偏弱、偏东,雨带滞留华南;南海季风爆发偏早、偏强,为强降水提供了丰沛的水汽条件。(2)去冬今春南极海冰面积偏大和青藏高原南部积雪偏少,有利于增强夏季风环流。  相似文献   

10.
It is well known that suppressed convection in the tropical western North Pacific(WNP) induces an anticyclonic anomaly,and this anticyclonic anomaly results in more rainfall along the East Asian rain band through more water vapor transport during summer, as well as early and middle summer. However, the present results indicate that during late summer(from mid-August to the beginning of September), the anomalous anticyclone leads to more rainfall over central southern China(CSC), a region quite different from preceding periods. The uniqueness of late summer is found to be related to the dramatic change in climatological monsoon flows: southerlies over southern China during early and middle summer but easterlies during late summer. Therefore, the anomalous anticyclone, which shows a southerly anomaly over southern China, enhances monsoonal southerlies and induces more rainfall along the rain band during early and middle summer. During late summer,however, the anomalous anticyclone reflects a complicated change in monsoon flows: it changes the path, rather than the intensity, of monsoon flows. Specifically, during late summers of suppressed convection in the tropical WNP, southerlies dominate from the South China Sea to southern China, and during late summers of enhanced convection, northeasterlies dominate from the East China Sea to southern China, causing more and less rainfall in CSC, respectively.  相似文献   

11.
热带太平洋SSWA特征及其在ENSO循环中的演变   总被引:1,自引:0,他引:1  
张丰启  何金海 《气象科学》1998,18(3):222-230
应用1970年1月至1989年12月热带太平洋SSTA(海面温度距乎)和SSWA(海面风距平)资料,分析发现:热带太平洋SSWA的主要空间特征和海气耦合主要空间型均表现为ElNino(LaNina)盛期的SSWA分布。热带太平洋SS-WA的主要传播特征与ENSO循环过程中SSWA的演变是一致的,表现为赤道中东太平洋海面阻平东、西风的转换和赤道东太平洋SSWA辐散、辐合的转换。赤道中东太平洋距平东风(西风)向赤道距平西风(东风)的转换伴随着中西太平洋副热带SSWA偶极子气旋(反气旋)的生消,偶极子气旋(及气旋)表现为明显的北半球强于南半球。  相似文献   

12.
The record-breaking mei-yu in the Yangtze-Huaihe River valley (YHRV) in 2020 was characterized by an early onset, a delayed retreat, a long duration, a wide meridional rainbelt, abundant precipitation, and frequent heavy rainstorm processes. It is noted that the East Asian monsoon circulation system presented a significant quasi-biweekly oscillation (QBWO) during the mei-yu season of 2020 that was associated with the onset and retreat of mei-yu, a northward shift and stagnation of the rainbelt, and the occurrence and persistence of heavy rainstorm processes. Correspondingly, during the mei-yu season, the monsoon circulation subsystems, including the western Pacific subtropical high (WPSH), the upper-level East Asian westerly jet, and the low-level southwesterly jet, experienced periodic oscillations linked with the QBWO. Most notably, the repeated establishment of a large southerly center, with relatively stable latitude, led to moisture convergence and ascent which was observed to develop repeatedly. This was accompanied by a long-term duration of the mei-yu rainfall in the YHRV and frequent occurrences of rainstorm processes. Moreover, two blocking highs were present in the middle to high latitudes over Eurasia, and a trough along the East Asian coast was also active, which allowed cold air intrusions to move southward through the northwestern and/or northeastern paths. The cold air frequently merged with the warm and moist air from the low latitudes resulting in low-level convergence over the YHRV. The persistent warming in the tropical Indian Ocean is found to be an important external contributor to an EAP/PJ-like teleconnection pattern over East Asia along with an intensified and southerly displaced WPSH, which was observed to be favorable for excessive rainfall over YHRV.  相似文献   

13.
The relationships between ENSO and the East Asian-western North Pacific monsoon simulated by the Flexible Global Ocean-Atmosphere-Land System model, Spectral Version 2 (FGOALS-s2), a state-of-the-art coupled general circulation model (CGCM), are evaluated. For El Nio developing summers, FGOALS-s2 reproduces the anomalous cyclone over the western North Pacific (WNP) and associated negative precipitation anomalies in situ. In the observation, the anomalous cyclone is transformed to an anomalous anticyclone over the WNP (WNPAC) during El Nio mature winters. The model reproduces the WNPAC and associated positive precipitation anomalies over southeastern China during winter. However, the model fails to simulate the asymmetry of the wintertime circulation anomalies over the WNP between El Nio and La Nia. The simulated anomalous cyclone over the WNP (WNPC) associated with La Nia is generally symmetric about the WNPAC associated with El Nio, rather than shifted westward as that in the observation. The discrepancy can partially explain why simulated La Nin a events decay much faster than observed. In the observation, the WNPAC maintains throughout the El Nio decaying summer under the combined effects of local forcing of the WNP cold sea surface temperature anomaly (SSTA) and remote forcing from basinwide warming in the tropical Indian Ocean. FGOALS-s2 captures the two mechanisms and reproduces the WNPAC throughout the summer. However, owing to biases in the mean state, the precipitation anomalies over East Asia, especially those of the Meiyu rain belt, are much weaker than that in the observation.  相似文献   

14.
2015年1-5月西北太平洋上异常出现了7个热带风暴(Tropical Storms,TS),其中有5个发展成台风(Typhoons,TY),分别为气候平均态(1979-2015年)的2.5和3.6倍,亦即2015年的台风季提前展开。利用ERA-Interim再分析资料、JTWC热带气旋最佳化路径数据等资料,通过计算台风生成指数(Genesis Potential Index,GPI)和比较天气尺度和季节内振荡分量,探讨2015年台风季提前的原因。结果表明:1)2015年初异常活跃的台风活动与2015/2016年超级El Niño事件于西北太平洋上引发的海气状态异常有关。2)通过对大尺度环境场和台风潜在生成指数(GPI)的诊断分析发现,动力因子(低层涡度、垂直速度)和热力因子(与海表面温度、大气温度有关的潜在强度、中低层大气相对湿度)均对2015年1-5月台风的发生有正贡献。其中,涡度项的贡献最大,相对湿度的贡献次之。3)3~10 d天气尺度扰动和10~90 d季节内振荡在2015年1-5月也异常活跃,有利于TS和TY的生成与发展。  相似文献   

15.
Chaofan Li  Riyu Lu  Buwen Dong 《Climate Dynamics》2014,43(7-8):1829-1845
Predictability of the western North Pacific (WNP) summer climate associated with different El Niño–Southern Oscillation (ENSO) phases is investigated in this study based on the 1-month lead retrospective forecasts of five state-of-the-art coupled models from ENSEMBLES. During the period from 1960 to 2005, the models well capture the WNP summer climate anomalies during most of years in different ENSO phases except the La Niña decaying summers. In the El Niño developing, El Niño decaying and La Niña developing summers, the prediction skills are high for the WNP summer monsoon index (WNPMI), with the prediction correlation larger than 0.7. The high prediction skills of the lower-tropospheric circulation during these phases are found mainly over the tropical western Pacific Ocean, South China Sea and subtropical WNP. These good predictions correspond well to their close teleconnection with ENSO and the high prediction skills of tropical SSTs. By contrast, for the La Niña decaying summers, the prediction skills are considerably low with the prediction correlation for the WNPMI near to zero and low prediction skills around the Philippines and subtropical WNP. These poor predictions relate to the weak summer anomalies of the WNPMI during the La Niña decaying years and no significant connections between the WNP lower-tropospheric circulation anomalies and the SSTs over the tropical central and eastern Pacific Ocean in observations. However, the models tend to predict an apparent anomalous cyclone over the WNP during the La Niña decaying years, indicating a linearity of the circulation response over WNP in the models prediction in comparison with that during the El Niño decaying years which differs from observations. In addition, the models show considerable capability in describing the WNP summer anomalies during the ENSO neutral summers. These anomalies are related to the positive feedback between the WNP lower-tropospheric circulation and the local SSTs. The models can capture this positive feedback but with some uncertainties from different ensemble members during the ENSO neutral summers.  相似文献   

16.
An abrupt change in the large-scale boreal winter circulation pattern over the North Pacific was observed during the mid-1970s. Most notably, this change was marked by a southward shift and intensification of the Aleutian Low and prevailing westerlies over the mid-latitude central and eastern Pacific. Associated changes in diverse North Pacific climatological, hydrological, and biological variables have been noted by numerous researchers. Intriguingly, the timing of these changes in the extra-tropical circulation was coincident with a shift in the background state of the coupled ocean-atmosphere system over the tropical Pacific. These changes include increases in SST over broad regions of the central and eastern tropical Pacific and an eastward displacement of the region of persistent convection in the western Pacific. This paper presents a variety of observed data and model results to describe the climate shift, and to understand some of the links within the coupled climate system that produced it. Five main findings are emphasized: (1) evidence of abrupt, simultaneous, and apparently related changes can be found in many fields and in many model results; the climate shift is not an artifact, (2) over the tropical Pacific the climate change represents a shift in the state of the coupled ocean-atmosphere system, some aspects of which resemble features associated with El Niño episodes. However, the shift in state is not well characterized as due to a change in the frequency of intensity of El Ni~no episodes; it is better described as a change in background mean state, (3) when forced with observed SSTs, both a very simple atmospheric model and a full general circulation model (GCM) qualitatively simulate aspects of the decadal-scale shift over the tropical Pacific, (4) when forced with observed surface wind stress, two ocean models of the tropical Pacific, in which surface heat fluxes are parameterized as Newtonian damping, reproduce some aspects of the near-equatorial decadal SST signal. However, the models do not reproduce the large changes in SST observed at higher latitudes of the tropical Pacific, suggesting that altered surface heat fluxes dominated in producing these changes, and (5) an important new finding of this study is the success of a GCM in reproducing important aspects of the observed mid-1970s shift in winter northern hemisphere circulation. Comparative analyses of the observed and GCM simulated circulation suggest the altered patterns of tropical Pacific SST and convection were important in forcing the changes in the mid-latitude circulation, a finding corroborated by recent GCM experiments.  相似文献   

17.
Regional climate models, such as RegCM3, generally show large biases in the simulation of western North Pacific (WNP) summer monsoon (WNPSM). In this study, the authors improved the simulation of WNPSM by applying the convection suppression criterion based on the averaged relative humidity from cloud base to cloud top. The simulated rainfall and monsoon circulation are significantly improved. The suppressed convective heating associated with the decrease in convective rainfall simulates a low-level anomalous anticyclone to its north. The anomalous anticyclone reduces the intensity of low-level southwesterly flow and the wind speed at 10 m. The reduction in wind speed at 10 m decreases the evaporation at sea surface. The less supply of water vapor from underlying ocean in turn favors less convective rainfall. The overestimation of simulated convective percentages and the cold bias of 2 m air temperature are also reduced. The different effects of convection suppression criterion in stand-alone RegCM3 and corresponding regional air–sea coupled model are also discussed.  相似文献   

18.
利用1979—2012年西北太平洋热带气旋最佳路径资料,Hadley中心的海温资料和NCEP/NCAR再分析资料等,研究了夏季(6—10月)热带北大西洋海温异常与西北太平洋热带气旋(Tropical Cyclone,TC)生成的关系及其可能机制。结果表明,夏季热带北大西洋海温异常与同期西北太平洋TC生成频次之间存在显著的负相关关系。热带北大西洋海温的异常增暖可产生一对东—西向分布的偶极型低层异常环流,其中气旋性异常环流位于北大西洋/东太平洋地区,反气旋异常环流位于西北太平洋地区。该反气旋环流异常使得TC主要生成区的对流活动受到抑制、低层涡度正异常、中低层相对湿度负异常、中层下沉气流异常,这些动力/热力条件均不利于TC生成。此外,西北太平洋地区低层涡旋动能负异常,同时来自大尺度环流的涡旋动能的正压转换也受到抑制,不能为TC的生成和发展提供额外能量源。反之亦然。  相似文献   

19.
应用NMC 17年热带格点风及OLR资料,对比分析了厄尼诺年与反厄尼诺年热带环流的差异,发现厄尼诺现象使多年平均位于西太平洋上的最强盛的对流加热区东移到中太平洋,太平洋热带地区东西向对流加热梯度减弱,造成中东太平洋上的Walker环流及西太平洋与印度洋上的反Walker环流场比常年减弱;同时,厄尼诺现象也使中东太平洋地区经向反Hadley环流及美洲大陆上空的Hadley环流减弱。  相似文献   

20.
利用多成员集合试验结果,比较分析了热带印度洋和太平洋增暖各自对东亚夏季风趋势变化的影响。试验所用模式是GFDLAM2大气环流模式,增暖是通过在气候平均海洋表面温度(SST)基础上,叠加随时间线性增加的、相当于实际50a左右达到的SST异常来实现的。结果表明:热带印度洋和太平洋共同增暖有使东亚夏季风减弱的趋势。相比较而言,单独印度洋增暖有使东亚夏季风增强、华北降水增多的趋势,而单独太平洋增暖有使东亚夏季风减弱的趋势,即印度洋增暖与太平洋增暖对东亚夏季风存在相反的、竞争性影响。进一步分析指出,热带太平洋特别是热带中东太平洋的增温可能对20世纪70年代末期开始的夏季风年代际减弱有更重要的贡献;在未来热带印度洋和太平洋持续增暖、但增暖强度纬向差异减小的新情况下,东亚夏季风减弱的趋势可能还将持续。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号