首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
利用陕西省99个国家级气象站逐小时降水量资料,分析了2005—2018年5—10月陕西短时强降水时空分布特征,结果表明:(1)2005—2018年陕西极值雨强呈振荡减小趋势,7月出现的强降水累计频次最多,而8月极值雨强最大;短时强降水主要发生在午后到夜间,日变化呈单峰分布,强降水频次峰值出现在17—00时,但极值雨强易出现在22—00时。(2)陕南为陕西短时强降水高发区,极值雨强可达40~80 mm/h,镇巴、平利雨强可达90 mm/h;榆林北部特别是西北部短时强降水日数少,极值雨强小,最大不超过50 mm/h;关中平原地区短时强降水日数少,但极值强,最大可达1015 mm/h。5—10月陕西各地区短时强降水日、极值雨强有明显月际差异,7—8月短时强降水出现的范围广,日数多,强度大;5、6和9月范围、日数及强度均较小。(3)陕西各区域短时强降水日变化差异明显,陕北西部、关中西部呈单峰型,陕北东部、关中东部双峰明显,陕南日变化相对较小。陕西极值雨强主要出现在17—23时,关中东部、安康极值雨强多出现在19时,商洛极值雨强多出现在18时。  相似文献   

2.
基于临夏州2006—2018年4—9月自动气象站逐日小时降水量,在传统降水百分位法、Z指数法和平方根变换法3种方法中,确定了短时强降水阈值的最佳计算方法,在此基础上分析临夏州短时强降水的时空分布特征。平方根变换法确定的临夏州短时强降水阈值为14.6 mm·h^(-1)。临夏州短时强降水空间分布表现为自中南部分别向西北和东南减少,短时强降水年平均出现次数为7.3次,2018年出现次数最多;7—8月短时强降水出现频次最多,占短时强降水总频次的81.1%,8月达到最高峰,占总频次的55.8%;短时强降水日变化呈4峰分布,短时强降水主要出现在18:00—23:00,占短时强降水总频次的55.8%;小时最大降水量为55.8 mm,出现在22:00;短时强降水持续时间为1 h的占90.5%,同一时次出现1站次短时强降水的占93.3%,临夏州短时强降水多为阵发性,且空间分布多为孤立零散。  相似文献   

3.
基于甘肃省81个自动气象站2002—2012年逐小时降水数据,分析了甘肃省近11 a来短时强降水的时空变化特征。结果表明:短时强降水频次自甘肃省西北向东南逐步递增,陇东南地区是甘肃省短时强降水发生频次最多、强度最强的地区。短时强降水存在2个高发中心,一个在以合水为中心的陇东地区,另一个在以徽县为中心的徽成盆地。短时强降水主要发生在午后至前半夜,出现时段集中在16:00—00:00,17时前后是短时强降水天气高发时段。短时强降水主要出现在5—9月,其中7—8月是一年中出现最多的月份,其次是6月。近11 a来,短时强降水频次呈上升趋势,2006年和2010年出现了2个峰值,其中2010年最多,发生52次,2004年最少只有17次。  相似文献   

4.
利用青藏高原边坡临夏地区6个国家级自动气象站和66个乡镇区域自动气象站2010—2019年5—9月逐小时降水资料,详细分析了临夏地区短时强降水的时空分布及海拔地形特征,结果表明:近10 a短时强降水频次总体呈上升趋势,短时强降水频次与西太副高脊线位置和北界位置有密切关系。短时强降水主要发生在5—9月,集中时段为7月中旬到8月中旬,19:00~23:00为高发时段,属于傍晚型和夜雨型。近10 a临夏地区短时强降水的极端性逐年增大,单站年均频次在0.2~2.6次之间,平均为0.8次,短时强降水空间分布差异较大,总体呈西南多、东部和北部少,山区多、川区少的分布特征。临夏地区降水分布与海拔高度有明显关系,5—9月平均降水量随海拔高度升高而增大,不同海拔地形下短时强降水频次分布呈现两个极端:海拔较高的山地喇叭口地形区域和海拔较低的河谷地区,是临夏地区汛期短时强降水的重点关注区域。  相似文献   

5.
利用2010—2018年夏季阿勒泰地区112个自动气象站逐时降水资料,采用常规统计方法分析了阿勒泰地区夏季短时强降水时空分布特征。结果表明,2010—2018年夏季阿勒泰地区短时强降水的空间分布极不均匀,主要发生在阿尔泰山和沙吾尔山迎风坡、地形陡升区、喇叭口地形、戈壁和乌伦古湖交界区等复杂地形附近;发生次数年际变化大,2017年出现最多达95次,2010年出现最少为10次;极大值出现在2017年6月30日15:00哈巴河县合孜勒哈克村(37.5 mm/h),极小值出现在2015年8月9日17:00福海县工业园区(22.5 mm/h)。旬、日发生频次变化均呈单峰型,旬峰值出现在7月上旬,日高峰值时段出现在午后至傍晚(19时左右);各站短时强降水持续时间为1—2 h,区域性短时强降水最长持续时间为5 h;2017年短时强降水出现最多、持续时间最长、范围最广、强度最强。  相似文献   

6.
利用2010-2019年浙江省暖季(5-9月)1426个国家站和区域站小时雨量数据和NCEP 1° X 1°逐日4次再分析资料,分析了浙江省暖季短时强降水、极端短时强降水时空分布特征及区域性短时强降水事件,结果表明:①近10年暖季短时强降水频次呈增多趋势,降水强度变化平稳;8月(上旬)降水频次最多,9月(中旬)强度最强...  相似文献   

7.
《湖北气象》2021,40(4)
利用2005—2018年贵州省84个国家气象站逐小时降水量资料,采用统计诊断分析方法,在区分量级前提下,结合地形特征,分析贵州1 h短时强降水和逐3 h降水的时空分布特征。结果表明:(1) 14 a中短时强降水共出现5 981站次,年均427.2站次,其空间分布与地形特征密切相关,整体呈现南多北少、东多西少的特征,贵州西南部“喇叭口”地形和东南部雷公山南侧“喇叭口”地形与河谷地形重叠区域为短时强降水高发区。短时强降水分级统计显示,99%的短时强降水集中在前两个雨强较小的等级,而R1h≥80 mm的短时强降水14 a只出现过5站次。各站点最大雨强空间分布与短时强降水的总站次数分布趋势较为一致,一般南部大于北部、中东部大于西部,局部存在差异。平均雨强整体呈现南强北弱的特征。(2)在2005—2013年期间,短时强降水站次数大多处于年均值(427.2站次)之下,2011年达到最低值275站次,2014年站次数骤然增加至564站次,2015年继续增加到最大值662站次,其后迅速回落到比年均值略高的位置小幅变化。各站点短时强降水的年际变化在高发区离散度较大,在贵州西北部低发区离散度较小;月际变化曲线呈单峰型,5—8月份是降水高发时段,6月达到峰值。短时强降水主要以单站出现的局地性降水为主,同一时次出现3站以上的情况很少,以6月最多;短时强降水最早出现旬数呈东早西晚、南早北晚的特征,结束旬数西早东晚,北早南晚;各站点短时强降水出现概率最大旬多数集中在第16—18旬(即6月);短时强降水日变化的时间曲线呈单峰型,21时至次日07时为高发时段,中午12时前后出现较少。短时强降水日变化的空间分布特征为傍晚到前半夜主要集中在贵州西部,而后半夜多出现在东部和南部地区,中午前后全省均较少出现。(3)逐3 h降水时空分布特征与R1h大体一致,局部存在一些差异。  相似文献   

8.
利用甘肃兰州地区144个区域自动站和国家站2010—2018年4—9月逐小时降水资料和地理信息数据,详细分析了兰州市短时强降水的时空分布特征,探讨短时强降水频次与地形因子的关系。结果表明:兰州市短时强降水的阈值为10 mm·h~(-1),短时强降水事件主要发生在7月下旬至8月,21:00—22:00是集中高发时段;短时强降水频次空间分布不均,总体呈南多北少的分布格局,各站虽有显著差异,但未发生明显离散,符合正态分布,且与海拔高度、迎风坡向及坡度等地形因子显著相关,短时强降水高发区主要集中在山谷喇叭口、南风迎风坡、城市热岛区、高寒山区。  相似文献   

9.
为进一步分析研究黔东南地区短时强降水的时空分布特征,更好地指导短时强降水预报预警业务工作,利用2015—2021年黔东南地区16个国家自动气象站和410个区域自动气象站逐小时降水资料,对≥20 mm·h-1短时强降水的时空变化特征进行统计分析。结果表明:(1)黔东南短时强降水频次有逐年增加趋势,[20,40) mm·h-1量级的短时强降水年际变化相对较小,其余量级年际变化较大。(2)短时强降水主要出现在主汛期4—9月,6月最多,5月次之;年际变化相对较小的是5月、6月、7月和8月,各月短时强降水量级均以[20,40) mm·h-1量级最多,主要出现在5—8月,以6月出现频次最高。(3)短时强降水主要以[20,80) mm·h-1量级为主,且日变化频次均呈双峰形势,以傍晚至凌晨时段出现最多,中午前后出现的频次次之,具有夜间发生的显著特征。(4)短时强降水空间分布呈南多北少特征,短时强降水高发区与雷公山、月亮山迎风坡、喇叭口等特殊地形的强迫抬升作用密切相关。  相似文献   

10.
利用怀化市11个国家站和403个区域站2012—2017年4—9月逐小时降水量资料以及NCEP资料,采用统计分析方法分析了怀化市短时强降水的时空分布特征,同时采用天气诊断分析方法对产生短时强降水的天气系统进行归纳,得到如下结论:怀化短时强降水的频数年际变化大,发生频次最多的是2017年,达103次,最少的是2013年,仅35次,且主要集中在5—7月,6月最多,4月最少;其日变化呈单峰型,4—10时最易发生短时强降水,峰值出现在08时,11—23时为低发时段。短时强降水的频数高、日数多,空间分布表现为北部多,中南部少;2/3的短时强降水极值对应等级为50~79.9 mm·h~(-1),最大值为129.9 mm·h~(-1),雪峰山西侧(会同、洪江、溆浦)以及辰溪境内最易发生≥80 mm·h~(-1)的短时强降水。产生短时强降水的天气系统主要有低涡型和切变线型。当850 hPa低涡在关键区域活动时,低涡型短时强降水主要集中在低涡偏东偏南位置,而切变线型短时强降水主要集中在850 hPa切变线偏南1~3个纬距内,尤其是与低空急流出口区左侧叠加的区域。  相似文献   

11.
该文利用2010—2019年4—8月遵义13个国家站逐时地面降水观测资料,从年变化、月变化、日变化以及空间分布等多个角度进行统计,从不同等级雨强的时空分布进行分析,初步得出了遵义短时强降水事件的时空分布特征:①从短时强降水总频次的空间分布上看,东部发生频次较其余地区高;4月,发生频次地区差异小;5—8月,地区差异大。②从月分布来看,短时强降水高频中心有如下变化:4月集中在东北部、5月在南部和东南部、6月西移北抬到西部和中部、7月西移南压到西部和南部、8月东北移至东北部,高频中心的变化和副热带高压的南北位移有很好的对应。③从年分布来看,短时强降水事件平均每年发生49次,最多的是65次(2019年),最少的是33次(2017年)。4—6月事件频次迅速增加,6月到达峰值,6—8月事件频次开始逐渐减少,74.1%的短时强降水事件发生在夏季,尤其以6月份居多。④从日变化来看,08—13时短时强降水事件发生频次逐渐减少,13时达到一日中最低值,13—07时事件发生频次逐渐增加,有3个峰值,17—19时、20—22时和01—07时,期间有2个短暂的间歇期。4—7月白天平均发生频次较夜间少,8月反之。⑤6—8月是较高等级短时强降水事件的高发季节,尤其以6月份居多,但统计个例中≥70 mm/h的雨强却是在5月份出现。  相似文献   

12.
利用四川地区自动气象站逐小时降水观测资料,分析了2010~2019年5~9月短时强降水事件24h累计降水量、频次和强度的时空分布特征,探讨了短时强降水事件发生的频次、极值分布及其与地形、海拔高度等的关系。结果表明:四川地区平均24h累计降雨量基本在50mm以上,盆地东北部、西南部、南部及阿坝州东部甚至超过100mm,最大值出现在广安,达175mm。四川地区短时强降水事件开始时间的日变化特征表现为“V”型结构的夜间峰值位相,事件持续时段多为傍晚至凌晨,时长可达10h以上,最长甚至可持续22h。在强降水事件极值的日变化上,极大值频次和降水量呈单峰结构,在03时达到最大,其后逐渐减小至15时达到谷值,而后再次增大;降水强度呈弱双峰结构,分别在04时和16时达到谷值,13时和18时达到峰值,其日变化呈“增-减-增-减”的特征。四川短时强降水事件与复杂地形有密切的关系,5~6月事件活跃区在四川盆地中部,7月在盆地西部的龙门山脉一带,8月在雅安、乐山附近,9月在盆地北部且频次明显减少;短时强降水事件的最大小时雨强可达80mm以上,出现在7~8月的盆地西部龙门山一带和南部地区。短时强降水事件随着海拔高度的增加,发生频次和日数逐渐减少,海拔2000m以上地区基本无强降水发生日出现( 峨眉山气象站例外)。   相似文献   

13.
利用加密自动气象观测站和国家气象观测站逐小时观测资料,分析了贵阳市2014-2019年汛期(4-9月)短时强降水时空分布特征。结果表明:贵阳市汛期短时降水呈现中部多,南北少的空间分布特征,大值中心位于清镇市中南部-观山湖区-白云区一带,该区域也是降水量最多,短时强降水贡献最大的区域。贵阳市汛期短时强降水集中在5-8月,其中6月最多,7月次之;一天中相对高值时段为23-03时、7-8时和20-21时,不同月份短时强降水频次日变化存在差异;持续时间≥3h的短时强降水过程集中在清镇市中南部-观山湖区-白云区-乌当区西部一带,次高频区域集中在花溪区中南部及修文县南部;根据影响系统不同,将区域≥20%的短时强降水分为4类,其中低涡切变型最多,占50.9%,冷锋低槽型占35.9%,梅雨锋型占9.4%,两高切变型占3.8%。  相似文献   

14.
基于2013~2020年乐山地区9个国家自动站和136个区域自动站逐小时降水资料,应用诊断分析方法,系统研究了乐山地区短时强降水的时空分布及变化特征,探讨了短时强降水发生频次与地形因子的关系。结果表明:乐山地区短时强降水年均频次和极值均呈增加的趋势,强度较为稳定,变率不大。短时强降水在3~10月均有发生,其频次月分布呈现出单峰型的特征,集中发生在7~8月,占全年的77.7%,7月下旬~8月上旬发生频次又占7~8月总量的49.8%。短时强降水频次日变化呈单峰单谷结构,夜间发生概率最大,白天发生概率相对较小,22时~次日04时是短时强降水集中高发时段,虽然短时强降水在午后和傍晚的发生概率相对较小,但其强度较强,也应当引起重视。乐山地区短时强降水空间分布差异较大,存在两级分化的特点,与地形关系密切,总体呈西南部和东北部少、西北部—中部—东南部多的分布特征。短时强降水的发生与经纬度、海拔高度等地形因子显著相关,高发区主要集中在山谷喇叭口、岷江流域的河谷地带及城市热岛区。   相似文献   

15.
揭阳市雷电闪电密度地理分布特征分析   总被引:16,自引:13,他引:3  
;利用闪电定位资料和气象台站记录的雷暴日资料,对揭阳市闪电密度地理特征进行了分析.研究表明,揭阳市的雷暴频繁高发期主要集中在5~9月,7、8月份尤其显著;闪电密度较大的地区主要在普宁市洪阳地区、大砰地区、揭东县五房地区和揭西县大北山地区,揭阳市区主要在渔湖半岛和仙桥紫峰山区,惠来县闪电密度相对较小,不过雷电流强度较大;雷电流强度大部分在60KA以下.闪电的分布规律与当地环境有很大的关系.  相似文献   

16.
利用2010~2019年浙江省基准气象站和自动气象站逐小时降水的观测资料,对浙江省短时强降水的时空分布特征进行了统计分析,结果表明:1)2010 ~2019年浙江短时强降水累计发生频次为72601站次,随雨强增大呈指数式衰减。2)短时强降水空间分布不均匀,沿海向内陆发生频次减少,出现频次最高的地区位于温州西南部。夏半年随时间推进和影响系统演变,短时强降水的空间分布亦存在差异:5~6月浙西地区短时强降水多发,7月短时强降水全省分散分布无明显的区域集中特征,8~10月则主要在沿海地区多发。3)总体而言短时强降水的日变化峰值出现在17:00(北京时间,下同),且高强度短时强降水更倾向发生在午后到傍晚时段。夏秋季节短时强降水在午后到傍晚最为多发,峰值出现在17:00至18:00,这与副热带高压强盛,午后到傍晚热力和不稳定条件好,易触发强对流天气有关;春季除午后到傍晚外夜间和凌晨亦为短时强降水多发时段,可能与低空急流多在夜间和早晨发展加强有关。短时强降水的月变化特征呈现类双峰型分布,8月最为多发(26.0%)(主要由台风降水造成),其次为6月和7月。不同强度的短时强降水月变化特征存在较明显差异。而短时强降水的年际分布不均,2015年之后年际变化幅度增大,其中 2016 年短时强降水发生频次最高达8728站次,2017 年为发生频次最低仅5581站次。  相似文献   

17.
利用2009-2019年安顺市6个国家站和77个区域站的逐日和逐小时降水资料、 Micaps资料,对安顺市大暴雨的时空分布特征及物理量进行分析,结果表明:安顺市年平均大暴雨日数为10.1d,年平均影响范围为54.1站次,5-9月是大暴雨出现的集中期,6月大暴雨出现频次最高,影响范围最广,大暴雨的主要发生时段和最强影响时段出现在夜间到早晨;区域性大暴雨比局地性大暴雨出现时间晚,结束时间早,6月是区域性大暴雨和局地性大暴雨出现最多的月份,5-7月局地性大暴雨出现的频率最高;安顺主要出现单日大暴雨,持续2d以上的大暴雨只出现过16次;大暴雨总日数的空间分布有两个高频区和两个低频区,总量的空间分布与总日数基本一致,强度的空间分布呈南强北弱,总站次的空间分布呈南多北少;在5月预报大暴雨天气时要更注重分析T85和T75,6-7月产生大暴雨时对能量和中低层的水汽含量的要求高于其它月份。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号