首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spatial and temporal variability in daily maximum and mean average daily temperature, monthly maximum and mean average monthly temperature for nine coastal stations during the period 1956–2009 (54 years), and annual maximum and mean average temperature for coastal and inland stations for the period 1945–2009 (65 years) across Libya are analysed. During the period 1945–2009, significant increases in maximum temperature (0.017 °C/year) and mean average temperature (0.021 °C/year) are identified at most stations. Significantly, warming in annual maximum temperature (0.038 °C/year) and mean average annual temperatures (0.049 °C/year) are observed at almost all study stations during the last 32 years (1978–2009). The results show that Libya has witnessed a significant warming since the middle of the twentieth century, which will have a considerable impact on societies and the ecology of the North Africa region, if increases continue at current rates.  相似文献   

2.
With the surface air temperature (SAT) data at 37 stations on Central Yunnan Plateau (CYP) for 1961–2010 and the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, the temporal-spatial patterns of the SAT trends are detected using Sen’s Nonparametric Estimator of Slope approach and MK test, and the impact of urbanization on surface warming is analyzed by comparing the differences between the air temperature change trends of urban stations and their corresponding rural stations. Results indicated that annual mean air temperature showed a significant warming trend, which is equivalent to a rate of 0.17 °C/decade during the past 50 years. Seasonal mean air temperature presents a rising trend, and the trend was more significant in winter (0.31 °C/decade) than in other seasons. Annual/seasonal mean air temperature tends to increase in most areas, and higher warming trend appeared in urban areas, notably in Kunming city. The regional mean air temperature series was significantly impacted by urban warming, and the urbanization-induced warming contributed to approximately 32.3–62.9 % of the total regional warming during the past 50 years. Meantime, the urbanization-induced warming trend in winter and spring was more significant than that in summer and autumn. Since 1985, the urban heat island (UHI) intensity has gradually increased. And the urban temperatures always rise faster than rural temperatures on the CYP.  相似文献   

3.
Jharkhand is one of the eastern states of India which has an agriculture-based economy. Uncertain and erratic distribution of precipitation as well as a lack of state water resources planning is the major limitation to crop growth in the region. In this study, the spatial and temporal variability in precipitation in the state was examined using a monthly precipitation time series of 111 years (1901–2011) from 18 meteorological stations. Autocorrelation and Mann–Kendall/modified Mann–Kendall tests were utilized to detect possible trends, and the Theil and Sen slope estimator test was used to determine the magnitude of change over the entire time series. The most probable change year (change point) was detected using the Pettitt–Mann–Whitney test, and the entire time series was sub-divided into two parts: before and after the change point. Arc-Map 9.3 software was utilized to assess the spatial patterns of the trends over the entire state. Annual precipitation exhibited a decreasing trend in 5 out of 18 stations during the whole period. For annual, monsoon and winter periods of precipitation, the slope test indicated a decreasing trend for all stations during 1901–2011. The highest variability was observed in post-monsoon precipitation (77.87 %) and the lowest variability was observed in the annual series (15.76 %) over the 111 years. An increasing trend in precipitation in the state was found during the period 1901–1949, which was reversed during the subsequent period (1950–2011).  相似文献   

4.
Accurately predicting precipitation trends is vital in the economic development of a country. Ground observed data from the Nigeria Meteorological Agency (NIMET) was analyzed to study the long-term spatio-temporal trends of rainfall on annual and seasonal scales for 23 stations in Nigeria during a 40-year period spanning from 1974 to 2013. After testing the presence of autocorrelation, Mann–Kendall (modified Mann–Kendall) test was applied to non-autocorrelated (autocorrelated) series to detect the trends in rainfall data. Theil and Sen’s slope estimator test was used to find the magnitude of change over a time period. Pettitt’s test, Standard Normal Homogeneity Test, and Buishand’s test were further used to test the homogeneity of the rainfall series. The results show an increasing trend in annual rainfall; however, only nine stations have a significant increase during the period of study. On the seasonal time scale, a significant increasing trend was observed in the pre- and post-monsoon seasons, while only nine stations show a significant increasing trend in monsoon rainfall and a significant decreasing trend in the winter rainfall over the last 40 years. During the study period, 15.4 and 13.90 % increase were estimated for annual and monsoonal rainfall, respectively. Furthermore, seven stations exhibit changes in mean rainfall while majority of the stations considered (Eighteen stations) exhibit homogeneous trends in annual and seasonal rainfall over the country. The performance of the different tests used in this study was consistent at the verified significance level.  相似文献   

5.
In this paper, temperature and rainfall data series were analysed from 34 meteorological stations distributed throughout Bangladesh over a 40-year period (1971 to 2010) in order to evaluate the magnitude of these changes statistically and spatially. Linear regression, coefficient of variation, inverse distance weighted interpolation techniques and geographical information systems were performed to analyse the trends, variability and spatial patterns of temperature and rainfall. Autoregressive integrated moving average time series model was used to simulate the temperature and rainfall data. The results confirm a particularly strong and recent climate change in Bangladesh with a 0.20 °C per decade upward trend of mean temperature. The highest upward trend in minimum temperature (range of 0.80–2.4 °C) was observed in the northern, northwestern, northeastern, central and central southern parts while greatest warming in the maximum temperature (range of 1.20–2.48 °C) was found in the southern, southeastern and northeastern parts during 1971–2010. An upward trend of annual rainfall (+7.13 mm per year) and downward pre-monsoon (?0.75 mm per year) and post-monsoon rainfall (?0.55 mm per year) trends were observed during this period. Rainfall was erratic in pre-monsoon season and even more so during the post-monsoon season (variability of 44.84 and 85.25 % per year, respectively). The mean forecasted temperature exhibited an increase of 0.018 °C per year in 2011–2020, and if this trend continues, this would lead to approximately 1.0 °C warmer temperatures in Bangladesh by 2020, compared to that of 1971. A greater rise is projected for the mean minimum (0.20 °C) than the mean maximum (0.16 °C) temperature. Annual rainfall is projected to decline 153 mm from 2011 to 2020, and a drying condition will persist in the northwestern, western and southwestern parts of the country during the pre- and post-monsoonal seasons.  相似文献   

6.
Due to the substantial decrease of water resources as well as the increase in demand and climate change phenomenon, analyzing the trend of hydrological parameters is of paramount importance. In the present study, investigations were carried out to identify the trends in streamflow at 20 hydrometric stations and 11 rainfall gauging stations located in Karkheh River Basin (KRB), Iran, in monthly, seasonal, and annual time scales during the last 38 years from 1974 to 2011. This study has been conducted using two versions of Mann–Kendall tests, including (i) Mann–Kendall test by considering all the significant autocorrelation structure (MK3) and (ii) Mann–Kendall test by considering LTP and Hurst coefficient (MK4). The results indicate that the KRB streamflow trend (using both test versions) has decreased in all three time scales. There is a significant decreasing trend in 78 and 73 % of the monthly cases using the MK3 and MK4 tests, respectively, while these percentages changed to 80 and 70 % on seasonal and annual time scales, respectively. Investigation of the trend line slope using Theil–Sen’s estimator showed a negative trend in all three time scales. The use of MK4 test instead of the MK3 test has caused a decrease in the significance level of Mann–Kendall Z-statistic values. The results of the precipitation trends indicate both increasing and decreasing trends. Also, the correlation between the area average streamflow and precipitation shows a strong correlation in annual time scale in the KRB.  相似文献   

7.
This study analyzed the long-term trends and variations of temperature and precipitation on annual timescale in the Ili-Balkhash Basin (IBB), Kazakhstan. Some statistical tools were employed to detect any climate variations at four stations in the IBB during the period between 1936 and 2005. These methods included the Mann–Kendall trend test, the Theil–Sen approach, and the sequential Mann–Kendall test. The results showed that in temporal scale, the climate in the IBB has been becoming warmer and wetter in the past several decades as a whole. The annual mean temperature and the annual precipitation in the IBB showed an increasing trend since the 1970s and the 1940s, respectively. The significance of the annual mean temperature and annual precipitation trends in the IBB was tested at >95 % confidence level. The slope of the increasing trend of annual mean temperature ranges from 0.019 to 0.029 °C/year, and that of the annual precipitation ranges from 0.654 to 2.179 mm/year. In spatial scale, the multiyear mean values of temperature and precipitation are greater in the southern mountain region than those in the northern plain and hilly land area of the basin. The multiyear mean temperature decreases with the increasing latitudes, while increases with the increasing altitudes except for Karaganda; the multiyear mean precipitation increase with the increasing altitudes, while decreases centered with the Lake Balkhash from the surrounding area. The results may provide climatic backgrounds for solving the problems related to water sources of the IBB.  相似文献   

8.
Long-term variations of monthly average maximum and minimum temperature (TMAX and TMIN) and precipitation records in southern Brazil are investigated for the 1913–2006 period. These variations are carefully analyzed for seasonal and annual indices, taken as regional averages. For this purpose, the serial correlation and trend of the indices are investigated using the run and Mann–Kendall tests. The significant trends are obtained from linear least-square fits. The annual and seasonal TMIN indices show significant warming trends with magnitudes (1.7°C per 100 years for annual index) comparable to those reported by the Intergovernmental Panel on Climate Change, but lower than those found for the southern Brazil in another previous work. Regarding the two other variables, the indices show significant trends only for summer, being a cooling trend of 0.6°C per 100 years for the TMAX and an increasing trend of 93 mm per 100 years over an average summer precipitation of 367 mm. Concerning the decadal analysis, the 1920s present the lowest annual, autumn, and spring TMIN and the 1990s, the highest ones. The 1970s is the decade with the lowest summer TMAX, and the 1940s the decade with the highest one. The driest decade is the 1940s and the wettest, the 1980s.  相似文献   

9.
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative concentration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86°C relative to the pre-industrial level, achieving the target to limit the global warming to 2°C. Associated with the “increase-peak-decline” greenhouse gases (GHGs) concentration pathway of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006–55 and cooling during 2056–2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cooling period. The warming during 2006–55 is distributed globally, while the cooling during 2056–2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period.  相似文献   

10.
Under condition of climate changes as global warming, monitoring and detecting trend of precipitation volume is essential and will be useful for agricultural sections. Considering the fact that there were not enough research related to precipitation volume, this study aimed to determine trends in precipitation volume, monthly and annually in different regions of Fars province for the last three decades (33?years period; 1978–2010). Fars province is located in arid and semi-arid regions of Iran, and it plays an important role in agricultural production. Inverse distance weighting interpolation method was used to provide precipitation data for all regions. To analyze the trends of precipitation volume, Mann–Kendall test, Sen’s slope estimator, and 10-year moving average low-pass filter (within time series) were used. The negative trends were identified by the Sen’s slope estimator as well as Mann–Kendall test. However, all the trends were insignificant at the surveyed confidence level (95%). With regards to the application of 10-year moving average low-pass filter, a considerable decreasing trend was observed after around year 1994. Since one of the most important restrictions in agricultural development of the Fars province is lack of sufficient water resources, any changes onward to lack of sufficient precipitation impose impressive pressure and stress on valuable resources and subsequently agricultural production.  相似文献   

11.
The paper focuses on exceptionally hot summers (EHS) as a manifestation of contemporary climate warming. The study identifies EHS occurrences in Central and Eastern Europe and describes the characteristic features of the region’s thermal conditions. Average air temperatures in June, July and August were considered, as well as the number of days with maximum temperatures exceeding 25, 30 and 35 °C, and with a minimum temperature greater than >20 °C, as recorded at 59 weather stations in 1951–2010. Extremely hot summers are defined as having an average temperature equal to or greater than the long-term average plus 2 SD. A calendar of EHSs was compiled and their spatial extent identified. The region experienced 12 EHSs, which occurred in a given year at 5 % or more stations (1972, 1981, 1988, 1992, 1997, 1998, 1999, 2002, 2003, 2006, 2007 and 2010). The EHS frequency of occurrence was found to be clearly on an increase. Indeed, only one EHS occurred during the first 30 years, but these occurred five times during the last 10 years of the study period. Their geographical extent varied both in terms of location and size. EHSs were observed at 57 out of the total of 59 weather stations in the study (the exceptions were Pecora and Cluj). The average air temperature of EHSs tended to exceed the relevant long-term average by 2–4 °C. The summer of 2010 was among the hottest (temperature anomaly 5.5–6 °C) and spatially largest.  相似文献   

12.
Climate change and cyclic variation are investigated based on station data of 61 years (1951–2011), representing twelve climatic zones in Iran. Climate change is investigated by applying the non-parametric Mann–Kendall test and the three-dimensional loglinear model to the12-month SPI time series, and by applying the likelihood ratio test to precipitation time series. Cyclic variation is studied by applying the three-dimensional loglinear model to the 12-month SPI time series. Analysis included entire data period, two sub-periods [(1951–1981), (1982–2011)] and three sub-periods [(1951–1971), (1972–1991), (1992–2011)]. The Mann–Kendall test results indicated combinations of different trend behaviors, whereby climate change could not be evaluated. The likelihood ratio test did not confirm climate change (at 95 % confidence level), in most of the studied stations. However, the more in-depth analysis by the three-dimensional loglinear model, i.e., detection of significant differences among drought frequencies, did not confirm climate change (at 95 % confidence level), in any of the studied stations. Cyclic variation was not confirmed by the three-dimensional loglinear model (at 95 % confidence level), in any of the studied stations. The findings of this research illustrate the need for meticulous techniques like the three-dimensional loglinear model, as a necessary tool for climate change and cyclic variation studies.  相似文献   

13.
Bulk precipitation samples collected daily through bulk collectors at eight meteorological stations in Serbia were analyzed for their chemical composition. The data covers time series, from 20 to 28 years, in the period between 1982 and 2010. The most abundant ion in the samples was sulfate. Only 0.17 % of all samples were from strong acid rains (pH < 3.5). The relatively high average pH values (5.94–6.26) of the collected precipitation indicate the neutral or alkaline nature of local rainwater. Trends in both the annual amount and the composition of precipitation were tested by the nonparametric Mann–Kendall test and Sen’s slope estimator. Significant increasing trend of precipitation was identified for almost all stations. Rebuilding activities after the bombing of Serbia in 1999 were identified as a possible anthropogenic cause of the sharp increase of some ions (Ca2+) in the first year following the bombing. The origin of air masses arriving at one particular station was examined using two-dimensional backward trajectories. Western sectors (W, SW and NW) accounted for almost half (44.3 %) of all rainy days, while eastern sectors (SE, E and NE) brought only 10.4 % of all rainy days. The distribution, per sector, of volume-weighted concentrations of sulfate, nitrate, ammonium, calcium, potassium, magnesium, chloride and sodium ions, as well as the amount of precipitation and its pH values for one station, was also analyzed. Rainwater from the SE and S sectors was the most polluted.  相似文献   

14.
On the basis of the mean annual and seasonal temperatures from 30 meteorological stations in the Jinsha River Basin (JRB) from 1961 to 2008, the temperature trends are analyzed by using Mann–Kendall test and linear trend analysis. There is an increasing trend in mean annual and seasonal temperatures during this period, and the increasing trends in winter seem more significant than those in the other three seasons. The mean annual temperature has increased by 0.0158°C/year during the last 48 years. There are more than 70% of stations exhibiting increasing trends for annual and seasonal temperatures. The increasing trends in the headwater and upper reaches are more dominant than those in the middle and lower reaches. The largest increase magnitude occurred in the low temperature area, while the largest decrease magnitude occurred in the high temperature area. The decreasing trends are mainly characterized for the maximum temperature time series, and summer is the only season showing a slight and insignificant increasing trend. All the time series showed a statistically significant increasing trend at the level of α?=?0.05 for the minimum temperature time series. As a whole, the increasing magnitude of the minimum temperature is significantly greater than the decreasing magnitude of the maximum temperature.  相似文献   

15.
A methodology has been applied to investigate the spatial variability and trends existent in a mid-twentieth century climatic time series (for the period 1943–1977) recorded by 58 climatic stations in the Albert–Victoria water management area in Uganda. Data were subjected to quality checks before further processing. In the present work, temporal trends were analyzed using Mann–Kendall and linear regression methods. Heterogeneity of monthly rainfall was investigated using the precipitation concentration index (PCI). Results revealed that 53 % of stations have positive trends where 25 % are statistically significant and 45 % of stations have negative trends with 23 % being statistically significant. Very strong trends at 99 % significance level were revealed at 12 stations. Positive trends in January, February, and November at 40 stations were observed. The highest rainfall was recorded in April, while January, June, and July had the lowest rainfall. Spatial analysis results showed that stations close to Lake Victoria recorded high amounts of rainfall. Average annual coefficient of variability was 19 %, signifying low variability. Rainfall distribution is bimodal with maximums experienced in March–April–May and September–October–November seasons of the year. Analysis also revealed that PCI values showed a moderate to seasonal rainfall distribution. Spectral analysis of the time components reveals the existence of a major period around 3, 6, and 10 years. The 6- and 10-year period is a characteristic of September–October–November, March–April–May, and annual time series.  相似文献   

16.
Iranian rainfall series analysis by means of nonparametric tests   总被引:1,自引:0,他引:1  
The study of the trends and fluctuations in rainfall has received a great deal of attention, since changes in rainfall patterns may lead to floods or droughts. The objective of this study was to analyze the annual, seasonal, and monthly rainfall time series at seven rain gauge stations in the west of Iran for a 40-year period (from October 1969 to September 2009). The homogeneity of the rainfall data sets at the rain gauge stations was checked by using the cumulative deviations test. Three nonparametric tests, namely Kendall, Spearman, and Mann–Kendall, at the 95 % confidence level were used for the trend analysis and the Theil–Sen estimator was applied for determining the magnitudes of the trends. According to the homogeneity analysis, all of the rainfall series except the September series at Vasaj station were found to be homogeneous. The obtained results showed an insignificant trend in the annual and seasonal rainfall series at the majority of the considered stations. Moreover, only three significant trends were observed at the February rainfall of Aghajanbolaghi station, the November series of Vasaj station, and the March rainfall series of Khomigan station. The findings of this study on the temporal trends of rainfall can be implemented to improve the water resources strategies in the study region.  相似文献   

17.
This paper analyses the observed spatiotemporal characteristics of drought in the Czech Republic during the growing season (April to September) as quantified using the Standardised Precipitation Evapotranspiration Index (SPEI) on various time scales. The SPEI was calculated for various lags (1, 3, 6, 12, and 24 months) from monthly records of mean temperature and precipitation totals using a dense network of 184 climatological stations for the period 1961–2010. The characteristics of drought were analysed in terms of the temporal evolution of the SPEI, the frequency distribution and duration of drought at the country level, and for three regions delimited by station altitude. The driest and the wettest years during the growing season were identified. The frequency distribution of the SPEI values for seven drought category classes (in per cent) indicates that normal moisture conditions represent approximately 65 % of the total SPEI values for all time scales in all three regions, whereas moderate drought and moderate wet conditions are almost equally distributed around 10.5 %. Differences in extremely dry conditions (5 %) compared with extremely wet conditions (1.5 %) were observed with increasing SPEI time scales. The results of the non-parametric Mann–Kendall trend test applied to the SPEI series indicate prevailing negative trends (drought) at the majority of the stations. The percentage of stations displaying a significant negative trend for the 90, 95, 99, and 99.9 % confidence levels is approximately 40 %. An Empirical Orthogonal Functions (EOF) analysis was used to identify the principal patterns of variability of the SPEI during the growing season that accounted for the highest amount of statistical variance. The variance explained by the leading EOF range 66 to 56 %, whereas for EOF2 and EOF3, the value is between 7 and 11 % and between 4 and 7 %, respectively, for the SPEI is calculated for 1- to 24-month lags.  相似文献   

18.
As the majority of the world’s population is living in urban environments, there is growing interest in studying local urban climates. In this paper, for the first time, the long-term trends (31–162 years) of temperature change have been analyzed for the Greater Toronto Area (GTA). Annual and seasonal time series for a number of urban, suburban, and rural weather stations are considered. Non-parametric statistical techniques such as Mann–Kendall test and Theil-Sen slope estimation are used primarily for the assessing of the significance and detection of trends, and the sequential Mann test is used to detect any abrupt climate change. Statistically significant trends for annual mean and minimum temperatures are detected for almost all stations in the GTA. Winter is found to be the most coherent season contributing substantially to the increase in annual minimum temperature. The analyses of the abrupt changes in temperature suggest that the beginning of the increasing trend in Toronto started after the 1920s and then continued to increase to the 1960s. For all stations, there is a significant increase of annual and seasonal (particularly winter) temperatures after the 1980s. In terms of the linkage between urbanization and spatiotemporal thermal patterns, significant linear trends in annual mean and minimum temperature are detected for the period of 1878–1978 for the urban station, Toronto, while for the rural counterparts, the trends are not significant. Also, for all stations in the GTA that are situated in all directions except south of Toronto, substantial temperature change is detected for the periods of 1970–2000 and 1989–2000. It is concluded that the urbanization in the GTA has significantly contributed to the increase of the annual mean temperatures during the past three decades. In addition to urbanization, the influence of local climate, topography, and larger scale warming are incorporated in the analysis of the trends.  相似文献   

19.
Much attention has recently been focused on the effects that climate variability and human activities have had on runoff. In this study, data from the Kaidu River Basin in the arid region of northwest China were analyzed to investigate changes in annual runoff during the period of 1960–2009. The nonparametric Mann–Kendall test and the Mann–Kendall–Sneyers test were used to identify trend and step change point in the annual runoff. It was found that the basin had a significant increasing trend in annual runoff. Step change point in annual runoff was identified in the basin, which occurred in the year around 1993 dividing the long-term runoff series into a natural period (1960–1993) and a human-induced period (1994–2009). Then, the hydrologic sensitivity analysis method was employed to evaluate the effects of climate variability and human activities on mean annual runoff for the human-induced period based on precipitation and potential evapotranspiration. In 1994–2009, climate variability was the main factor that increased runoff with contribution of 90.5 %, while the increasing percentage due to human activities only accounted for 9.5 %, showing that runoff in the Kaidu River Basin is more sensitive to climate variability than human activities. This study quantitatively distinguishes the effects between climate variability and human activities on runoff, which can do duty for a reference for regional water resources assessment and management.  相似文献   

20.
Spatial and temporal precipitation variability in Chhattisgarh State in India was examined by using monthly precipitation data for 102 years (1901–2002) from 16 stations. The homogeneity of precipitation data was evaluated by the double-mass curve approach and the presence of serial correlation by lag-1 autocorrelation coefficient. Linear regression analysis, the conventional Mann–Kendall (MK) test, and Spearman’s rho were employed to identify trends and Sen’s slope to estimate the slope of trend line. The coefficient of variation (CV) was used to analyze precipitation variability. Spatial interpolation was done by a Kriging process using ArcGIS 9.3. Results of both parametric and non-parametric tests and trend tests showed that at 5 % significance level, annual precipitation exhibited a decreasing trend at all stations except Bilaspur and Dantewada. For both annual and monsoon precipitation, Sen’s test showed a decreasing trend for all stations, except Bilaspur and Dantewada. The highest percentage of variability was observed in winter precipitation (88.75 %) and minimum percentage variability in annual series (14.01 %) over the 102-year periods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号