首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用GRAPES模式研究气溶胶对云和降水过程的影响   总被引:5,自引:3,他引:2  
石荣光  刘奇俊  马占山 《气象》2015,41(3):272-285
在GRAPES中尺度模式的双参数微物理方案中加入了气溶胶活化参数化过程,实现了对云滴数浓度的预报。选取不同季节两个降水过程进行模拟,并分别开展了不同气溶胶背景下的两个试验进行对比分析,研究气溶胶对云和降水可能的影响。结果表明:气溶胶浓度增加后,因为活化产生了更多尺度较小的云滴,抑制了云雨的自动转化,使大气中滞留了更多的云水,暖云降水减小;另一方面,云水的增加会使冰相粒子,尤其是雪和霰通过碰并云水等过程而增大,最后融化成雨增加冷云降水,同时冰相粒子增加会释放更多的潜热,促进上升气流的发展,进一步增加冷云降水。气溶胶对降水的影响存在空间不一致性,暖云较厚的地方暖雨过程受到的抑制明显,使地面降水减小,冷云厚度相对较厚时,冷云降水的增加会大于暖云降水的抑制,使地面降水增加。同时由于在云降水发展的不同阶段冷暖云的变化,气溶胶对降水的影响也存在着时间不一致性。  相似文献   

2.
This paper outlines a one-dimensional,heightdependent bin model with detailed microphysical processes in which ice splinters are produced by a riming process.The model is then applied to simulate the shift of particle size distribution effected by the secondary ice production process within clouds with different generating cells and cloud top temperatures.The result of model simulations reveals the general effects of cloud updrafts on increasing ice particle concentration by extending the residence time of ice particles in clouds and providing sufficiently large supercooled water droplets.The rimesplintering mechanism is more effective in clouds with lower ice seeding rates than those with higher rates.Evolutions of hydrometeor size distribution triggered by the rime-splintering mechanism indicate that the interaction between large ice particles and supercooled water drops adds a "second maximum" to the primary ice spectra.  相似文献   

3.
刘卫国  陶玥  周毓荃  党娟  谭超  高扬 《气象学报》2021,79(2):340-358
层状云降水效率通常较低,但却具有较高的云水资源开发潜力,是人工增雨作业的重要对象。随着中国南方地区生态改善、水库增蓄、抗旱等社会需求的增加,针对这些地区降水云系的人工增雨研究显得愈发重要。使用三维中尺度冷云催化模式,对2018年10月21日湖北省一次层状云飞机人工增雨作业过程进行了数值模拟研究,并将模拟结果与卫星、降水和机载云物理观测数据进行了对比。模式合理地模拟出了云和降水的主要宏、微观特征,观测和模拟结果均显示作业云区具有较好的冷云催化条件,在此基础上,按照实际作业中的飞机播撒轨迹,完整地模拟了此次催化作业过程。对数值模拟结果的分析表明:凝结冻结核化和凝华核化是碘化银催化剂的主要核化方式;90%以上碘化银粒子的局地活化比为0.01%—2%,平均活化比为0.07%—0.27%;云系降水是由冷云降水和暖云降水两种机制共同作用的结果,催化作业使两种降水机制均有增强,增雨效果明显;催化后4 h,整个评估区内的累计净增雨量为2.12×108 kg,局地增雨率为?51.1%—306.7%,区域平均增雨率为8.1%;催化作业也使部分地区出现减雨,主要是由于催化过程中的潜热释放引起过冷层动力场扰动,一部分云区的上升气流减弱,从而导致降水粒子的成长减弱,地面出现减雨;在过冷云区,碘化银核化使冰晶浓度升高,导致冰晶-雪、雪-霰的转化过程增强,雪、霰粒子总量增加,更多的雪、霰粒子从冷区落入暖区,在暖区上层产生更多的大雨滴,从而使暖区的云雨粒子碰并过程增强,最终地面降水增加,这是此次催化作业导致增雨的主要微物理链条。   相似文献   

4.
为分析层状云垂直微物理结构,了解雷达参数特征,揭示降水机制,利用机载Ka波段云雷达和DMT(Droplet Measurement Technologies)粒子测量系统,针对2019年11月17日山东冷锋层状云系开展从云顶至云底的垂直探测。结果表明:观测云层由高层云(3100~4500 m高度)和雨层云(800 ~2600 m高度)两部分组成。高层云过冷水含量较低,平均值为0.0026 g·m-3,最大值为0.008 g·m-3,云内冰晶通过水汽凝华增长,平均浓度为8.2 L-1,最大直径为900 μm,平衡谱状态下冰晶浓度与雷达反射率因子具有较好相关性,相关系数最大为0.84。雨层云过冷水含量丰富,最大含水量为0.354 g·m-3,过冷水区平均雷达反射率因子为7.48 dBZ,多普勒速度为-2.3 m·s-1,速度谱宽为0.7 m·s-1;雨层云中上部以冰晶为主,下部为暖区融化粒子,冰晶通过凇附过程增长,平均浓度为208 L-1,最大直径为450 μm;雷达反射率因子随高度降低至1500 m不断增大,在1200~1500 m高度保持不变,1200 m高度以下减小,未出现明显0℃亮带,速度谱宽随高度降低增大。  相似文献   

5.
一次降雹过程的AgI系列催化模拟研究   总被引:1,自引:1,他引:0       下载免费PDF全文
云数值模拟是研究降雹过程和人工防雹试验的重要手段。利用三维冰雹云AgI催化模式,对北京1996年6月10日的一次降雹过程进行AgI不同催化高度、催化剂量和催化时间的系列催化模拟试验,并优选催化方案,为外场防雹设计和作业提供依据。在催化系列模拟中发现,不同催化高度的催化剂均在上升到-5℃高度后开始核化。在2.1~4.9 km高度范围内催化,AgI成核率比较高,防雹效果较好。核化的人工冰晶有效弥补了该高度上自然冰晶的不足。小剂量催化,可在减雹的同时增加部分降雨量,而大剂量催化,在减雹的同时会减少降雨。在催化时间、剂量和高度的系列催化试验中得出,采用在模拟的第15分钟在5 km高度附近播撒AgI,连续4次以5×106 kg-1的催化剂量进行催化,催化效果较好,可减少降雹量约60%,同时可避免降雨量的大幅减少。  相似文献   

6.
This study investigates the cloud macro- and micro-physical characteristics in the convective and stratiform regions and their different responses to the seeding for mixed convective-stratiform clouds that occurred in Shandong province on 21 May 2018, based on the observations from the aircraft, the Suomi National Polar-Orbiting Partnership (NPP) satellite, and the high-resolution Himawari-8 (H8) satellite. The aircraft observations show that convection was deeper and radar echoes were significantly enhanced with higher tops in response to seeding in the convective region. This is linked with the conversion of supercooled liquid droplets to ice crystals with released latent heat, resulting in strengthened updrafts, enhanced radar echoes, higher cloud tops, and more and larger precipitation particles. In contrast, in the stratiform cloud region, after the Silver Iodide (AgI) seeding, the radar echoes become significantly weaker at heights close to the seeding layer, with the echo tops lowered by 1.4–1.7 km. In addition, a hollow structure appears at the height of 6.2–7.8 km with a depth of about 1.6 km and a diameter of about 5.5 km, and features such as icing seeding tracks appear. These suggest that the transformation between droplets and ice particles was accelerated by the seeding in the stratiform part. The NPP and H8 satellites also show that convective activity was stronger in the convective region after seeding; while in the stratiform region, a cloud seeding track with a width of 1–3 km appears 10 km downstream of the seeding layer 15 minutes after the AgI seeding, which moves along the wind direction as width increases.  相似文献   

7.
A possible new molecular mechanism of thundercloud electrification   总被引:1,自引:1,他引:1  
Thunderclouds are electrified when charge is transferred between small and large ice particles colliding in a cloud that contains strong updrafts. The small ice particles rise with one type of charge and the large ice particles fall and carry with them downward the other type of charge, which is most often negative, so that normally lightning lowers negative charge from cloud to the ground. While the collisional mechanism of thundercloud charging is well established, the nature of the charge transfer between the colliding ice particles is not very well understood on the atomic level, and no present theory can explain it in full detail. Here we propose a new charge separation mechanism that is based on molecular dynamics simulations of particle surfaces and collisions, keeping track of the individual charges as they move in the form of salt ions from one ice particle to another. Under normal conditions, when sulfates dominate as cloud condensation nuclei, this ionic mechanism is consistent with the prevailing negative charging of graupels in thunderclouds. Moreover, with dearth of sulfate anions, the present mechanism predicts a shift towards positive charging. This fits well to a large range of observations of enhanced positive lightning, connected with smoke rich in chlorides and nitrates, that could not be explained satisfactorily previously.  相似文献   

8.
We investigate the effects of sea-salt aerosol(SSA) activated as cloud condensation nuclei on the microphysical processes, precipitation, and thermodynamics of a tropical cyclone(TC). The Weather Research and Forecasting model coupled with Chemistry(WRF-Chem) was used together with a parameterization of SSA production. Three simulations, with different levels of SSA emission(CTL, LOW, HIGH), were conducted. The simulation results show that SSA contributes to the processes of autoconversion of cloud water and accretion of cloud water by rain,thereby promoting rain formation. The latent heat release increases with SSA emission, slightly increasing horizontal wind speeds of the TC. The presence of SSA also regulates the thermodynamic structure and precipitation of the TC.In the HIGH simulation, higher latent heat release gives rise to stronger updrafts in the TC eyewall area, leading to enhanced precipitation. In the LOW simulation, due to decreased latent heat release, the temperature in the TC eye is lower, enhancing the downdrafts in the region; and because of conservation of mass, updrafts in the eyewall also strengthen slightly; as a result, precipitation in the LOW experiment is a little higher than that in the CTL experiment.Overall, the relationship between the precipitation rate and SSA emission is nonlinear.  相似文献   

9.
利用NCEP FNL再分析资料为初始场,通过WRF中尺度数值模式(V3.9.1版本)对2015年8月26~27日青藏高原那曲地区一次对流云降水过程进行了模拟,分析了不同积云对流参数化方案和云微物理参数化方案组合对本次降水过程中降水量、环流场、雷达反射率以及云微物理特征模拟效果的影响。结果表明:WRF模式能较好地模拟出本次降水的时空变化特征,但不同参数化方案组合各有优势,总体而言,Grell-Devenyi+SUBYLIN和Grell-Freitas+SUBYLIN组合模拟性能最优。本次对流云降水以冰相过程为主,雪粒子贡献最大,暖云粒子对降水的影响并不明显。从云微物理过程的时间演变可看出,性能最好的SUBYLIN方案能合理模拟降水过程中雪粒子与冰晶粒子间的转换过程,雪粒子可在凝结过程中释放潜热促使对流运动发展,也可通过融化过程促进降水发生,对流层高层冰晶粒子凝华产生的潜热释放亦为深对流的发展创造了有利条件。   相似文献   

10.
本文以GFS资料为初始场,利用WRF(v3.6.1)模式对2015年第22号台风“彩虹”进行了数值研究。采用CMA(中国气象局)台风最佳路径、MTSAT卫星、自动站降水为观测资料,对比了4个微物理方案(Lin、WSM6、GCE和Morrison)对“彩虹”台风路径、强度、结构、降水的模拟性能。模拟发现上述4个云微物理方案都能较好地模拟出“彩虹”台风西行登陆过程,但是其模拟的台风强度、结构及降水存在较大差异;就水成物而言,除GCE方案对雨水的模拟偏高以外,其他方案对云水、雨水过程的模拟较为接近,其差异主要存在于云冰、雪、霰粒子的模拟上。本文对比分析了WSM6和Morrison两个方案模拟的云微物理过程,发现WSM6方案模拟的雪和霰粒子融化过程显著强于Morrison方案,但是冰相粒子间转化过程的强度明显弱于Morrison方案。云微物理过程的热量收支分析表明:WSM6方案模拟的眼区潜热更强,暖心结构更为显著,台风中心气压更低。细致的云微物理转化分析表明,此次台风降水的主要云微物理过程是水汽凝结成云水和凝华为云冰;生成的云水一方面被雨水收集碰并直接转化为雨水,另一方面先被雪粒子碰并收集转化为霰,然后霰粒子融化成雨水;而生成的云冰则通过碰并增长转化为雪。小部分雪粒子通过碰并收集过冷水滴并淞附增长为霰粒子,随后融化为雨水,大部分雪粒子则直接融化形成地面降水。  相似文献   

11.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

12.
华南冷锋云系的人工引晶催化数值试验   总被引:13,自引:3,他引:10  
史月琴  楼小凤  邓雪娇 《大气科学》2008,32(6):1256-1275
在对华南2004年3月31日~4月1日的冷锋降水天气过程进行正确模拟的基础上, 通过向云中引入人工冰晶研究了催化效应, 结果表明: 催化使地面雨量在催化后30 min开始增加, 80 min时达到峰值, 120 min时减小到最小值。被催化的云团随着自然雨带逐渐向东南方向移动, 并且催化云影响其周围的云团, 造成了催化的下风方域外效应, 使催化效果可以延长到催化后10个小时, 随着自然云的消散而结束。人工冰晶的引入, 使得大量过冷雨滴快速转变为霰粒, 霰粒通过淞附云水和碰并雨滴过程增长, 使降水提前发展, 之后霰粒的融化使地面雨量增加。大量冻结潜热的释放, 使云中温度增加, 上升速度增强, 说明 “静力催化作用” 和 “动力催化作用” 是相互关联不可割裂的。在云体发展早期冷云降水过程还没有启动之前引入人工冰晶的催化效果优于云体发展接近成熟时的催化效果, 而只由催化剂量的不同造成的增雨差异较小。  相似文献   

13.
聂皓浩  刘奇俊  马占山 《气象》2016,42(12):1431-1444
利用高分辨率GRAPES—Meso中双参数云微物理方案,对我国两次强降水过程进行数值模拟,并与模式中WSM6和NCEP5方案进行对比分析,结合多种观测资料,诊断评估方案的预报性能.同时研究伴随强对流性降水中的关键云物理过程。个例研究表明,对流发展旺盛的云团中,冰相粒子尤其是霰粒子对对流的发展与降水起着主导作用,霰的融化是强降水的主要来源,而周围的层状云区域霰粒子的分布极少,主要受雪的融化与暖云降水的影n向。双参数方案模拟的雨带走向、范围和降水强度与实况拟合较好,同时在对流单体的最大回波高度与强度、冰晶的分布与云砧结构等方面也具有一定优势,但冰晶含量和回波顶高度略低于观测,这都为双参数方案的优化与业务应用提供重要的支持。  相似文献   

14.
河北一次层状云系降水的微物理机制数值模拟与分析   总被引:1,自引:0,他引:1  
利用一维层状云模式,详细分析了2009年5月1日中国中东部地区一次层状云系的微物理结构和降水过程。结果表明:此次降水为层状云系降水,云系垂直结构符合顾震潮三层概念模型和“播种云-供给云”机制,其中第一层(上层:4.7-7.0 km)存在冰雪晶,雪主要通过冰晶自动转化和凝华增长。第二层(中层:2.6-4.6 km)有冰晶、雪、霰、云水、雨滴,此层贝吉龙过程作用明显。第三层(下层:1.3-2.5 km)主要粒子为云滴、雨滴、从上层融化的雪和霰,霰的融化对于雨滴的形成贡献最大。云体发展成熟时,各层之间存在一定的播种-供应关系,如第一层向第二层顶部播撒雪和冰晶,第二层向第三层顶部播撒霰和雪。  相似文献   

15.
沙尘气溶胶对云和降水影响的模拟研究   总被引:9,自引:0,他引:9  
采用二维分档云模式,对比背景大气气溶胶分布,讨论了扬沙和沙尘暴天气条件下矿物气溶胶对云微物理结构、光学特性以及降水形成的影响.结果表明:扬沙和沙尘暴天气增加大气中大核和巨核的浓度,促进云中水汽的活化,使降水提前出现,暖云和冷云降水量均大幅增加,但可忽略巨核增加对云光学厚度和反照率的作用;当矿物沙尘粒子同时作为有效的云凝结核和冰核参与云的发展时,冰核浓度增加使水成物有效半径减小,抑制了暖云和冷云降水,云内存留的大量冰晶增强云的光学厚度和反照率.  相似文献   

16.
唐洁  郭学良  常祎 《大气科学》2018,42(6):1327-1343
第三次青藏高原科学试验针对高原夏季云和降水物理过程开展了大量观测研究,为进一步揭示高原云微物理结构、云中水分转化和区域水分收支特征,本文采用中尺度数值预报模式(WRF)并结合高原试验期间的各种观测资料,对那曲观测试验区2014年7月5~6日的一次较为典型的夏季对流云降水过程进行了数值模拟研究。结果表明WRF模式能够基本再现高原夏季对流云的发展演变过程以及降水的日变化特征。模拟结果显示高原夏季对流云中具有较高的过冷云水和霰粒子含量,冰相过程在高原云和降水的形成和发展中具有十分重要的作用,地面降水主要由霰粒子融化产生。暖雨过程对降水的直接贡献很小,但在霰胚形成中具有十分重要的作用。霰粒子胚胎的形成主要来源于冰晶与过冷雨滴的撞冻过程,雪粒子和过冷雨水的碰冻转化及过冷雨滴的均质冻结贡献相对较小。霰粒子的增长过程在12 km(-40℃)以上层主要依靠对冰晶、雪粒子的聚并收集过程,而在其下层的增长过程主要依赖对过冷云水的凇附增长,对雪粒子的聚并收集和凝华增长过程较小。高原那曲地区净水汽收支为正,日平均降水转化率可达20.75%,接近长江下游地区,高于华北、西北地区。该地区日降水再循环率为10.92%,说明局地蒸发的水汽对高原降水的水汽来源具有一定的贡献,但高原降水的90%仍然由外界输入的水汽转化形成。  相似文献   

17.
利用雨滴谱和Ka波段毫米波云雷达等资料,针对2020年7月21日发生在那曲地区的一次对流云降水过程进行特征分析。结果表明:此次强对流云降水过程表现出明显的日变化特征,对流云在傍晚达到最强。强对流区内存在明显的上升气流和下沉气流,降水最强时雷达回波达到40 dBZ以上,降水过程中最大云顶高度为12 km,最小为720 m。那曲地区Gamma分布相对于M-P分布更适用于对流云小直径粒子(0~1 mm)的雨滴谱拟合,随着粒子直径增大,降水越来越不稳定。   相似文献   

18.
利用2013年10月13日机载粒子测量系统(PMS)在张家口涞源地区对积层混合云中上部进行的增雨探测数据,分析了云的垂直微物理结构、云区的可播性和作业前后液态云粒子、冰晶及降水粒子的微物理变化。结果表明,此次降水性积层混合云的垂直结构由冷、暖两层云配置,云层发展厚实,冷云区云粒子浓度平均为62 cm-3,液态水含量最大0.05 g/m3;2DC和2DP探测的冰晶及降水粒子平均浓度分别为1.9和2.2 L-1;暖云内云粒子数浓度集中在300 cm-3左右,液态水含量约0.1 g/m3。探测区域云粒子数浓度的水平分布不均匀。利用云内过冷水含量和冰晶浓度等参数判断,该降水性积层混合云的播撒作业层具有强可播性。对比作业前后云中粒子浓度及平均直径发现,云粒子在作业前时段内的平均浓度为31 cm-3,远高于作业后平均浓度(17.6 cm-3);但平均直径变化不大。作业后冰晶粒子通过贝吉龙过程消耗过冷水长大,浓度由之前的0.86 L-1增至4.27 L-1,平均直径也增至550 μm。冰晶粒子逐渐长大形成降水,降水粒子浓度也相应有所升高,谱明显变宽。   相似文献   

19.
北京冬季降水粒子谱及其下落速度的分布特征   总被引:2,自引:0,他引:2  
为了深入探讨北京冬季云降水的微物理特征,提高雷达反演冬季固态降水的精度和冬季降水的预报水平,利用PARSIVEL(Particle Size and Velocity)降水粒子谱仪所观测的冬季降水粒子谱,结合地面显微镜粒子图像和云雷达数据,对比分析了北京海坨山地区冬季过冷雨滴、霰粒、雪花、混合态降水的粒子谱和下落速度特征,得到主要结论如下:(1)霰粒降水过程的云顶最高,整层的含水量最大,低层的退偏振比(LDR)最小,粒子更接近于球形;降雪过程的云顶最低,云中含水量最少,低层的退偏振比较大;混合态降水过程的雷达回波强度和高度特征介于两者之间,但低层的退偏振比最大;(2)在云中上升或下沉气流及湍流的影响下,过冷雨滴、霰粒和雪的下落速度均对称分布于各自理论下落末速度曲线的两侧。因此可根据粒子浓度相对于其直径和速度分布的中轴线位置,判断出该段降水过程中的主要粒子形态;(3)冬季雪花、霰粒和混合态降水粒子下落速度分布的散度较雨滴更大,其原因是由于冷云降水过程的粒子形态复杂,且固态粒子下落过程中更容易受破碎、聚并和凇附等微物理过程影响;(4)在4种降水类型中,雪的平均直径和离散度最大,雨滴最小;混合态降水粒子的总数浓度最大,雨滴的总数浓度最低,并且4种降水类型的粒子数浓度、平均直径和离散度均随降水强度的增大而增大。   相似文献   

20.
In this paper, we study a persistent heavy precipitation process caused by a special retracing plateau vortex in the eastern Tibetan Plateau during 21–26 July 2010 using tropical rainfall measuring mission (TRMM) data. Results show that during the whole heavy rainfall process, the precipitation rate of convective cloud is steady for all four phases of the plateau vortex movement. Compared with the convective precipitation clouds, the stratiform precipitation clouds have a higher fraction of area, a comparable ratio of contribution to the total precipitation, and a much lower precipitation rate. Precipitation increases substantially after the vortex moves out of the Tibetan Plateau, and Sichuan Province has the most extensive precipitation, which occurs when the vortex turns back westward. A number of strong convective precipitation cloud centers appear at 3–5 km. With strong upward motion, the highest rain top can reach up to 15 km. In various phases of the vortex evolution, there is always more precipitable ice than precipitable water, cloud ice water and cloud liquid water. The precipitating cloud particles increase significantly in the middle and lower troposphere when the vortex moves eastward, and cloud ice particles increase quickly at 6–8 km when the vortex retraces westward. The center of the latent heat release is always prior to the center of the vortex, and the vortex moves along the latent heat release areas. Moreover, high latent heat is released at 5–8 km with maximum at 7 km. Also, the latent heat release is more significant when the vortex moves out of the Tibetan Plateau than over the Tibetan Plateau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号