首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The scientific community is now developing a new set of scenarios, referred to as Shared Socio-economic Pathways (SSPs) that will be contrasted along two axes: challenges to mitigation, and challenges to adaptation. This paper proposes a methodology to develop SSPs with a “backwards” approach based on (i) an a priori identification of potential drivers of mitigation and adaptation challenges; (ii) a modelling exercise to transform these drivers into a large set of scenarios; (iii) an a posteriori selection of a few SSPs among these scenarios using statistical cluster-finding algorithms. This backwards approach could help inform the development of SSPs to ensure the storylines focus on the driving forces most relevant to distinguishing between the SSPs. In this illustrative analysis, we find that energy sobriety, equity and convergence prove most important towards explaining future difference in challenges to adaptation and mitigation. The results also demonstrate the difficulty in finding explanatory drivers for a middle scenario (SSP2). We argue that methodologies such as that used here are useful for broad questions such as the definition of SSPs, and could also be applied to any specific decisions faced by decision-makers in the field of climate change.  相似文献   

2.
The new scenario framework for climate change research envisions combining pathways of future radiative forcing and their associated climate changes with alternative pathways of socioeconomic development in order to carry out research on climate change impacts, adaptation, and mitigation. Here we propose a conceptual framework for how to define and develop a set of Shared Socioeconomic Pathways (SSPs) for use within the scenario framework. We define SSPs as reference pathways describing plausible alternative trends in the evolution of society and ecosystems over a century timescale, in the absence of climate change or climate policies. We introduce the concept of a space of challenges to adaptation and to mitigation that should be spanned by the SSPs, and discuss how particular trends in social, economic, and environmental development could be combined to produce such outcomes. A comparison to the narratives from the scenarios developed in the Special Report on Emissions Scenarios (SRES) illustrates how a starting point for developing SSPs can be defined. We suggest initial development of a set of basic SSPs that could then be extended to meet more specific purposes, and envision a process of application of basic and extended SSPs that would be iterative and potentially lead to modification of the original SSPs themselves.  相似文献   

3.
This paper presents the overview of the Shared Socioeconomic Pathways (SSPs) and their energy, land use, and emissions implications. The SSPs are part of a new scenario framework, established by the climate change research community in order to facilitate the integrated analysis of future climate impacts, vulnerabilities, adaptation, and mitigation. The pathways were developed over the last years as a joint community effort and describe plausible major global developments that together would lead in the future to different challenges for mitigation and adaptation to climate change. The SSPs are based on five narratives describing alternative socio-economic developments, including sustainable development, regional rivalry, inequality, fossil-fueled development, and middle-of-the-road development. The long-term demographic and economic projections of the SSPs depict a wide uncertainty range consistent with the scenario literature. A multi-model approach was used for the elaboration of the energy, land-use and the emissions trajectories of SSP-based scenarios. The baseline scenarios lead to global energy consumption of 400–1200 EJ in 2100, and feature vastly different land-use dynamics, ranging from a possible reduction in cropland area up to a massive expansion by more than 700 million hectares by 2100. The associated annual CO2 emissions of the baseline scenarios range from about 25 GtCO2 to more than 120 GtCO2 per year by 2100. With respect to mitigation, we find that associated costs strongly depend on three factors: (1) the policy assumptions, (2) the socio-economic narrative, and (3) the stringency of the target. The carbon price for reaching the target of 2.6 W/m2 that is consistent with a temperature change limit of 2 °C, differs in our analysis thus by about a factor of three across the SSP marker scenarios. Moreover, many models could not reach this target from the SSPs with high mitigation challenges. While the SSPs were designed to represent different mitigation and adaptation challenges, the resulting narratives and quantifications span a wide range of different futures broadly representative of the current literature. This allows their subsequent use and development in new assessments and research projects. Critical next steps for the community scenario process will, among others, involve regional and sectoral extensions, further elaboration of the adaptation and impacts dimension, as well as employing the SSP scenarios with the new generation of earth system models as part of the 6th climate model intercomparison project (CMIP6).  相似文献   

4.
The exploration of alternative socioeconomic futures is an important aspect of understanding the potential consequences of climate change. While socioeconomic scenarios are common and, at times essential, tools for the impacts, adaptation and vulnerability and integrated assessment modeling research communities, their approaches to scenario development have historically been quite distinct. However, increasing convergence of impacts, adaptation and vulnerability and integrated assessment modeling research in terms of scales of analysis suggests there may be value in the development of a common framework for socioeconomic scenarios. The Shared Socioeconomic Pathways represents an opportunity for the development of such a common framework. However, the scales at which these global storylines have been developed are largely incommensurate with the sub-national scales at which impacts, adaptation and vulnerability and, increasingly, integrated assessment modeling studies are conducted. The objective of this study was to develop sub-national and sectoral extensions of the global SSP storylines in order to identify future socioeconomic challenges for adaptation for the U.S. Southeast. A set of nested qualitative socioeconomic storyline elements, integrated storylines, and accompanying quantitative indicators were developed through an application of the Factor–Actor–Sector framework. In addition to revealing challenges and opportunities associated with the use of the SSPs as a basis for more refined scenario development, this study generated sub-national storyline elements and storylines that can subsequently be used to explore the implications of alternative sub-national socioeconomic futures for the assessment of climate change impacts and adaptation.  相似文献   

5.
Shared Socioeconomic Pathways (SSPs) describe alternative outcomes for socioeconomic development. Papers describing the conceptual framework for SSPs refer to challenges to mitigation and to adaptation as fundamental concepts. Identifying which socioeconomic factors are the most important determinants of these challenges, and how to combine them in an internally consistent manner, is critical to scenario design. Here we demonstrate a systematic and traceable approach for identifying and prioritizing scenario elements. In this study, we identify 13 determinants of mitigation and adaptation challenges at a globally aggregated scale based on a survey of 25 experts. In addition, we use 19 expert elicitations and a cross-impact balance analysis to create approximately 1.5 million combinations of trends for these determinants and rank them in terms of internal consistency. Using the 1,000 most consistent combinations, we construct composite metrics for challenges to mitigation and adaptation to uncover distinguishable characteristics for five types of SSPs: those with Low, Medium, and High challenges to both mitigation and adaptation (consistent with SSPs 1–3), and those in which adaptation challenges or mitigation challenges dominate (consistent with SSPs 4–5). We find a distinguishing characteristic for mixed typology SSP4 (low mitigation challenges, high adaptation challenges): High trends for innovation capacity could lower challenges to mitigation but not necessarily challenges to adaptation. We also find that a low trend for quality of governance consistently corresponds to higher challenges to adaptation. These findings are suggestive for future research on the SSPs in particular, while our analytical approach is instructive for scenario development in general.  相似文献   

6.
A major challenge in planning for adaptation to climate change is to assess future development not only in relation to climate but also in relation to social, economic and political changes that affect the capacity for adaptation or otherwise play a role in decision making. One approach is to use scenario methods. This article presents a methodology that combines top-down scenarios and bottom-up approaches to scenario building, with the aim of articulating local so-called extended socio-economic pathways. Specifically, we used the Shared Socioeconomic Pathways (SSPs) of the global scenario framework as developed by the climate research community to present boundary conditions about potential global change in workshop discussion with local and regional actors in the Barents region. We relate the results from these workshops to the different elements of the global SSPs and discuss potential and limitations of the method in relation to use in decision making processes.  相似文献   

7.
This paper presents a set of energy and resource intensive scenarios based on the concept of Shared Socio-Economic Pathways (SSPs). The scenario family is characterized by rapid and fossil-fueled development with high socio-economic challenges to mitigation and low socio-economic challenges to adaptation (SSP5). A special focus is placed on the SSP5 marker scenario developed by the REMIND-MAgPIE integrated assessment modeling framework. The SSP5 baseline scenarios exhibit very high levels of fossil fuel use, up to a doubling of global food demand, and up to a tripling of energy demand and greenhouse gas emissions over the course of the century, marking the upper end of the scenario literature in several dimensions. These scenarios are currently the only SSP scenarios that result in a radiative forcing pathway as high as the highest Representative Concentration Pathway (RCP8.5). This paper further investigates the direct impact of mitigation policies on the SSP5 energy, land and emissions dynamics confirming high socio-economic challenges to mitigation in SSP5. Nonetheless, mitigation policies reaching climate forcing levels as low as in the lowest Representative Concentration Pathway (RCP2.6) are accessible in SSP5. The SSP5 scenarios presented in this paper aim to provide useful reference points for future climate change, climate impact, adaption and mitigation analysis, and broader questions of sustainable development.  相似文献   

8.
Studies of global environmental change make extensive use of scenarios to explore how the future can evolve under a consistent set of assumptions. The recently developed Shared Socioeconomic Pathways (SSPs) create a framework for the study of climate-related scenario outcomes. Their five narratives span a wide range of worlds that vary in their challenges for climate change mitigation and adaptation. Here we provide background on the quantification that has been selected to serve as the reference, or ‘marker’, implementation for SSP2. The SSP2 narrative describes a middle-of-the-road development in the mitigation and adaptation challenges space. We explain how the narrative has been translated into quantitative assumptions in the IIASA Integrated Assessment Modelling Framework. We show that our SSP2 marker implementation occupies a central position for key metrics along the mitigation and adaptation challenge dimensions. For many dimensions the SSP2 marker implementation also reflects an extension of the historical experience, particularly in terms of carbon and energy intensity improvements in its baseline. This leads to a steady emissions increase over the 21st century, with projected end-of-century warming nearing 4 °C relative to preindustrial levels. On the other hand, SSP2 also shows that global-mean temperature increase can be limited to below 2 °C, pending stringent climate policies throughout the world. The added value of the SSP2 marker implementation for the wider scientific community is that it can serve as a starting point to further explore integrated solutions for achieving multiple societal objectives in light of the climate adaptation and mitigation challenges that society could face over the 21st century.  相似文献   

9.
10.
This study quantifies the Shared Socioeconomic Pathways (SSPs) using AIM/CGE (Asia-Pacific Integrated Assessment/Computable General Equilibrium). SSP3 (regional rivalry) forms the main focus of the study, which is supposed to face high challenges both in mitigation and adaptation. The AIM model has been selected as the model to quantify the SSP3 marker scenario, a representative case illustrating a particular narrative. Multiple parameter assumptions in AIM/CGE were differentiated across the SSPs for quantification. We confirm that SSP3 quantitative scenarios outcomes are consistent with its narrative. Moreover, four key features of SSP3 are observed. First, as SSP3 was originally designed to contain a high level of challenges to mitigation, mitigation costs in SSP3 were relatively high. This results from the combination of high greenhouse gas emissions in the baseline (no climate mitigation policy) scenario and low mitigative capacity. Second, the climate forcing level in 2100 for the baseline scenarios of SSP3 was similar to that of SSP2, whereas CO2 emissions in SSP3 are higher than those in SSP2. This is mainly due to high aerosol emissions in SSP3. A third feature was the high air pollutant emissions associated with weak implementation of air quality legislation and a high level of coal dependency. Fourth, forest area steadily decreases with a large expansion of cropland and pasture land. These characteristics indicate at least four potential uses for SSP3. First, SSP3 is useful for both IAM and impact, adaptation, vulnerability (IAV) analyses to present the worst-case scenario. Second, by comparing SSP2 and SSP3, IAV analyses can clarify the influences of socioeconomic elements under similar climatic conditions. Third, the high air pollutant emissions would be of interest to atmospheric chemistry climate modelers. Finally, in addition to climate change studies, many other environmental studies could benefit from the meaningful insights available from the large-scale land use change resulting in SSP3.  相似文献   

11.
In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation - and mitigation) in order to support assessment of mitigation and adaptation strategies and climate impacts. The scenario framework is organized around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across these research communities.  相似文献   

12.
Energy is crucial for supporting basic human needs, development and well-being. The future evolution of the scale and character of the energy system will be fundamentally shaped by socioeconomic conditions and drivers, available energy resources, technologies of energy supply and transformation, and end-use energy demand. However, because energy-related activities are significant sources of greenhouse gas (GHG) emissions and other environmental and social externalities, energy system development will also be influenced by social acceptance and strategic policy choices. All of these uncertainties have important implications for many aspects of economic and environmental sustainability, and climate change in particular. In the Shared-Socioeconomic Pathway (SSP) framework these uncertainties are structured into five narratives, arranged according to the challenges to climate change mitigation and adaptation. In this study we explore future energy sector developments across the five SSPs using Integrated Assessment Models (IAMs), and we also provide summary output and analysis for selected scenarios of global emissions mitigation policies. The mitigation challenge strongly corresponds with global baseline energy sector growth over the 21st century, which varies between 40% and 230% depending on final energy consumer behavior, technological improvements, resource availability and policies. The future baseline CO2-emission range is even larger, as the most energy-intensive SSP also incorporates a comparatively high share of carbon-intensive fossil fuels, and vice versa. Inter-regional disparities in the SSPs are consistent with the underlying socioeconomic assumptions; these differences are particularly strong in the SSPs with large adaptation challenges, which have little inter-regional convergence in long-term income and final energy demand levels. The scenarios presented do not include feedbacks of climate change on energy sector development. The energy sector SSPs with and without emissions mitigation policies are introduced and analyzed here in order to contribute to future research in climate sciences, mitigation analysis, and studies on impacts, adaptation and vulnerability.  相似文献   

13.
This paper discusses the role and relevance of the shared socioeconomic pathways (SSPs) and the new scenarios that combine SSPs with representative concentration pathways (RCPs) for climate change impacts, adaptation, and vulnerability (IAV) research. It first provides an overview of uses of social–environmental scenarios in IAV studies and identifies the main shortcomings of earlier such scenarios. Second, the paper elaborates on two aspects of the SSPs and new scenarios that would improve their usefulness for IAV studies compared to earlier scenario sets: (i) enhancing their applicability while retaining coherence across spatial scales, and (ii) adding indicators of importance for projecting vulnerability. The paper therefore presents an agenda for future research, recommending that SSPs incorporate not only the standard variables of population and gross domestic product, but also indicators such as income distribution, spatial population, human health and governance.  相似文献   

14.
A suggestion for mapping the SRES illustrative scenarios onto the new scenarios framework of representative concentration pathways (RCPs) and shared socio-economic pathways (SSPs) is presented. The mapping first compares storylines describing future socio-economic developments for SRES and SSPs. Next, it compares projected atmospheric composition, radiative forcing and climate characteristics for SRES and RCPs. Finally, it uses the new scenarios matrix architecture to match SRES scenarios to combinations of RCPs and SSPs, resulting in four suggestions of suitable combinations, mapping: (i) an A2 world onto RCP 8.5 and SSP3, (ii) a B2 (or A1B) world onto RCP 6.0 and SSP2, (iii) a B1 world onto RCP 4.5 and SSP1, and (iv) an A1FI world onto RCP 8.5 and SSP5. A few other variants are also explored. These mappings, though approximate, may assist analysts in reconciling earlier scenarios with the new scenario framework.  相似文献   

15.
SSPs from an impact and adaptation perspective   总被引:1,自引:1,他引:0  
The Shared Socioeconomic Pathways (SSPs) offer benefits for communities concerned with climate change adaptation research and actions (IAV), but some challenges need to be overcome in order to facilitate active IAV involvement in SSP use. This essay summarizes potential benefits, challenges, and possible strategies for enhancing the value of the SSP approach for IAV communities.  相似文献   

16.
Current projections of long-term trends in Atlantic hurricane activity due to climate change are deeply uncertain, both in magnitude and sign. This creates challenges for adaptation planning in exposed coastal communities. We present a framework to support the interpretation of current long-term tropical cyclone projections, which accommodates the nature of the uncertainty and aims to facilitate robust decision making using the information that is available today. The framework is populated with projections taken from the recent literature to develop a set of scenarios of long-term hurricane hazard. Hazard scenarios are then used to generate risk scenarios for Florida using a coupled climate–catastrophe modeling approach. The scenarios represent a broad range of plausible futures; from wind-related hurricane losses in Florida halving by the end of the century to more than a four-fold increase due to climate change alone. We suggest that it is not possible, based on current evidence, to meaningfully quantify the relative confidence of each scenario. The analyses also suggest that natural variability is likely to be the dominant driver of the level and volatility of wind-related risk over the coming decade; however, under the highest scenario, the superposition of this natural variability and anthropogenic climate change could mean notably increased levels of risk within the decade. Finally, we present a series of analyses to better understand the relative adequacy of the different models that underpin the scenarios and draw conclusions for the design of future climate science and modeling experiments to be most informative for adaptation.  相似文献   

17.
We develop a systems framework for exploring adaptation pathways to climate change among people in remote and marginalized regions. The framework builds on two common and seemingly paradoxical narratives about people in remote regions. The first is recognition that people in remote regions demonstrate significant resilience to climate and resource variability, and may therefore be among the best equipped to adapt to climate change. The second narrative is that many people in remote regions are chronically disadvantaged and therefore are among the most vulnerable to climate change impacts. These narratives, taken in isolation and in extremis, can have significant maladaptive policy and practice implications. From a systems perspective, both narratives may be valid, because they form elements of latent and dominant feedback loops that require articulation for a nuanced understanding of vulnerability-reducing and resilience-building responses in a joint framework. Through literature review and community engagement across three remote regions on different continents, we test the potential of the framework to assist dialogue about adaptation pathways in remote marginalized communities. In an adaptation pathway view, short-term responses to vulnerability can risk locking in a pathway that increases specific resilience but creates greater vulnerability in the long-term. Equally, longer-term actions towards increasing desirable forms of resilience need to take account of short-term realities to respond to acute and multiple needs of marginalized remote communities. The framework was useful in uniting vulnerability and resilience narratives, and broadening the scope for adaptation policy and action on adaptation pathways for remote regions.  相似文献   

18.
The climate change research community’s shared socioeconomic pathways (SSPs) are a set of alternative global development scenarios focused on mitigation of and adaptation to climate change. To use these scenarios as a global context that is relevant for policy guidance at regional and national levels, they have to be connected to an exploration of drivers and challenges informed by regional expertise.In this paper, we present scenarios for West Africa developed by regional stakeholders and quantified using two global economic models, GLOBIOM and IMPACT, in interaction with stakeholder-generated narratives and scenario trends and SSP assumptions. We present this process as an example of linking comparable scenarios across levels to increase coherence with global contexts, while presenting insights about the future of agriculture and food security under a range of future drivers including climate change.In these scenarios, strong economic development increases food security and agricultural development. The latter increases crop and livestock productivity leading to an expansion of agricultural area within the region while reducing the land expansion burden elsewhere. In the context of a global economy, West Africa remains a large consumer and producer of a selection of commodities. However, the growth in population coupled with rising incomes leads to increases in the region’s imports. For West Africa, climate change is projected to have negative effects on both crop yields and grassland productivity, and a lack of investment may exacerbate these effects. Linking multi-stakeholder regional scenarios to the global SSPs ensures scenarios that are regionally appropriate and useful for policy development as evidenced in the case study, while allowing for a critical link to global contexts.  相似文献   

19.
共享社会经济路径(Shared Socioeconomic Pathways, SSPs)是新一代气候变化情景的重要组成部分。SSPs从提出至今已有10年的发展,对于推动气候变化预估与影响研究、支撑气候政策决策的作用逐渐凸显。文中基于179篇主题检索文献分析了SSPs发展和应用的进展,以及在当前气候变化研究中的应用特点。研究发现,次国家和部门层面的SSPs故事线拓展开始兴起,水资源、土地和健康是影响评估领域的关注焦点,方法学上强调模型间耦合与多模型比较。当前SSPs在中国的发展与应用集中于基本要素的预估及气候影响评估,路径对各省间及城乡间社会经济发展差异的刻画有待加强。基于情景发展和应用的现状,最后从加强与气候建模团队的合作、支持影响与脆弱性研究、拓展全球情景、加强模型间比较、提高决策支持力5个方面讨论了SSPs的未来研究展望。  相似文献   

20.
With a range of potential pathways to a sustainable future compatible with the Paris Agreement 1.5 °C target, scenario analysis has emerged as a key tool in studies of climate change mitigation and adaptation. A wide range of alternative scenarios have been created, and core amongst these are five socio-economic scenarios (Shared Socio-economic Pathways or SSPs) and four emission scenarios (Representative Concentration Pathways or RCPs). Whilst mitigation scenarios (the Shared Policy Assumptions, or SPAs) have been developed for each SSP-RCP combination, describing the actions necessary to match the climate pathway of the RCP, there has not yet been a systematic approach to address whether and how these actions can be enabled in practice.We present a novel and transferable framework to understand society’s capacity to achieve the 1.5 °C target, based on four participatory case studies using the SSP-RCP scenarios. The methodology builds on a framework for categorising different types of societal capitals and capacities and assessing their impact on the potential to implement different types of mitigation actions. All four case studies show that SSP1 has the highest potential to reach the target. Although environmental awareness is high in both SSP1 and SSP4, continued social inequalities in SSP4 restrict society’s capacity to transform, despite economic growth. In the two least environmentally-aware SSPs, SSP3 and SSP5, the transformation potential is low, but the view on capitals and capacities nonetheless helps identify opportunities for actors to develop and implement mitigation actions.The study highlights that techno-economic assessments of climate strategies need to be complemented by consideration of the critical role played by social and human capital, and by societal capacity to mobilise and create these capitals despite different socio-economic trends. These capitals and capacities are essential to enable the rapid innovation, behavioural change and international co-ordination needed to achieve the 1.5 °C target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号