首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 246 毫秒
1.
2020年汛期6—8月甘肃降水日数多、持续时间长、范围广、强度大,对该时间段内3种全球模式(ECMWF、GRAPES_GFS和NCEP_GFS模式)和4种区域模式[GRAPES区域数值预报业务系统(GRAPES_3 km)、西北区域区域模式(GRAPES_LZ10 km)、西北区域快速更新循环预报系统(GRAPES_LZ3 km)和华东区域模式(SMS-WARMS)]24 h累计降水预报性能进行检验评估。结果表明:(1)全球模式中ECMWF模式的预报性能优于其余2个模式,而区域模式中GRAPES_3 km和SMS-WARMS模式预报性能相对较好,且SMS-WARMS模式预报性能更稳定。(2)区域模式晴雨准确率及小雨和中雨的TS评分、ETS评分、命中率低于全球模式,暴雨优于全球模式;大雨和暴雨的空报率和预报偏差均高于全球模式。(3)根据500 hPa环流形势可将甘肃汛期降水划分为副高边缘型和低槽型2种类型,针对2020年4次副高边缘型和3次低槽型降水进行分类检验评估。全球模式和区域模式均对前者的各个量级降水预报性能优于后者;ECMWF模式和区域模式对2种类型大雨和暴雨预报效果优于NCEP_GFS和GRAPES_GFS模式;全球模式中ECMWF模式、区域模式中SMS-WARMS模式对2种类型降水预报效果最好。(4)7种模式对2种类型中雨和大雨雨带走向预报较好,对副高边缘型降水过程降水落区的预报能力优于低槽型降水过程,但预报降水强度较观测偏强,尤其是降水中心区域。  相似文献   

2.
应用国家基本观测站资料,基于MET系统的客观统计检验方法,针对24h降水分别评估SWCWARMS模式、GRAPES模式和ECMWF模式对2017~2019年5~10月四川地区汛期预报能力,得到如下几点结论:(1)SWCWARMS模式小到大暴雨降水范围大于实况,GRAPES模式小到暴雨降水范围大于实况、大暴雨多漏报,ECMWF模式小雨和中雨降水范围大于实况、大到大暴雨多漏报,三个模式无降水或微量降水均少于实况。(2)ECMWF模式对四川雨季小到大雨预报能力优于SWCWARMS和GRAPES模式,SWCWARMS模式在部分时次上暴雨和大暴雨预报优于ECMWF模式,GRAPES模式TS评分略偏低。(3)GRAPES模式在2018年秋季开始中雨及以上量级降水预报上改善大于SWCWARMS和ECMWF模式,SWCWARMS模式2019年空报较2017年和2018年显著降低;3个模式在小雨和中雨预报上不相上下,GRAPES模式优势在2019年大雨和暴雨预报上,ECMWF模式优势在2017年秋季和2018年初夏大雨预报上,SWCWARMS模式大雨和暴雨预报能力介于二者之间。(4)ECMWF和SWCWARMS模式川东预报优于川西,GRAPES模式川西预报优于川东;三个模式存在不同程度空报,川东地区空报略多于川西,其中ECMWF模式空报最多。   相似文献   

3.
本文检验了2020年3月至2021年2月ECMWF和GRAPES以及中央台格点产品(以下简称SCMOC)和省台格点产品(以下简称SPCC)4家降水预报产品逐24h未来5天在贵州的预报质量,结论如下:(1)ECMWF和SCMOC与实况的相关系数最高,SCMOC和SPCC预报降水的变化幅度较观测偏大,而GRAPES预报降水的变化幅度较观测则是明显偏小。(2)SCMOC的晴雨准确率最高,除在72h预报时效SPCC的准确率略高于SCMOC外,其余预报时效SPCC准确率均低于SCMOC,表明SPCC的订正能力需要进一步提升。(3)在小雨量级,4种降水预报产品的TS评分相差不大,ECMWF和GRAPES的ETS评分明显低于SCMOC和SPCC,其中GRAPES的TS评分在5个预报时效内均高于ECMWF。在中雨量级,前3个预报时效内ECMWF的TS和ETS评分均高于其他三家,ECMWF在5个预报时效内预报有降水的次数大于实况出现的降水次数,但空报次数并不是最多的,在后2个预报时效内,SCMOC的TS和ETS评分均是最高的,但与其他家相差不大。在大雨量级,24h和96h预报时效ECMWF的TS和ETS评分均是最高的,而在48h、72h、120h预报时效SCMOC的TS和ETS评分是最高的。在暴雨及以上量级,前3个时效内SPCC 的TS和ETS评分均是最高,且48h的TS评分空间分布也是最优的,表明SPCC对暴雨及以上量级在前3个预报时效内订正能力较好。  相似文献   

4.
冬季高海拔复杂地形下GRAPES Meso要素预报的检验评估   总被引:4,自引:0,他引:4  
利用GRAPES(Globe/Regional Assimilation and Prediction System)对2010年温哥华奥运会6个场馆气温、相对湿度、风及降水量的预报结果,采用预报准确率、平均误差、平均绝对误差、Alpha Index、TS和ETS评分等统计量对其进行了较详细的评估。结果表明:GRAPESMeso预报相对湿度的准确率最高,且随预报时效的增加,其变化趋于稳定。起初模式对相对湿度的预报偏干,之后逐渐变为预报偏湿;气温预报偏低;风速预报偏大。逐日各要素预报检验结果表明,气温的变化幅度最小;各级降水检验发现,晴雨预报的TS评分最高,且随降水增大,ETS评分逐渐接近TS。与其他模式预报结果对比发现,GRAPES-Meso对复杂地形下要素预报还存在一定的不足。本研究还发现,模式存在一定的系统误差,若能有效订正其误差,将有助于改进模式预报。  相似文献   

5.
为了解高分辨率区域数值模式降水预报在云南的预报效果和误差特点,针对华南中尺度模式、华东区域数值预报业务模式和中央气象台GRAPES-Meso模式对2017年9月—2018年12月云南降水预报进行检验分析。结果表明:华东模式降水预报效果整体最好,其降水的振幅接近实况,晴雨准确率也是最高,而华南和GRAPES模式空报率和漏报率普遍偏高。三种模式对滇东北、滇中西部、滇西北北部≥0.1 mm降水预报评分普遍较低,对滇南、滇西南、滇西边缘地区的评分普遍较高。在滇东北北部、滇中西部、及滇西北北部地区三种模式对≥10 mm降水TS评分普遍较低。对于≥25 mm降水,华东模式和华南模式在滇中、滇西地区的TS评分高于GRAPES模式。对于≥50 mm降水,华东模式和华南模式在滇东南、滇西南、滇西边缘及金沙江河谷沿线TS评分高于GRAPES模式。对于云南强降水天气过程,≥0.1 mm降水华南模式预报效果较好,但10 mm和25 mm以上量级降水华东模式的预报效果较好,≥50.0 mm则是GRAPES模式更具参考价值。  相似文献   

6.
《干旱气象》2021,(汛)
基于站点观测资料、格点实况资料和智能网格、西南区域中心业务运行的中尺度模式系统(southwest center WRF ADAS real-time modeling system, SWCWARMS)及欧洲中期天气预报中心(ECMWF)模式资料,以面雨量为研究对象,采用平均绝对误差、模糊评分、正确率、TS评分、偏差分析等,对2019年6—10月大渡河流域面雨量预报效果进行检验评估。结果表明:预报平均绝对误差、预报正确率及模糊评分检验显示,智能网格的预报效果总体上优于其他模式。随着面雨量等级的增大,TS评分逐渐降低,空报率逐渐减小,漏报率逐渐增大,模式的预报能力逐渐降低。ECMWF模式在小雨和中雨面雨量预报中优势明显,智能网格在大雨和暴雨等级面雨量预报中表现较优。3个模式在小雨和中雨等级面雨量预报中预报的等级偏大,在大雨和暴雨等级面雨量预报中预报的等级偏小。各模式对典型降水过程面雨量预报结果表明,SWCWARMS模式对面雨量的预报等级均偏大,而智能网格和ECMWF模式对小雨和中雨的预报等级偏大,对大雨预报等级偏小。  相似文献   

7.
利用2016—2018年4月1日至6月30日三个全球数值预报业务中心(CMA、ECMWF和NCEP)的24 h降水集合预报资料和辽宁省降水观测资料,采用TS评分、预报偏差B、Talagrand分布以及BS评分等方法对辽宁省春季透雨(4—6月)CMA、ECMWF和NCEP三套全球集合预报结果进行对比分析。结果表明:三个集合预报中心的集合预报系统的离散度均具有偏小的特征,Talagrand都呈U型分布,即各集合预报系统对量级较小的降水预报值偏大,空报率高;对量级较大的降水预报能力不足,极值偏小,容易产生降水预报偏差。将各中心的确定性检验结果和概率性检验结果进行对比后发现,ECMWF相比CMA和NCEP的TS评分值更高,预报偏差B值更接近于1,也就是说另外两个预报中心对辽宁省春季透雨预报漏报更为明显。从BS评分值和其分解评分值结果来看,ECMWF优于另外两个预报中心。ECMWF对辽宁省春季透雨预报的结果与实况最为接近,检验结果最好,可在日后的预报服务工作中作为主要参考。  相似文献   

8.
对2008年7月至2009年6月JMA、T213、GRAPES、MM5、T639和GERMANY 6种数值模式产品对芜湖市的地面气温和降水预报结果进行了对比检验分析,结果表明:各模式对最高气温的预报能力一般,其中JMA、GRAPES、T639相对较好;对最低气温的预报JMA表现突出,而GRAPES在冬季预报能力较好.各模式对于芜湖站降水的预报均无绝对优势,对各等级的降水预报效果各有千秋.对于≥0.1 mm降水,JMA和GERMANY在24 h时效内TS评分较高,且JMA漏报率很低,GERMANY空报率较低,T639则从48 h时效起TS评分最高,且漏报率较低;对于≥10 mm降水,T639的TS评分较高且漏报率较低,GERMANY和GRAPES在48 h时效内评分也较高且空报率低,JMA在48 h时效后空报率较高,成绩较差;JMA、T639和GERMANY对强降水预报能力相对较强,特别是T639对暴雨比较敏感,而各模式在72 h之后对强降水的预报能力较差.另外,各模式对降水预报的TS评分均为夏季低、冬季高,空报率均为夏季高、冬季低.  相似文献   

9.
2010年汛期多模式对山东降水预报的检验   总被引:2,自引:0,他引:2       下载免费PDF全文
为提高数值预报模式在山东汛期降水的预报能力,为降水预报及模式物理参数方案选择和调整提供客观依据,对2010年汛期(6-9月)山东区域MM5、WRF-RUC(WRF快速循环同化系统)和T639模式24 h、48 h累积降水预报产品,进行晴雨、一般性降水和分量级降水TS评分及平均绝对误差、平均误差分析。结果表明:从晴雨预报准确率来看,3种模式相差不大;一般性降水和小雨预报,MM5模式评分结果最差,T639模式预报效果最好;中雨以上量级,24 h降水T639模式预报效果最好,特别是24 h大暴雨评分T639模式达到了10.37 %,而48 h降水T639模式预报效果下降明显。无论24 h降水还是48 h降水,除9月WRF-RUC模式平均绝对误差最小外,6-8月T639模式平均绝对误差均为最低,WRF-RUC模式24 h和48 h降水各月平均误差均为负偏差;不同的降水预报检验方案和天气过程类型对检验结果有一定的影响。  相似文献   

10.
采用客观降水检验方法,对广东2012年1月1日至8月31日GRAPE中尺度模式和日本GSM全球谱模式(JMA)降水预报产品进行累加降水量级检验、分区域按季节预报效果对比以及时空分布演变评估.结果表明:随着降水量级和预报时效增加,两个模式TS评分呈现下降趋势,GRAPES模式TS评分总体高于JMA;对于小雨、中雨以上降水预报,两个模式4-6月预报效果好于7-8月,对4-6月广东北部预报稍好于南部,对7-8月广东南部预报略好于北部;两个模式不能预报出广东平均降水中心,GRAPES对广东日均降水预报值随预报时效增加而增加;两个模式能够对广东逐日降水演变做出准确的预报,但降水预报值与实况存在一定的差别.  相似文献   

11.
Early and effective flood warning is essential for reducing loss of life and economic damage.Three global ensemble weather prediction systems of the China Meteorological Administration (CMA),the Europe...  相似文献   

12.
赵桂洁  何娜  郝翠  李靖  李桑 《气象科技》2021,49(6):869-877
利用2018年10月1日至2019年9月30日北京地区55个地面气象站的实况观测数据对欧洲中期天气预报中心的全球预报(ECMWF thin)、国家气象中心区域预报(Grapes)、北京睿图(RMAPS)、国家级指导预报(SCMOC)、北京智能网格温度客观预报(BJTM)和集合相似预报(AnEn)的逐日最高、最低气温预报结果进行检验评估。结果表明:①ECMWF thin模式预报效果优于Grapes和RMAPS,客观方法BJTM和AnEn对ECMWF thin的改进效果明显。②AnEn在10月至次年4月预报效果好,BJTM在5—9月预报效果好;不同预报时效中,AnEn在短期、中期前段预报效果较好,BJTM在中期5~9 d预报效果相对较好。③以南郊观象台为代表站进行检验,结果显示模式预报均存在明显的系统偏差,客观方法对系统偏差有很好的订正效果。④在降水、大风或无天气系统时,BJTM、AnEn的日最高温度预报准确率较高;雾霾天气背景下,ECMWF thin的最高温度预报准确率较高。雾霾、大风和无天气系统时,ECMWF thin最低温度预报偏差最小,客观方法对模式预报无改进;降水天气背景下,RMAPS和BJTM对最低温度的预报偏差最小。  相似文献   

13.
The Dynamical-Statistical-Analog Ensemble Forecast model for landfalling tropical cyclones (TCs) precipitation (DSAEF_LTP) utilises an operational numerical weather prediction (NWP) model for the forecast track, while the precipitation forecast is obtained by finding analog cyclones, and making a precipitation forecast from an ensemble of the analogs. This study addresses TCs that occurred from 2004 to 2019 in Southeast China with 47 TCs as training samples and 18 TCs for independent forecast experiments. Experiments use four model versions. The control experiment DSAEF_LTP_1 includes three factors including TC track, landfall season, and TC intensity to determine analogs. Versions DSAEF_LTP_2, DSAEF_LTP_3, and DSAEF_LTP_4 respectively integrate improved similarity region, improved ensemble method, and improvements in both parameters. Results show that the DSAEF_LTP model with new values of similarity region and ensemble method (DSAEF_LTP_4) performs best in the simulation experiment, while the DSAEF_LTP model with new values only of ensemble method (DSAEF_LTP_3) performs best in the forecast experiment. The reason for the difference between simulation (training sample) and forecast (independent sample) may be that the proportion of TC with typical tracks (southeast to northwest movement or landfall over Southeast China) has changed significantly between samples. Forecast performance is compared with that of three global dynamical models (ECMWF, GRAPES, and GFS) and a regional dynamical model (SMS-WARMS). The DSAEF_LTP model performs better than the dynamical models and tends to produce more false alarms in accumulated forecast precipitation above 250 mm and 100 mm. Compared with TCs without heavy precipitation or typical tracks, TCs with these characteristics are better forecasted by the DSAEF_LTP model.  相似文献   

14.
FY-2E云导风的算法改进及其在GRAPES中的同化应用研究   总被引:5,自引:4,他引:1  
2014年国家卫星气象中心全面改进了风云二号卫星云导风产品算法,为评估算法改进后FY-2E云导风资料对我国GRAPES数值模式同化和预报的影响,根据国家卫星气象中心提供的2013年8月算法改进前后的FY-2E红外通道云导风资料,对比分析了两者的观测分布及偏差特征,并利用GRAPES全球模式进行了一个月的连续试验。结果表明,改进算法后的FY-2E红外通道云导风观测数量明显增加,观测误差在600~200 hPa有所减小,风的平均偏差在高层减少,更满足正态分布;连续试验结果表明北半球和东亚地区风场在300~150 hPa分析中改进显著,风的平均偏差和均方根误差明显减少;预报结果显示500 hPa高度场预报距平相关系数略提高,均方根误差略减小;说明改进算法后的FY-2E红外通道云导风对GRAPES数值模式同化和预报均有一定改善。  相似文献   

15.
GRAPES-REPS西南低涡预报检验评估   总被引:5,自引:4,他引:1  
王静  陈静  钟有亮  张进  李晓莉 《气象》2017,43(4):385-401
利用2015年6—8月GR APES-REPS(Global/RegionalAssimilation and Prediction System-Regional Ensemble·Prediction System)区域集合预报资料,并设计西南低涡格点资料客观识别方法对西南低涡中心位置进行定位,首先评估GRAPES控制预报对西南低涡的预报准确性,之后挑选出四次生命史较长的西南低涡过程,分析评估GRAPES-REPS对西南低涡发生、发展、移动及降水过程集合预报性能。结果表明:(1)GRAPES模式对西南低涡预报的命中率较高,空报率略大于漏报率。(2)GRAPES-REPS对西南低涡发生和发展的预报效果较好,绝大部分集合预报成员能预报西南低涡发生和发展过程,但对西南低涡发生时间预报总体偏早。(3)GRAPES-REPS对西南低涡移动路径在24 h预报时效内比较合理,且集合预报平均明显优于控制预报,24 h之后东移型西南低涡移动路径明显偏北。(4)GRAPES-REPS对西南低涡强度预报总体偏强,表现为中心正涡度值偏大,位势高度值偏低。(5)24 h预报时效内,西南低涡触发的小雨到大雨量级的降水概率评分均有较好表现,且落区与实况接近,而暴雨落区个别略有偏北,但基本吻合。24 h之后,由于东移型西南低涡移动路径偏北导致模式预报降水落区偏北。可见,模式对西南低涡强降水有一定预报能力,因此,提高GRAPES-REPS中尺度集合预报能力,将有助于改进西南低涡强降水预报。  相似文献   

16.
尽管确定性预报不是集合预报系统(EPS)的主要目的和应用方向,但其每一个成员的预报表现决定了集合预报系统的预报性能,集合平均也是实际预报业务的一个重要参考指标。为此,利用2013~2015年5~10月的欧洲中期天气预报中心(ECMWF)集合预报系统的降水预报资料,CMORPH(NOAA Climate Prediction Center Morphing Method)卫星与全国3×10~4余个自动气象观测站的逐小时降水量融合资料,研究ECMWF集合预报系统对秦岭周边地区逐日降水的控制预报、成员预报、集合平均的预报能力,并探索提高降水集合平均预报性能的有效方法。主要结论如下:(1)无论是集合平均还是控制预报,整体上都较好的刻画了秦岭周边地区降水的空间形态,比较而言,控制预报能够更好的表现了降水的方差变化。(2)泰勒分析表明,集合平均的降水方差随预报时效增加单调减小,控制预报的方差变化随预报时效的增长振荡较小,其相关系数略优于集合平均。(3)技巧评分表明,集合平均使小雨(降水发生频次)的预报偏差显著增加,增大了空报率;使大雨以上的降水预报偏差减小,增大了漏报率,从而使得大多数情况下,集合平均TS(Threat Score)、ETS(Equitable Threat Score)评分低于控制及扰动成员预报。分析认为这主要是由于降水这一要素的偏态分布特性引起的。(4)集合平均的显著贡献在于能够较好的指示可能发生降水的空间位置。通过阈值限定,调整预报偏差,减少(增大)其对小雨(暴雨)的预报频率,能够使集合平均的TS、ETS评分大幅度提升,预报技巧显著优于成员预报和控制预报。目前,预报偏差Bias订正方法已成功应用于陕西省精细化格点预报系统中。  相似文献   

17.
范宇恩  陈静  邓国  陈法敬  刘雪晴  徐致真 《气象》2019,45(12):1629-1641
中国气象局数值预报中心自2014年建立了区域集合预报业务系统,其使用的侧边界扰动由全球集合预报系统动力降尺度得到。为深入了解侧边界扰动对区域集合预报的影响,基于15 km水平分辨率的区域集合预报模式,使用动力降尺度方法和尺度化滞后平均法(scaled lagged average forecasting,SLAF)设计构造了两种侧边界扰动方案,并开展了2015年7月共6天的集合预报试验,利用集合均方根误差、集合离散度、连续分级概率评分、离群值、Brier Score及相对作用特征曲线面积等概率预报检验方法进行了多方面检验,分析了两种侧边界扰动方案对区域集合预报质量的影响。结果表明:动力降尺度侧边界扰动方案(DOWN)的扰动总能量在各垂直层次均大于SLAF方案,使得边界上前者的离散度大于后者,集合扰动增长更为合理;对于等压面要素和地面要素,DOWN方案的离散度、Outlier、CRPS等评分优于SLAF方案,反映了DOWN方案构造的侧边界扰动更加合理;在降水概率预报技巧方面,SLAF方案在评分上具有一定优势,但评分的提高没有通过显著性水平检验,因此认为两种方案对降水预报的改进基本相当。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号