首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
移出与未移出高原的两类低涡环流特征的对比分析   总被引:1,自引:1,他引:0  
顾清源  师锐  徐会明 《气象》2010,36(4):7-15
利用NECP再分析资料,采用对比分析方法,对2000-2004年汛期(6-9月)的高原低涡活动过程进行普查,并对移出高原低涡与未移出高原低涡在其生成时刻的环流特征场,以及移出高原低涡的移出高原时刻与未移出高原低涡的强盛时刻的环流特征场进行对比分析。分析表明:500 hPa上,移出高原低涡背景环流中巴尔喀什湖低槽、东亚大槽比未移出高原低涡深,蒙古高压脊更强,背景环流经向度大,而且副热带高压比未移出高原低涡西伸明显;暖平流对高原低涡的生成很重要,而涡后新疆冷平流有利于高原低涡移出高原主体;青藏高原上的正涡度平流有利于高原低涡的生成和加深,河套地区正涡度平流带的存在有利于高原低涡的移出。在200 hPa上,南亚高压的存在有利于高原低涡的生成,移出高原低涡上空的南亚高压强度要强于未移出高原低涡;青藏高原东北部、四川盆地到陕西一带位于高空急流入口区南侧时有利于高原低涡东移。找出高原低涡移出与未移出高原主体的环流场、温度平流场、涡度平流场的异同特征,为高原低涡能否东移出高原主体提供科学依据。  相似文献   

2.
本文对1979~2017年6月1~5日有无高原涡东移年份从东亚夏季风的高低空环流系统进行对比分析表明:同一较短时间段,有长生命尺度东移高原涡与无高原涡东移的年份,东亚季风区的高低空环流系统有较明显差异,且不同路径东移高原涡高低空环流系统也有异同。(1)高度场:有高原涡东移年份,西风急流大值区较无高原涡东移年份明显偏东,南亚高压中心纬度大致相同,东北移、东南移路径南亚高压中心分别偏北、偏南。有高原涡东移年份东亚大槽较无高原涡东移年份偏东。东北移、东移、东南移的西太平洋副热带高压西伸脊点依次偏南,偏东。(2)水汽条件:有高原涡东移年份均伴随有贝加尔湖东南部输送至我国东北的宽的水汽带,不同东移路径与纬向风分量关系密切。(3)海平面气压场:有高原涡东移年份海陆气压差较大,且海平面气压随着高原涡东移出现一个向东逐渐减小的过程。   相似文献   

3.
高原低涡移出高原后持续活动的典型个例分析   总被引:1,自引:0,他引:1  
利用1°×1°NCEP/NCAR再分析资料,选取500 hPa分别为西风槽、切变线和切变流场影响背景下、移出高原后维持48 h以上的3次典型高原低涡个例,分析了低涡维持期间500 hPa环境场、主要影响系统、涡度与温度平流、200 hPa形势场及垂直动力结构,并利用涡度方程对总涡源和各强迫项进行了诊断分析,结果表明:(1)西风槽影响时高原低涡移动路径受槽前西南气流引导,切变线影响时低涡沿切变线自西向东移动,切变流场影响时低涡移动主要受西太平洋副热带高压(下称西太副高)进退的影响,当西太副高出现明显西伸时,可导致低涡折向西退,3次个例均持续有正涡度平流和冷平流向涡区输送;(2)西风槽和切变线影响时南亚高压为东西带状分布,切变流场影响时南亚高压为北拱形;(3)高原低涡东移发展达到最强时,3次个例在200hPa均有低槽或低压叠加,从而形成深厚的正涡度柱;(4)500 hPa存在正涡度变率中心,低涡沿正涡度变率中心方向移动,高空槽和切变流场影响时正涡度变率主要来自水平输送项,切变线影响时主要来自辐合辐散项。  相似文献   

4.
利用近30年(1981—2010年)历史天气图、MICAPS资料以及台站降雨资料,对6—8月移出型高原低涡的时空分布特征及其对我国降雨的影响进行了研究,并初步分析了不同路径移出型高原低涡的环流形势及降雨分布。结果表明:近30年来平均每年有9个高原低涡能够移出高原而发展,移出型高原低涡涡源主要在西藏改则、安多和青海沱沱河以北以及曲麻莱附近,并以东移为主,占移出型高原低涡的58.2%,而东北移和东南移的分别占25.5%和13.8%,其它路径占2.5%。东移路径移出型高原低涡频次与长江流域中上游、黄河流域上游及江淮地区的降雨有较好的正相关;东北移路径移出型低涡频次与长江流域上游、黄河流域以及东北降雨相关较好;东南移路径移出型低涡频次与高原东南侧及长江流域的降雨有较好正相关。各路径移出型低涡的降雨合成分析距平异常大值区分布与各路径正相关分布一致,且降雨异常大值中心与正相关大值中心相对应。利于高原低涡移出并发生降雨的500 hPa异常环流形势为:东移路径,中高纬异常环流型为“西高东低”分布,西太平洋副热带高压(简称西太副高)强度偏弱且位置偏东、偏南,低涡降雨带维持在长江流域与黄河流域之间;东北移路径,中高纬异常环流型仍为“西高东低”型,西太副高强度偏强且位置偏北、偏东,雨带维持在黄河流域及东北地区;东南移路径,为“两高夹一低”异常型环流,西太副高强度较强且位置偏西、偏南,降雨带位于长江流域及其以南地区。   相似文献   

5.
近年来影响我国东部洪涝的高原东移涡环流场特征分析   总被引:3,自引:7,他引:3  
利用NECP再分析资料,对1998—2004年间5次影响我国东部地区严重暴雨的高原东移涡过程的对流层中上层环流场特征进行了分析,指出了影响高原低涡东移出高原的四种天气系统类型:北槽南涡型、切变线、切变流场及西风槽前部;揭示了高原低涡东移出高原与500 hPa上的冷空气、副热带高压位置、200 hPa上的南亚高压及西风急流之间的关系;获取了高原低涡东移出高原的强信号,为高原东移涡暴雨预报提供了科学依据。  相似文献   

6.
利用ERA5(0.25°×0.25°)逐小时再分析资料,TRMM卫星降水资料和FY-2E卫星黑体亮温(TBB)资料等,探讨了2017年7月7-9日的一次移出高原涡形成发展的环流背景和移动特征,以及引发江淮流域强降水的动热力机制,并应用HYSPLIT4模式追踪江淮流域强降水的水汽源地。结果表明:此次高原涡生成于高原中部,先向东南方移动,到达四川中部后转为东北向移动,生命史为39 h。200 hPa南亚高压和高空急流强度较强,低涡位于高空急流入口区右侧的辐散区,促使低涡形成和发展。500 hPa低涡前部的负变高中心以及西太平洋副热带高压边缘的西南气流引导低涡的东移和转向。低涡移出高原后处于高空槽前正涡度平流造成的减压区,加之大地形背风坡有利于气旋性涡度增强,低涡得以发展。低涡下高原后沿江淮切变线移动,槽后的冷空气与携带孟加拉湾和南海水汽的偏南气流汇合,在锋生作用下低涡发展为江淮气旋,降雨量迅速增强达到大暴雨标准。高低空急流的耦合和低层对流不稳定的发展加强了动力抬升作用,有利于江淮强降水的形成。强降水的水汽源地主要为南海和孟加拉湾,降水最强时段对应辐合上升运动最强,对流云发展旺盛使降水得以维...  相似文献   

7.
高原低涡东移出高原的平均环流场分析   总被引:7,自引:7,他引:7  
高文良  郁淑华 《高原气象》2007,26(1):206-212
利用美国国家环境预测中心(NCEP)再分析资料,挑选出1998—2004年夏季高原涡移出高原多、少的年、月对它们的环流场进行对比分析。对比分析指出,6~8月是高原涡最易移出的月;当500hPa孟湾季风槽偏北,或西太副高明显西伸,高原东部有切变线活动;当200hPa南亚高压东伸明显,高原东部为南亚高压脊前西北气流控制时,有利于高原涡东移出高原。为高原低涡暴雨预报的气候背景提供了科学依据。  相似文献   

8.
冷空气对两例高原低涡移出高原影响的分析   总被引:12,自引:7,他引:5  
利用NCEP再分析资料对2002年8月12~20日托勒涡及2003年7月12~14日诺木洪涡两例高原低涡在冷空气影响下移出高原的斜压性和温度平流进行诊断分析,结果表明:(1)受切变线影响的托勒低涡移出高原时主要受东北方冷空气不断伸入涡区的影响,西风槽前的诺木洪低涡主要受西北方冷空气伸入涡区的影响。(2)高原低涡是在600 hPa以上涡柱内斜压性较强、500 hPa涡区内斜压性加强情况下移出高原的。不同的是:托勒低涡移出高原,涡柱内对流层中上层斜压性、500 hPa涡区内斜压性都比诺木洪低涡弱;托勒低涡涡柱内北冷南暖现象比诺木洪低涡强。(3)高原低涡是在低涡区内大部分受冷平流控制,涡区西部冷平流比东部强时移出高原的;低涡西部的冷平流加强将会使低涡发展加强,在高原以东持续。不同的是:受切变线影响的托勒低涡移出高原时低涡西部冷平流区强度比受西风槽前诺木洪低涡弱;而托勒低涡区冷平流区比诺木洪低涡移出高原时大。  相似文献   

9.
南支气流对高原低涡移出青藏高原影响的诊断分析   总被引:1,自引:0,他引:1  
利用NCEP再分析资料对2001年以来移出青藏高原后活动时间长(〉48小时)的3次高原低涡在南支气流影响下移出高原的个例,进行了325°K等熵面分析、500hPa水汽输送、涡度平流的诊断分析,得出了南支气流影响高原低涡移出高原的共同特征与差异,给出了南支气流对高原低涡移出高原影响的综合作用的概念模型。丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。  相似文献   

10.
利用NCEP再分析资料对2001年以来移出青藏高原后活动时间长(>48小时)的3次高原低涡在南支气流影响下移出高原的个例,进行了325°K等熵面分析、500hPa水汽输送、涡度平流的诊断分析,得出了南支气流影响高原低涡移出高原的共同特征与差异,给出了南支气流对高原低涡移出高原影响的综合作用的概念模型。丰富了高原低涡东移的认识,为高原低涡洪涝暴雨的预报提供了科学依据。   相似文献   

11.
利用ECMWF资料对2001年6月1~5日东移出高原的低涡个例的动力结构进行了诊断分析。结果表明:(1)低涡东移过程中,闭合等高线或者闭合气旋式环流的垂直厚度随时间呈加厚趋势;(2)高原低涡在东移过程中,垂直方向上几乎都是正涡度,500hPa上正涡度随时间呈增强趋势;(3)在高原上时涡区明显低层辐合、高层辐散;移出高原后表现为微弱的低层辐合、高层辐散,甚至低层辐散、中层辐合、高层辐散。(4)处于高原上时涡区整层都为上升运动,移出高原以后上升运动微弱,中低空经常为下沉运动。(5)低涡处于高原上时,涡区在边界层始终有水汽辐合,移出高原以后在低空只有微弱的水汽辐合甚至辐散。涡区外围东南侧的槽前脊后区存在低空急流,是水汽通量和水汽辐合的大值区。   相似文献   

12.
利用NCEP/NCAR再分析资料、历史天气图与青藏高原低涡切变线年鉴,在普查和分析1998-2012年持续强影响青藏高原低涡移出高原与持续强盛时的500 hPa环流形势及影响系统的基础上进行了分类,并对不同类型的持续强影响高原低涡在移出高原与持续强盛时的物理场进行了合成与对比分析。结果表明:持续强影响高原低涡以两高切变东阻型对中国降水影响最大,主要影响河套地区,切变线类、热带低压影响型、低槽前部类主要影响地区分别是黄淮流域、西南地区、长江流域;持续强影响高原低涡移出高原后,对40°N以北环流形势依赖性不强,主要是受高原低涡周边对流层中层西风带天气系统、副热带天气系统与热带天气系统相互作用造成的。研究分析还揭示了各类高原低涡移出高原后持续的对流层中层共同的大尺度条件及其主要差异。  相似文献   

13.
利用2012~2016年Micaps天气图资料和《西南低涡年鉴》,对西南低涡及不同涡源西南涡的变化特征、活动期和移动特征以及对降水的影响等进行了统计分析。结果表明:(1)西南低涡平均每年生成95次,但各年差异大。其中,九龙涡最多,盆地涡次之,小金涡最少。西南低涡多发时段在春季与夏初,其中,九龙涡多发时段在春季与夏季,盆地涡多发时段在冬季与春初,小金涡多发时段在冬末与春季。(2)西南低涡活动主要在4~7月,小金涡最长生命史可达168h,在7月;九龙涡最长生命史156h,在5月;盆地涡最长生命史144h,在4月。西南低涡大多数在生成后24h内消失。在12月的西南低涡生命史最短,绝大部分在24h内。(3)西南低涡有三分之一能移出涡源区。其中,九龙涡移出的个数最多,盆地涡其次,小金涡移出的个数最少,但移出几率最高。3~6月是西南低涡移出的主要时段。其中,九龙涡主要移出时段在4~7月;盆地涡主要移出时段在1~5月;小金涡主要移出时段在2~5月。(4)西南低涡主要移动路径是东北、东、东南。其中,九龙涡以东北移为主;盆地涡以东北移、东移为主;小金涡以东移、东南移为主。(5)除冬季、春初外,不同涡源西南涡不论活动时间长短,都会造成降水,九龙涡造成的降水一般比盆地涡大。西南涡造成的很强降水多出现在6~7月。   相似文献   

14.
利用ERA-interim再分析资料和全国824个国家气象站的日降水资料,分析了1983—2012年夏季发生在四川盆地且生命史大于等于24 h(定义为长生命史)的低涡年际变化特征和成因,以及它对川渝地区季节降水的影响,研究结果表明:夏季长生命史的盆地涡的涡源主要位于盆地西南部附近和东北部附近,根据涡源位置的差异可将盆地低涡分为西南型和东北型。由于夏季长生命史西南型盆地涡出现频数远大于东北型盆地涡,因此长生命史西南型盆地涡对季节累积降水贡献较大,但是进一步分析发现长生命史东北型盆地涡产生的日降水强度较强,降水范围较广。长生命史西南型盆地涡由于较少移动,其主要影响区位于初生源地附近的局地地区,而长生命史东北型盆地涡由于移动性较强,其主要影响区位于副热带高压外围的较大范围地区。从季节尺度来说,影响两类低涡频数变化的关键大气环流因子有显著差异,当中纬度长波槽偏强,副热带高压西伸明显加强,以及高原南支绕流偏强时,有利于更多长生命史西南型盆地涡的生成;而当南亚高压强度偏弱,高纬度西伯利亚高压脊稳定维持,以及西伸的副热带高压边缘正好位于云贵高原东部地区附近时,有利于更多长生命史东北型盆地涡的生成。  相似文献   

15.
青藏高原低涡活动的统计研究   总被引:14,自引:3,他引:11       下载免费PDF全文
利用1980-2004年5~9月逐日08时、20时(北京时,下同)两个时次的500 hPa天气图资料,统计分析了夏季青藏高原低涡(简称高原低涡)的活动特征.结果表明:夏季高原低涡的发生频次具有明显的年代际、年际和季节内变化特征,20世纪90年代以后低涡出现频次较之80年代有下降趋势,7月份是夏季高原低涡的活跃期;青藏高原上产生低涡的四个源地分别为:申扎-改则之间、那曲东北部地区、德格东北部和松潘附近;移出青藏高原的高原低涡在青藏高原上主要有四个涡源:那曲东北部、曲麻莱地区、德格附近和玛沁附近,也存在季节内变化,与青藏高原上产生低涡的涡源不同;部分高原低涡形成后,能在高原上生存36 h以上并发展东移,移动路径主要有东北、东南和向东三条,其中向东北移动的低涡数量最多;而低涡移出青藏高原后的路径与在高原上的移动路径并不相同,移出高原后的低涡多数是向东移动的,其次才向东北、东南移动;高原低涡移出高原时主要有两条路径:一条为东北路径,主要移向河西、宁夏和黄土高原一带;另一条是东南路径,主要移向四川盆地附近,其中,移向黄土高原的低涡最多;移出低涡也表现出一定的年际变化和季节内变化特征;高原低涡移出青藏高原后,多数在12 h内减弱消亡,有些可持续60 h,极少数能存活100 h以上,最长可达192 h,不仅影响我国东部广大地区的降水,甚至可能影响朝鲜半岛和日本;高原低涡在青藏高原上初生时,暖性涡比斜压涡多近两倍,而移出青藏高原后12 h内的低涡性质却发生了很大改变,以斜压涡居多;与60、70年代相比,80年代中期以后高原低涡的发生源地、移动路径和性质等特征都有所改变.  相似文献   

16.
郁淑华  高文良  彭骏 《气象学报》2022,80(6):864-877
利用1998—2018年NCEP/NCAR 全球最终分析数据、大气观测资料、青藏高原低涡切变线年鉴,采用合成方法分析了准平直长路径和多折向路径东移高原低涡的环境场特征,探讨了低涡折向的主导因素。结果表明: 准平直长路径低涡、多折向路径低涡长时间活动的共同环境场特征是有明显影响低涡活动的天气系统, 副热带高压(简称副高)位于高原低涡东南方,高原低涡以北上空伴有东、西段急流;低涡有正涡度平流输入,高原低涡上空为辐散区,高空高位涡下传到低涡。同时,二者环境场特征存在明显差异,多折向路径低涡伴有较强的热带低压活动,是在副高、西风带天气系统、热带低压相互作用的环流背景下,高原涡东移受阻而折向; 准平直长路径低涡是在西风带天气系统为主导的环流背景下向东移动;准平直长路径低涡受冷空气、西南气流与高空锋区的影响比多折向路径低涡强,造成了准平直长路径低涡的正涡度平流、位涡、斜压性、高空辐散比多折向路径低涡强。多折向路径低涡折向的主导因素是环境场条件使低涡在减弱、东移受阻的情况下高空高位涡中心在低涡西部上空,高位涡下传使低涡加强的强正位涡异常区出现在低涡西部,低涡移向低涡加强的区域。   相似文献   

17.
影响华南地区西南低涡的频数及移动特征分析   总被引:1,自引:0,他引:1  
利用中国气象局提供的MICAPS观测资料以及空间分辨率为1 °×1 °的ERA-Interim再分析资料,对1991—2010年3—8月影响华南地区的西南低涡的生成和移动进行统计分析。结果表明,影响华南地区的西南低涡在6、7月出现频率较高;随着月份推移其维持时间逐渐增加,3月的维持时间最短(48小时),8月最长(105小时);将影响华南地区的西南低涡按不同移动路径分为四类:东移型、东南移型、南移型和停滞型。在频数方面,东移型西南低涡出现次数最多(33个),东南移型次数最少(12个);在维持时间方面,停滞型西南低涡的维持时间最短(54小时),南移型维持时间最长(86小时)。四类移动路径西南低涡所对应的大尺度环流场表明,停滞型西南低涡其对流层中高层槽脊不明显且辐散运动较弱,下游地区对流层低层有冷平流及辐散运动,不利于西南低涡的发展和移出,而其他三类移出型的西南低涡在对流层中高层有明显的槽脊系统及较强的辐散运动,同时在对流层低层,不同移动路径的西南低涡在各自移动方向上均有风场辐合带和暖平流区与之对应,有利于西南低涡的移动和发展。   相似文献   

18.
高原低涡移出高原的观测事实分析   总被引:27,自引:0,他引:27  
郁淑华  高文良 《气象学报》2006,64(3):392-399
应用天气学、统计学原理,结合TRMM资料,分析了1998—2004年5—9月移出高原的低涡的活动特征。结果指出:6—8月是高原低涡移出高原影响中国东部天气的主要时段,它与高原低涡在高原上的活动特征及西南低涡移出高原特征均不同;移出高原的高原低涡的涡源主要在曲麻莱附近、德格附近,这与高原上产生低涡的涡源不同;移出高原的高原低涡的移动路径多数是随低槽的活动而向东、向东南移动,这与高原低涡在高原上多数是沿切变线移向东北不同,高原低涡移出高原后,不仅影响中国的范围广,还可能影响到朝鲜半岛、日本;高原低涡移出高原后涡的强度、性质会有变化,在高原以东活动时间长(≥36 h)的高原低涡,移出高原前多数为暖性低涡,移出高原后多数为斜压性低涡,低涡加强、多数可产生暴雨、大暴雨;高原低涡移出高原后移到海洋上,往往因下垫面不同而变化,出海后都有降水加强、多数位势高度下降的现象;移出高原后的高原低涡因东面海上热带气旋活动而少动,与其南面热带气旋活动相向而行,因季风低压少动而少动的现象。  相似文献   

19.
高原低涡是青藏高原(简称高原)的主要降水系统,其移出高原后,往往会在高原下游地区造成大到暴雨甚至大暴雨.低涡移出高原后的移动方向主要有东移、东北移等.本文基于1979—2018年高原低涡数据库,选取初夏(6月)东北移低涡为研究对象,依据其移出位置,将其分为偏西型低涡(简称Ⅰ类低涡)和偏东型低涡(简称Ⅱ类低涡),对两类东...  相似文献   

20.
利用1951~2012年新疆哈密市的观测资料和NCEP再分析资料,对造成哈密市大降水(12.0 mm)的大气环流特征进行合成分析。结果发现造成哈密站大降水的大气环流分为4种类型:横槽型、低涡型、低槽(ω)型和不稳定小槽型。其中出现暴雨以上降水(24 h降水量24.0 mm)的个例集中在低槽(ω)型;横槽型个例的降水量在13.0~22.0 mm之间;低涡型个例的降水量分布相对均匀,在15.0~20.0 mm之间;不稳定小槽型个例的降水量偏少,全部在18.0 mm以下。4种类型的大气环流特征主要在对流层中高层差异明显。横槽型中低纬度环流平直,其横槽的北部是西北气流,南亚高压是青藏高压西部型;低涡型的中低纬度,在孟加拉湾有低槽,低槽的北部有低涡存在,低涡西面的脊偏强,其南亚高压是青藏高压东部型;低槽(ω)型东部的脊偏强,呈西北东南向,南亚高压是伊朗高压型;不稳定小槽型的南亚高压为伊朗高原到青藏高原东部的带状,500 hPa位势高度场上,85°E以西是平直的偏西气流,新疆东部地区有一小的短波槽。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号