首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 An improved concept of the best analogues method was used to reconstruct the Last Glacial Maximum (LGM) climate from a set of botanical records from the former Soviet Union and Mongolia. Terrestrial pollen and macrofossil taxa were grouped into broad classes – plant functional types (PFTs), defined by the ecological and climatic parameters used in the BIOME1 model. PFT scores were then calibrated in terms of modern climate using 1245 surface pollen spectra from Eurasia and North America. In contrast to individual taxa, which exhibit great variability and may not be present in the palaeoassemblages, even in suitable climates, PFTs are more characteristic of the vegetation types. The modified method thus allows climate reconstruction at time intervals with partial direct analogues of modern vegetation (e.g. the LGM). At 18 kBP, mean temperatures were 20–29 °C colder than today in winter and 5–11 °C colder in summer in European Russia and Ukraine. Sites from western Georgia show negative, but moderate temperature anomalies compared to today: 8–11 °C in January and 5–7 °C in July. LGM winters were 7–15 °C colder and summers were 1–7 °C colder in Siberia and Mongolia. Annual precipitation sums were 50–750 mm lower than today across northern Eurasia, suggesting a weakening of the Atlantic and Pacific influences. Reconstructed drought index shows much drier LGM conditions in northern and mid-latitude Russia, but similar to or slightly wetter than today around the Black Sea and in Mongolia, suggesting compensation of precipitation losses by lower-than-present evaporation. Received: 11 May 1998 / Accepted: 25 September 1998  相似文献   

2.
In order to improve the reliability of climate reconstruction, especially the climatologies outside the modern observed climate space, an improved inverse vegetation model using a recent version of BIOME4 has been designed to quantitatively reconstruct past climates, based on pollen biome scores from the BIOME6000 project. The method has been validated with surface pollen spectra from Eurasia and Africa, and applied to palaeoclimate reconstruction. At 6 cal ka BP (calendar years), the climate was generally wetter than today in southern Europe and northern Africa, especially in the summer. Winter temperatures were higher (1–5°C) than present in southern Scandinavia, northeastern Europe, and southern Africa, but cooler in southern Eurasia and in tropical Africa, especially in Mediterranean regions. Summer temperatures were generally higher than today in most of Eurasia and Africa, with a significant warming from ∼3 to 5°C over northwestern and southern Europe, southern Africa, and eastern Africa. In contrast, summers were 1–3°C cooler than present in the Mediterranean lowlands and in a band from the eastern Black Sea to Siberia. At 21 cal ka BP, a marked hydrological change can be seen in the tropical zone, where annual precipitation was ∼200–1,000 mm/year lower than today in equatorial East Africa compared to the present. A robust inverse relationship is shown between precipitation change and elevation in Africa. This relationship indicates that precipitation likely had an important role in controlling equilibrium-line altitudes (ELA) changes in the tropics during the LGM period. In Eurasia, hydrological decreases follow a longitudinal gradient from Europe to Siberia. Winter temperatures were ∼10–17°C lower than today in Eurasia with a more significant decrease in northern regions. In Africa, winter temperature was ∼10–15°C lower than present in the south, while it was only reduced by ∼0–3°C in the tropical zone. Comparison of palaeoclimate reconstructions using LGM and modern CO2 concentrations reveals that the effect of CO2 on pollen-based LGM reconstructions differs by vegetation type. Reconstructions for pollen sites in steppic vegetation in Europe show warmer winter temperatures under LGM CO2 concentrations than under modern concentrations, and reconstructions for sites in xerophytic woods/scrub in tropical high altitude regions of Africa are wetter for LGM CO2 concentrations than for modern concentrations, because our reconstructions account for decreased plant water use efficiency.  相似文献   

3.
Summary  The possibility of climate change in the Korean Peninsula has been examined in view of the general increase in greenhouse gases. Analyses include changes in annual temperature and precipitation. These analyses are supplemented with our observations regarding the apparent decrease of forest areas. It was found that there was a 0.96 °C (0.42 °C per decade) increase in annual mean temperature between 1974 and 1997. The increase in large cities was 1.5 °C but only 0.58 °C at rural and marine stations. The difference in the mean temperature between large cities and rural stations was small from 1974 to 1981. However, the difference increased from 1982 to 1997. In particular, the warming appears most significant in winter. Prior to 1982, the lowest temperatures were often −18 °C in central Korea, and since then the lowest temperatures have been only −12∼−14 °C. Recently, the minimum January temperature has increased at a rate of 1.5 °C per decade. It is estimated that the increase of1 °C in annual mean temperature corresponds to about a 250 km northward shift of the subtropical zone boundary. The analysis of data from 1906 to 1997 indicates a trend of increasing annual precipitation, an increase of 182 mm during the 92-year peirod, with large year-to-year variations. More than half of the annual mean amount, 1,274 mm, occurred from June to September. Meteorological data and satellite observations suggest that changes have occurred in the characteristics of the quasi-stationary fronts that produce summer rain. In recent years scattered local heavy showers usually occur with an inactive showery front, in comparison with the classical steady rain for more than three weeks. For instance, local heavy rainfall, on 6 August 1998 was in the range of 123–481 mm. The scattered convective storms resulted in flooding with a heavy toll of approx. 500 people. The northward shift of the inactive showery front over Korea, and of a convergence zone in central China, correlate with the increase in temperature. It has been suggested that the decrease in forest areas and the change in ground cover also contribute to the warming of the Korean Peninsula. Received March 16, 2000  相似文献   

4.
Postglacial fire history has been reconstructed for eastern Canada from charcoal-influx anomalies from 30 sites taken from a lacustrine charcoal database. The reconstruction exhibits coherent patterns of fire occurrence in space and time. The early Holocene is characterised by high fire incidence. There is a major change to much lower occurrence slightly after 8 ka BP. A return to more fire appears after 3 ka BP. This sequence does not fit with the hydro-climatic reconstruction deduced from lake level reconstructions for northeastern North America, which indicates a dry early and mid-Holocene, and a wet late-Holocene. Fire occurrence however closely matches summer relative humidity inferred from δ18O. The differences between fire frequency and lake level history, are due to changes in the seasonality of precipitation and drought frequency. Lake levels are essentially controlled by winter precipitation while summer precipitation controls fire occurrence. The early Holocene before 8–7.5 ka BP experienced dry summers due to higher solar radiation and dry adiabatic winds from the residual Laurentide Ice Sheet. The middle Holocene was dominated by wet summers due to stability of the Atlantic air mass over eastern Canada. After 2.5 ka BP, summers became drier, albeit not as fire-conducive as during the early Holocene. Late-Holocene summers conducive to fire are explained by more frequent incursions of dry Cool Pacific or Cold Arctic air masses over eastern Canada. Received: 25 January 1999 / Accepted: 14 December 1999  相似文献   

5.
Quantitative reconstructions of the mean July temperature and annual precipitation are performed based on pollen percentage contents from surface and stratum pollen samples, together with vertical meteorological observations across 700-2800 m in Dajiuhu, Shennongjia in Hubei Province of China. Canonical correspondence analysis and robust locally weighted regression of surface pollen samples are employed to investigate the relationship between plants and climate, and to build the seven pollen-climate response surface functions.Reconstructed results of the stable type assemblage exhibit the climate evolution since the Late-Glacial Period, including the Bálling-Allerád warm episode, Younger Dryas cold episode, Climatic Optimum, and cold events in 8 and 6.5 ka BP. The ranges of the mean July temperature and annual precipitation have been about 5°C and 300 mm since the Late-Glacial Period. Analysis of temperature and humidity reveals that Climatic Optimum with high temperature and precipitation occurred during early Holocene and former mid-Holocene, corresponding to the high resolution records in the low latitude region. The results indicate that the pollen-climate response surface functions are capable to valuate the comprehensive influence of temperature and precipitation on pollen content and can be used to reconstruct the past climate from pollen data.  相似文献   

6.
Summary Climatological statistics of extreme temperature events over Kenya are established from the analysis of daily and monthly maximum temperatures for a representative station (Nairobi Dagoretti Corner) over the period 1956–1997. The months of June to August were shown to be the coldest with a mean monthly maximum temperature of less than 22 °C. Seasonal (June to August) mean maximum temperature was 21.5 °C. Using this seasonal mean temperature for the period 1967–1997 delineated 1968 as the coldest year in this series and 1983 as the warmest year. Spectral analysis of the seasonal data, for both the coldest and the warmest years, revealed that the major periods were the quasi-biweekly (10 days) and the Intraseasonal Oscillations (23 days). Secondary peaks occurred at periods of 4–6 and 2.5–3.5 days. A temperature threshold of 16.7 °C during July was used to define cold air outbreaks over Nairobi. This threshold temperature of 16.7 °C was obtained from the mean July maximum temperature (20.9 °C) minus two standard deviations. Notable trends include a decrease in the frequency of station-days, between 1956 and 1997, with temperatures less than 16.7 °C during July. Surface pressure patterns indicate that the origin of the cold air is near latitude 25° S and to the east of mainland South Africa. The cold air near 25° S is advected northwards ahead of the surface pressure ridge. Received July 19, 1999 Revised January 11, 2000  相似文献   

7.
Palaeoclimates across Europe for 6000 y BP were estimated from pollen data using the modern pollen analogue technique constrained with lake-level data. The constraint consists of restricting the set of modern pollen samples considered as analogues of the fossil samples to those locations where the implied change in annual precipitation minus evapotranspiration (PE) is consistent with the regional change in moisture balance as indicated by lakes. An artificial neural network was used for the spatial interpolation of lake-level changes to the pollen sites, and for mapping palaeoclimate anomalies. The climate variables reconstructed were mean temperature of the coldest month (T c ), growing degree days above 5  °C (GDD), moisture availability expressed as the ratio of actual to equilibrium evapotranspiration (α), and PE. The constraint improved the spatial coherency of the reconstructed palaeoclimate anomalies, especially for PE. The reconstructions indicate clear spatial and seasonal patterns of Holocene climate change, which can provide a quantitative benchmark for the evaluation of palaeoclimate model simulations. Winter temperatures (T c ) were 1–3 K greater than present in the far N and NE of Europe, but 2–4 K less than present in the Mediterranean region. Summer warmth (GDD) was greater than present in NW Europe (by 400–800 K day at the highest elevations) and in the Alps, but >400 K day less than present at lower elevations in S Europe. PE was 50–250 mm less than present in NW Europe and the Alps, but α was 10–15% greater than present in S Europe and PE was 50–200 mm greater than present in S and E Europe. Received: 3 January 1996 / Accepted: 15 July 1996  相似文献   

8.
Conventional methods of palaeoclimate reconstruction provide estimates of climatic parameters using proxy data which have originated from individual sites. These reconstructions yield information on the local environment but only limited information on spatial scales that are required for model-data intercomparisons. We present here a new approach that connects these different scales by an upscaling of the local palaeoinformation together with a dynamically consistent spatial smoothing. A probabilistic data-based method for local reconstructions is combined with a dynamic constraint on the reconstructed climate parameter which stabilises the reconstruction on the target scale. The variational analysis leads to climatological fields being optimised with respect to the proxy data and to the prescribed dynamics in a statistically consistent way. This method allows a probabilistic approach of quality control of the palaeodata in terms of their spatial consistency and homogeneity and for an estimation of reconstruction errors. The method was applied to palaeobotanical data to reconstruct near-surface temperature fields constrained by simple linear dynamics. An approximate approach was used to estimate the magnitude of reconstruction errors in terms of standard deviations. Reconstructed January and July mean temperature of the early Eemian (∼ 125,000 years bp) have errors with a median value of about 1.8°C in January and about 1.1°C in July. Reconstructions across Europe show positive temperature anomalies for Scandinavia and near the East coast of the Baltic Sea. In contrast, early Eemian temperatures were apparently quite similar to those found today in Central Europe, as no drastic differences were reconstructed between the Eemian and modern (1961–1990) climate. This implies somewhat stronger temperature gradients in the Eemian than are observed today. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
The aim of this research is to study the spatial and temporal variability of aridity in Iran, through analysis of temperature and precipitation trends during the 48-year period of 1961–2008. In this study, four different aridity criteria have been used to investigate the aridity situation. These aridity indexes included Lang’s index or rain factor, Budyko index or radiational index of dryness, UNEP aridity index, and Thornthwaite moisture index. The results of the analysis indicated that the highest and lowest mean temperatures occurred in July and January respectively in all locations. Among the study locations, Ahvaz with 37.1 °C and Kermanshah with 20.2 °C has the highest and lowest in July. For January, the highest was 12.4 °C for Ahvaz and the lowest was ?4.5 °C for Hamedan and Kermanshah together. The range of monthly mean temperature of study locations indicated that the maximum and minimum difference between day and night temperatures, almost in all study locations, occurred in September and January, respectively, and the highest and lowest fluctuation of temperature was observed in Kerman and Tehran. The temperature anomalies showed that the most significant increasing temperature occurred at the beginning of twenty-first century (2000–2008) in all locations. The long-term mean of monthly rainfall showed that, in most study locations, the maximum and minimum of mean precipitation occurred in winter and summer, respectively. Rasht with 1,355 mm had the highest and Yazd with 55 mm had the lowest of total precipitation compared with other locations. According to precipitation anomalies, all locations experienced dry and wet periods, but generally dry periods occurred more often especially in the beginning of twenty-first century. According to applied different aridity indexes, all the study locations often experienced semi-arid to arid climate, severe water deficit to desert climate, arid to hyperarid climate, and semi-arid climate during the study period.  相似文献   

10.
 The climate and vegetation patterns of the middle Holocene (6000 years ago; 6 ka) over Northern Africa are simulated using a fully-synchronous climate and dynamical vegetation model. The coupled model predicts a northward shift in tropical rainforest and tropical deciduous forest vegetation by about 5 degrees of latitude, and an increase in grassland at the present-day simulated Saharan boundaries. The northward expansion of vegetation over North Africa at 6 ka is initiated by an orbitally-induced amplification of the summer monsoon, and enhanced by feedback effects induced by the vegetation. These combined processes lead to a major reduction in Saharan desert area at 6 ka relative to present-day of about 50%. However, as shown in previous asynchronous modelling studies, the coupled climate/vegetation model does not fully reproduce the vegetation patterns inferred from palaeoenvironmental records, which suggest that steppe vegetation may have existed across most of Northern Africa. Orbital changes produce an intensification of monsoonal precipitation during the peak rainy season (July to September), whilst vegetation feedbacks, in addition to producing further increases in the peak intensity, play an important role in extending the rainy season from May/June through to November. The orbitally induced increases in precipitation are relatively uniform from west to east, in contrast to vegetation feedback-induced increases in precipitation which are concentrated in western North Africa. Annual-average precipitation increases caused by vegetation feedbacks are simulated to be of similar importance to orbital effects in the west, whilst they are relatively unimportant farther to the east. The orbital, vegetation and combined orbital and vegetation-induced changes in climate, from the simulations presented in this study, have been compared with results from previous modelling studies over the appropriate North African domain. Consequently, the important role of vegetation parametrizations in determining the magnitude of vegetation feedbacks has been illustrated. Further modelling studies which include the effects of changes in ocean temperature and changes in soil properties may be needed, along with additional observations, to resolve the discrepancy between model predictions of vegetation and palaeorecords for North Africa. Received: 15 June 1999 / Accepted: 14 December 1999  相似文献   

11.
Changes in mean temperature of the coldest (T c) and warmest month (T w), annual precipitation (P ann) and moisture index (α) were reconstructed from a continuous pollen record from Lake Baikal, Russia. The pollen sequence CON01-603-2 (53°57′N, 108°54′E) was recovered from a 386 m water depth in the Continent Ridge and dated to ca. 130–114.8 ky BP. This time interval covers the complete last interglacial (LI), corresponding to MIS 5e. Results of pollen analysis and pollen-based quantitative biome reconstruction show pronounced changes in the regional vegetation throughout the record. Shrubby tundra covered the area at the beginning of MIS 5e (ca. 130–128 ky), consistent with the end of the Middle Pleistocene glaciation. The late glacial climate was characterised by low winter and summer temperatures (T c ~ −38 to −35°C and T w~11–13°C) and low annual precipitation (P ann~300 mm). However, the wide spread of tundra vegetation suggests rather moist environments associated with low temperatures and evaporation (reconstructed α~1). Tundra was replaced by boreal conifer forest (taiga) by ca. 128 ky BP, suggesting a transition to the interglacial. Taiga-dominant phase lasted until ca. 117.4 ky BP, e.g. about 10 ky. The most favourable climate conditions occurred during the first half of the LI. P ann reached 500 mm soon after 128 ky BP. However, temperature changed more gradually. Maximum values of T c ~ −20°C and T w~16–17°C are reconstructed from about 126 ky BP. Conditions became gradually colder after ca. 121 ky BP. T c dropped to ~ −27°C and T w to ~15°C by 119.5 ky BP. The reconstructed increase in continentality was accompanied by a decrease in P ann to ~400–420 mm. However, the climate was still humid enough (α~0.9) to support growth of boreal evergreen conifers. A sharp turn towards a dry climate is reconstructed after ca. 118 ky BP, causing retreat of forest and spread of cool grass-shrub communities. Cool steppe dominated the vegetation in the area between ca. 117.5 ky and 114.8 ky BP, suggesting the end of the interglacial and transition to the last glacial (MIS 5d). Shift to the new glaciation was characterised by cool and very dry conditions with T c ~ −28 to −30°C, T w~14–15°C, P ann~250 mm and α~0.5.  相似文献   

12.
The Siberian High and climate change over middle to high latitude Asia   总被引:8,自引:0,他引:8  
Summary The Siberian High is the most important atmospheric centre of action in Eurasia during the winter months. Here its variability and relationship with temperature and precipitation is investigated for the period 1922 to 2000. The pronounced weakening of the Siberian High during the last ∼ 20 years is its most remarkable feature. Mean temperature, averaged over middle to high latitude Asia (30° E–140° E, 30° N–70° N), is correlated with the Siberian High central intensity (SHCI) with correlation coefficient of − 0.58 (1922–1999), and for precipitation, the correlation coefficient is − 0.44 (1922–1998). Taking the Arctic Oscillation (AO), the SHCI, the Eurasian teleconnection pattern (EU), and the Southern Oscillation (SO) index into account, 72 percent of the variance in temperature can be explained for the period 1949–1997 (for precipitation the variance is 26 percent), with the AO alone explaining 30 percent of the variance, and the Siberian High contributing 24 percent. The precipitation variance explained by the Siberian High is only 9.8 percent of the total. Received January 2, 2001 Revised November 24, 2001  相似文献   

13.
Summary An upper level atmospheric teleconnection between grid points: 0°, 55° N; 10° E, 55° N (North Sea) and 50° E, 45° N; 60° E, 45° N (northern Caspian) was identified. This teleconnection, referred as the North Sea-Caspian Pattern (NCP) is evident at the 500 hPa level. The NCP is more pronounced during winter and the transitional seasons. An index (NCPI) measures the geopotential heights differences between the two poles of the NCP. Time series of the NCPI are presented and analysed. Except for September, no significant temporal trends were found. Negative and positive phases of the NCP (NCP(−) and NCP(+), respectively) were defined using standardized scores. A classification of all months into NCP(−), NCP(+) or normal conditions during the analysis period (1958–1998) was prepared and analysed. No significant correlation was found between the NCPI and the NAO index. The anomalous circulation during either NCP(−) or NCP(+) conditions is defined and its possible impact on the regional climate is discussed. Preliminary results show below normal temperatures and above normal precipitation in the Balkans and the Middle East during NCP(+), and the opposite for NCP(−). Received March 8, 2001 Revised July 3, 2001  相似文献   

14.
 The influence of different vegetation distributions on the atmospheric circulation during the Last Glacial Maximum (LGM, 21 000 years before present) is investigated. The atmospheric general circulation model of the Bureau of Meteorology Research Center was run using a modern vegetation and in a second experiment with a vegetation reconstruction for the LGM. It is found that a change from conifer to desert and tundra causes an additional LGM cooling of 1–2 °C in Western Europe, up to −4 °C in North America and −6 °C in Siberia. An expansion of dryland vegetation causes an additional annual cooling of 1–2 °C for Australia and northern Africa. On the other hand, an increase of temperature (2 °C) is found in Alaska due to changes in circulation. In the equatorial region the LGM vegetation leads to an increased modelled temperature of 0.5–1.5 °C and decreased precipitation (30%) over land due to a reduction of the tropical rainforest, mainly in Indonesia, where the reduction of precipitation over land is associated with an increase of precipitation of 30% over the western Pacific. Received: 15 December 1999 / Accepted: 10 January 2001  相似文献   

15.
Summary The evolution of geophysical parameters over Indian Ocean during two contrasting monsoon years 2002 (drought) and 2003 (normal) were studied using TRMM/TMI satellite data. Analysis indicates that there was a lack of total water vapour (TWV) build up over Western Indian Ocean (WIO) during May 2002 (drought) when compared to 2003 (normal). Negative (positive) TWV anomalies were found over the WIO in May 2002 (2003). In 2002, negative SST anomaly of ∼1.5 °C is found over entire WIO when compared to 2003. Anomalously high sea surface wind speed (SWS) anomaly over the South West Indian Ocean (SWIO) and WIO would have resulted in cooling of the sea surface in May 2002 in comparison to 2003. In 2003 the wind speed anomaly over entire WIO and Arabian Sea (AS) was negative, whereas sea surface temperature (SST) anomaly was positive over the same region, which would have resulted in higher moisture availability over these regions. A negative (positive) TWV anomaly over Eastern Arabian Sea (EAS) and positive (negative) anomaly over WIO forms a dipole structure. In the month of June no major difference is seen in all these parameters over the Indian Ocean. In July 2002 the entire WIO and AS was drier by 10–15 mm as compared to 2003. The pentad (5 day) average TWV values shows high (>55 mm) TWV convergence over EAS and Bay of Bengal (BoB) during active periods of 2003, which gives high rainfall over these regions. However, during 2002 although TWV over BoB was >55 mm but it was ∼45–55 mm over EAS during entire July and hence less rainfall. The evaporation has been calculated from the bulk aerodynamic formula using TRMM/TMI geophysical products. It has been seen that the major portion of evaporative moisture flux is coming from southern Indian Ocean (SIO) between 15 and 25° S. Evaporation in June was more over AS and SIO in 2003 when compared to 2002 which may lead to reduce moisture supply in July 2002 and hence less rainfall compared to July 2003.  相似文献   

16.
 Palaeodata in synthesis form are needed as benchmarks for the Palaeoclimate Modelling Intercomparison Project (PMIP). Advances since the last synthesis of terrestrial palaeodata from the last glacial maximum (LGM) call for a new evaluation, especially of data from the tropics. Here pollen, plant-macrofossil, lake-level, noble gas (from groundwater) and δ18O (from speleothems) data are compiled for 18±2 ka (14C), 32 °N–33 °S. The reliability of the data was evaluated using explicit criteria and some types of data were re-analysed using consistent methods in order to derive a set of mutually consistent palaeoclimate estimates of mean temperature of the coldest month (MTCO), mean annual temperature (MAT), plant available moisture (PAM) and runoff (P-E). Cold-month temperature (MAT) anomalies from plant data range from −1 to −2 K near sea level in Indonesia and the S Pacific, through −6 to −8 K at many high-elevation sites to −8 to −15 K in S China and the SE USA. MAT anomalies from groundwater or speleothems seem more uniform (−4 to −6 K), but the data are as yet sparse; a clear divergence between MAT and cold-month estimates from the same region is seen only in the SE USA, where cold-air advection is expected to have enhanced cooling in winter. Regression of all cold-month anomalies against site elevation yielded an estimated average cooling of −2.5 to −3 K at modern sea level, increasing to ≈−6 K by 3000 m. However, Neotropical sites showed larger than the average sea-level cooling (−5 to −6 K) and a non-significant elevation effect, whereas W and S Pacific sites showed much less sea-level cooling (−1 K) and a stronger elevation effect. These findings support the inference that tropical sea-surface temperatures (SSTs) were lower than the CLIMAP estimates, but they limit the plausible average tropical sea-surface cooling, and they support the existence of CLIMAP-like geographic patterns in SST anomalies. Trends of PAM and lake levels indicate wet LGM conditions in the W USA, and at the highest elevations, with generally dry conditions elsewhere. These results suggest a colder-than-present ocean surface producing a weaker hydrological cycle, more arid continents, and arguably steeper-than-present terrestrial lapse rates. Such linkages are supported by recent observations on freezing-level height and tropical SSTs; moreover, simulations of “greenhouse” and LGM climates point to several possible feedback processes by which low-level temperature anomalies might be amplified aloft. Received: 7 September 1998 / Accepted: 18 March 1999  相似文献   

17.
Lop Nur in Xinjiang, Northwest China, is located in the lowest part of the Tarim Basin at an altitude of 780?m and experiences an extremely dry climate with an annual precipitation of only 17?mm and a high evaporation rate of 2,728?mm. The pollen and spores from the Late Miocene strata of a borehole in Lop Nur were analyzed with a view to interpreting the paleoenvironmental evolution of Lop Nur. Main types of pollen such as Chenopodiaceae, Nitraria, Ephedra and Artemisia reflect an arid climate. By collating the palynological data in this area as recorded in other literature and by applying the method of Coexistence Analysis, we have obtained the paleoclimatic parameters from Late Miocene to Holocene in Lop Nur. These suggest that temperatures increased from the Late Miocene (10.2°C) to the Pliocene (13.4°C), decreased from Pliocene to Pleistocene (4.7°C), and were more stable from Holocene (12.1°C) until now (11.5°C). The precipitation was stable (about 900?mm) from Late Miocene to Early Pleistocene, then decreased markedly (to about 300?mm) in Middle and Late Pleistocene, and reached its lowest value (17.4?mm) in the Holocene. The changes in paleoclimate at Lop Nur provide new evidence for understanding the uplift of the Qinghai-Tibetan Plateau.  相似文献   

18.
Summary In order to explore the spatial and temporal variations of 500 hPa flow patterns and their relationship with the climate of Iran, monthly mean geopotential heights for the region 0° E to 70° E and 20° N to 50° N, at 5 degree resolution, were analysed. The study period covered the winter months October to March during the period 1961–90. The monthly height of the 500 hPa level was averaged along each meridian from 25° N to 45° N. The height of the mean monthly pressure pattern was mapped against the study years. The results showed that the characteristics of the 500 hPa flow pattern varied over monthly and annual time scales. Principal Component Analysis, with S-mode and Varimax rotation, was also used to reduce the gridded data to 5 (6 in October) significant factors. The factor scores for each month were then correlated with monthly Z-scores of precipitation and temperature anomalies over Iran. The results showed that troughs and ridges located close to Iran had more influence on the climate of Iran. Two troughs were identified and named the Caspian and Syrian troughs. Received April 12, 2001 Revised July 24, 2001  相似文献   

19.
 The potential climatic consequences of increasing atmospheric greenhouse gas (GHG) concentration and sulfate aerosol loading are investigated for the years 1900 to 2100 based on five simulations with the CCCma coupled climate model. The five simulations comprise a control experiment without change in GHG or aerosol amount, three independent simulations with increasing GHG and aerosol forcing, and a simulation with increasing GHG forcing only. Climate warming accelerates from the present with global mean temperatures simulated to increase by 1.7 °C to the year 2050 and by a further 2.7 °C by the year 2100. The warming is non-uniform as to hemisphere, season, and underlying surface. Changes in interannual variability of temperature show considerable structure and seasonal dependence. The effect of the comparatively localized negative radiative forcing associated with the aerosol is to retard and reduce the warming by about 0.9 °C at 2050 and 1.2 °C at 2100. Its primary effect on temperature is to counteract the global pattern of GHG-induced warming and only secondarily to affect local temperatures suggesting that the first order transient climate response of the system is determined by feedback processes and only secondarily by the local pattern of radiative forcing. The warming is accompanied by a more active hydrological cycle with increases in precipitation and evaporation rates that are delayed by comparison with temperature increases. There is an “El Nino-like” shift in precipitation and an overall increase in the interannual variability of precipitation. The effect of the aerosol forcing is again primarily to delay and counteract the GHG-induced increase. Decreases in soil moisture are common but regionally dependent and interannual variability changes show considerable structure. Snow cover and sea-ice retreat. A PNA-like anomaly in mean sea-level pressure with an enhanced Aleutian low in northern winter is associated with the tropical shift in precipitation regime. The interannual variability of mean sea-level pressure generally decreases with largest decreases in the tropical Indian ocean region. Changes to the ocean thermal structure are associated with a spin-down of the Atlantic thermohaline circulation together with a decrease in its variability. The effect of aerosol forcing, although modest, differs from that for most other quantities in that it does not act primarily to counteract the GHG forcing effect. The barotropic stream function in the ocean exhibits modest change in the north Pacific but accelerating changes in much of the Southern Ocean and particularly in the north Atlantic where the gyre spins down in conjunction with the decrease in the thermohaline circulation. The results differ in non-trivial ways from earlier equilibrium 2 × CO2 results with the CCCma model as a consequence of the coupling to a fully three-dimensional ocean model and the evolving nature of the forcing. Received: 24 September 1998 / Accepted: 8 October 1999  相似文献   

20.
Observed and projected climate change in Taiwan   总被引:1,自引:0,他引:1  
Summary This study examined the secular climate change characteristics in Taiwan over the past 100 years and the relationship with the global climate change. Estimates for the likelihood of future climate changes in Taiwan were made based on the projection from the IPCC climate models. In the past 100 years, Taiwan experienced an island-wide warming trend (1.0–1.4 °C/100 years). Both the annual and daily temperature ranges have also increased. The warming in Taiwan is closely connected to a large-scale circulation and SAT fluctuations, such as the “cool ocean warm land” phenomenon. The water vapor pressure has increased significantly and could have resulted in a larger temperature increase in summer. The probability for the occurrence of high temperatures has increased and the result suggests that both the mean and variance in the SAT in Taiwan have changed significantly since the beginning of the 20th century. Although, as a whole, the precipitation in Taiwan has shown a tendency to increase in northern Taiwan and to decrease in southern Taiwan in the past 100 years, it exhibits a more complicated spatial pattern. The changes occur mainly in either the dry or rainy season and result in an enhanced seasonal cycle. The changes in temperature and precipitation are consistent with the weakening of the East Asian monsoon. Under consideration of both the warming effect from greenhouse gases and the cooling effect from aerosols, all projections from climate models indicated a warmer climate near Taiwan in the future. The projected increase in the area-mean temperature near Taiwan ranged from 0.9–2.7 °C relative to the 1961–1990 averaged temperature, when the CO2 concentration increased to 1.9 times the 1961–1990 level. These simulated temperature increases were statistically significant and can be attributed to the radiative forcing associated with the increased concentration of greenhouse gases and aerosols. The projected changes in precipitation were within the range of natural variability for all five models. There is no evidence supporting the possibility of precipitation changes near Taiwan based on the simulations from five IPCC climate models. Received February 5, 2001 Revised July 30, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号