首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Thermal internal boundary layers in onshore air flows have a significant influence on pollutant diffusion in coastal areas. Although several models for this diffusion problem exist, measurements for model verification are scarce. In this paper, we present a set of wind tunnel observations and examine the performance of a Lagrangian stochastic model. The good agreement between the model simulation and the tunnel measurements confirms the usefulness of the Lagrangian stochastic model for practical purposes. Sensitivity tests of the model to turbulence statistics show that uncertainty in velocity skewness to the extent of observational scatter does not seem to have a significant influence on pollutant dispersion, while uncertainties in turbulence intensity (variance) significantly influence the dispersion pattern.  相似文献   

2.
Atmospheric turbulence measurements made at the U.S. Army Corps of Engineers Field Research Facility (FRF) located on the Atlantic coast near the town of Duck, North Carolina during the CASPER-East Program (October–November 2015) are used to study air–sea/land coupling in the FRF coastal zone. Turbulence and mean meteorological data were collected at multiple levels (up to four) on three towers deployed at different landward distances from the shoreline, with a fourth tower located at the end of a 560-m-long FRF pier. The data enable comparison of turbulent fluxes and other statistics, as well as investigations of surface-layer scaling for different footprints, including relatively smooth sea-surface conditions and aerodynamically rough dry inland areas. Both stable and unstable stratifications were observed. The drag coefficient and diurnal variation of the sensible heat flux are found to be indicators for disparate surface footprints. The drag coefficient over the land footprint is significantly greater, by as much as an order of magnitude, compared with that over the smooth sea-surface footprint. For onshore flow, the internal boundary layer in the coastal zone was either stable or (mostly) unstable, and varied dramatically at the land-surface discontinuity. The offshore flow of generally warm air over the cooler sea surface produced a stable internal boundary layer over the ocean surface downstream from the coast. While the coastal inhomogeneities violate the assumptions underlying Monin–Obukhov similarity theory (MOST), any deviations from MOST are less profound for the scaled standard deviations and the dissipation rate over both water and land, as well as for stable and unstable conditions. Observations, however, show a poor correspondence with MOST for the flux-profile relationships. Suitably-averaged, non-dimensional profiles of wind speed and temperature vary significantly among the different flux towers and observation levels, with high data scatter. Overall, the statistical dependence of the vertical gradients of scaled wind speed and temperature on the Monin–Obukhov stability parameter in the coastal area is weak, if not non-existent.  相似文献   

3.
为更好理解沿海区域近地面风速衰减规律及其内在机制并获取适用于业务观测风速数据的分析方法,通过引入内边界层厚度的发展机理,推导获得风速随离岸距离变化的数学解析拟合式。结合浙江省温州市境内一沿海区域6个自动气象站2014—2019年逐时风速观测数据应用该拟合式分析了风速随离岸距离的关系,结果表明不管是逐时风速还是逐日最大风速,其平均值均与离岸距离有着良好的负相关,并发现其衰减系数与风速有着密切关系。向岸流及离岸流的风速衰减特性均可以结合该拟合式用线性及幂数律拟合来体现,但后者可以更好地解释风速随离岸距离变化特征,并在较大风速(3~10 m/s)向岸流的背景条件下,获得合理可信的分析结果,说明该方法可以适用于近海岸区域风速观测数据的应用研究。   相似文献   

4.
A numerical two-dimensional-mesoscale model with a level 1.5 closure scheme for turbulence is described. The model is used to simulate the boundary layer over coastal complex terrain. Meteorological data available from the Øresund land-sea-land terrain experiment are used to study the performance of the model. The model could simulate generally observed complexities in the mean wind and temperature fields. Internal boundary layers over the water and land surfaces were identified by the height of lowest value in the turbulence kinetic energy profile and this showed good agreement with radiosonde (RS) observations.Some disagreements with the data were also noticed, especially near the surface. The wind speed was over-predicted. Attempts were made to improve the model performance by adopting different schemes for model initialisation. Results showed that initialisation with an early model start time and observed wind profile near the inflow boundary improved the performance. The wind speed over-prediction could be further minimised by using a more realistic objective initialisation scheme. The problem centred around the proper estimation of the turbulent diffusion coefficient K through the closure scheme. Despite using the most popular empirical relationships in the level 1.5 closure scheme, these differences persisted. While this needs further investigation, the present model can be used to supply wind fields for practical purposes such as air pollution calculations.  相似文献   

5.
In this study, coastal gales and rainfall attributed to the landfall of Typhoon Soudelor (2015) are analyzed based on observational dense automatic weather stations data, advanced scatterometer-retrieved 10-m ocean surface wind data and simulations using the Weather Research and Forecast (WRF) model. This study focuses on gale bands in the right-front quadrant of the typhoon and associated coastal winds over Zhejiang and Fujian Provinces in China before the landfall of the typhoon. The results are summarized as follows. (1) 10-m surface wind data from automatic weather stations over land and islands, advanced scatterometer-retrieved 10-m ocean surface wind data, and the WRF simulation indicate similar mesoscale offshore gales. (2) The model simulation with a 333-m grid mesh indicates a gale zone over the right-front quadrant of the typhoon; the gale is “broken” over the coastal areas, and formed an inhomogeneous gale band. (3) The model-simulated winds agree well with the island observations. (4) Non-uniform gales over boundary layers result in horizontal wind-speed gradients and strong convergence that favors the development of convection and the maintenance of ocean surface gales.  相似文献   

6.
Summary A three-dimensional non-hydrostatic numerical model and lagrangian particle model (random walk model) were used to investigate the effects of the atmospheric circulation and boundary layer structure on the dispersion of suspended particulates in the Seoul metropolitan area. Initially, emitted particulate matter rises from the surface of the city towards the top of the convective boundary layer (CBL), owing to daytime thermal heating of the surface and the combined effect of an onshore wind with a westerly synoptic-scale wind. A reinforcing sea-valley breeze directed from the coast toward the city of Seoul, which is enclosed in a basin and bordered by mountains to its east, disperses the suspended particulate matter toward the eastern mountains. Total suspended particulate concentration (TSP) at ground level in the city is very low and relatively high in the mountains. Radiative cooling of the surface produces a shallow nocturnal surface inversion layer (NSIL) and the suspended particulate matter still present near the top of the CBL from the previous day, sinks to the surface. An easterly downslope mountain wind is directed into the metropolitan area, transporting particulate matter towards the city, thereby recycling the pollutants. The particulates descending from the top of the NSIL and mountains, combine with particulates emitted near the surface over the city at night, and under the shallow NSIL spread out, resulting in a maximum ground level concentration of TSP in the metropolitan area at 2300 LST. As those particles move toward the Yellow Sea through the topographically shaped outlet west of Seoul city under the influence of the easterly land breeze, the maximum TSP concentration occurs at the coastal site. During the following morning, onshore winds resulting from a combined synoptic-scale westerly wind and westerly sea breeze, force particulates dispersed the previous night to move over the adjacent sea and back over the inland metropolitan area. The recycled particulates combine with the particulates emitted from the surface in the central part of the metropolitan area, producing a high TSP and again rise towards the top of the CBL ready to repeat the cycle.  相似文献   

7.
In this study the role of atmospheric boundary layer schemes in climate models is investigated. Including a boundary layer scheme in an Earth system model of intermediate complexity (EMIC) produces only minor differences in the estimated global distribution of sensible and latent heat fluxes over land (upto about 15% of the net radiation at the surface). However, neglecting of boundary layer processes, such as the development of a well-mixed layer over land or the impact of stability on the exchange coefficient in the surface layer, leads to erroneous surface temperatures, especially in convective conditions with low wind speeds. As these conditions occur frequently, introducing a boundary layer scheme in an EMIC gives reductions in June-July-August averaged surface temperature of 1–2 °C in wet areas, to 5–7 °C in desert areas. Even a relatively simple boundary layer scheme provides reasonable estimates of the surface fluxes and surface temperatures. Detailed schemes that solve explicitly the turbulent fluxes within the boundary layer are only required when vertical profiles of potential temperature are needed.  相似文献   

8.
Summary Hurricanes cause a variety of damage due to high winds, heavy rains, and storm surges. This study focuses on hurricanes’ high winds. The most devastating effects of sustained high winds occur in the first few hours of landfall. During the short period, hurricanes’ rainfall often increases, while the low-level pressure gradients continue to weaken. Latent heating does not appear to strengthen the surface winds. The indicator is that dry mechanisms such as the boundary layer processes and terrain are responsible for the damaging winds in the coastal areas. In this study, the design of a dry hurricane boundary layer wind model is described. The goal is to develop a forecast tool with near-real time applications in expeditious wind damage assessment and disaster mitigation during a hurricane landfall event. Different surface roughness lengths and topographic features ranging from flat land to the mountainous terrain of Taiwan were used in the model simulation experiments to reveal how the coastal environment affected the hurricane surface winds. The model performed quite well in all cases. The experiments suggested that the downward transfer of high momentum aloft played a significant role in the maintenance of high wind speeds at the surface. The surface wind maximums were observed on the lee sides of high terrain. The surface streamline analyses showed that the high mountains tended to block the relatively weak flow and caused small eddies, while they forced the stronger flow to turn around the mountains. Due to great difficulty in data collection, the hurricane boundary layer over land remains one of the least understood parts of the system. The dry model proves to be an effective way to study many aspects of hurricane boundary layer winds over a wide range of terrain features and landfall sites. The model runs efficiently and can be run on a medium-size personal computer. Received March 16, 2001 Revised September 10, 2001  相似文献   

9.
Sea-salt aerosol concentrations in the coastal zone are assessed with the numerical aerosol-transport model MACMod that applies separate aerosol source functions for open ocean and the surf zone near the sea–land transition. Numerical simulations of the aerosol concentration as a function of offshore distance from the surf zone compare favourably with experimental data obtained during a surf-zone aerosol experiment in Duck, North Carolina in autumn 2007. Based on numerical simulations, the effect of variations in aerosol production (source strength) and transport conditions (wind speed, air–sea temperature difference), we show that the surf-zone aerosols are replaced by aerosols generated over the open ocean as the airmass advects out to sea. The contribution from the surf-generated aerosol is significant during high wind speeds and high wave events, and is significant up to 30 km away from the production zone. At low wind speeds, the oceanic component dominates, except within 1–5 km of the surf zone. Similar results are obtained for onshore flow, where no further sea-salt aerosol production occurs as the airmass advects out over land. The oceanic aerosols that are well-mixed throughout the boundary layer are then more efficiently transported inland than are the surf-generated aerosols, which are confined to the first few tens of metres above the surface, and are therefore also more susceptible to the type of surface (trees or grass) that determines the deposition velocity.  相似文献   

10.
A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.  相似文献   

11.
A linear steady model is constructed to investigate the response of the tropical atmosphere to diabaticheating.The basic equations are similar to those used by Gill(1980),but the long-wave approximationis removed and periodic boundary conditions are taken in longitude.According to the features of theunderlying surface temperature(including oceans and land),the heat sources(sinks)are given.Using thisanalytical model,we have simulated the climatological fields of wind and air pressure in the lower layersof the tropical and subtropical atmosphere in summer(June—August)and winter(December—February).The main features of observations are depicted in simulated fields.  相似文献   

12.
沿海地区受风的影响较大,不仅受大尺度季风的影响还受到中小尺度局地风的影响,利用WRF模式从参数化组合方案、土地利用数据、水平网格精度以及耦合UCM四个方面对青岛沿海地区近地面风进行了模拟和比较。结果表明,微物理方案和边界层方案对研究区近地面风的影响较大,WSM3 + YSU + Revised MM5 Monin-Obukhov + KF的参数化组合方案对研究区的模拟效果较好,相关系数在0.50~0.75之间,均方根误差在1.44~1.61之间。LUCC2015和TM2015土地利用数据能够更好地反映研究区的土地利用类型的分布特征,两者的模拟效果优于MODIS2001和MODIS2013。随着水平分辨率的提高,对地形刻画越精准,模拟效果越好,并且WRF+UCM方案能显著降低城市地区近地面风速,优化模拟结果。沿海地区近地面风的影响因素较为复杂,考虑模式的参数化方案组合、土地利用数据、地形和城市等多种因素,以期为沿海地区近地面风的模拟提供依据。   相似文献   

13.
海岸边界层的非静力模式   总被引:1,自引:0,他引:1  
建立了一个3级非静力边界层模式,并采用一种新的非局地反梯度闭合方案在杭州附近复杂地形区进行了数值模拟。通过与实测资料和静力条件下的模拟结果的比较,进一步分析了非局地闭合下非静力3级边界层模式的效能。结果表明,该模式比静力模式更能合理地模拟海岩边界层的风温场和湍流场,且模拟结果与实测更接近。  相似文献   

14.
The development and characteristics of coastal internal boundary layers were investigated in 28 tests. These were made at all seasons and in both gradient and sea-breeze flows but only during mid-day periods. Measurements of turbulence and temperature were taken from a light aircraft which flew traverses across Long Island at successive altitudes parallel to the wind direction. These were used to locate the boundary between modified and unmodified air as a function of height and distance from the coast. The same measurements plus tower measurements of wind, turbulence and temperature, pilot balloon soundings and measurements of land and water surface temperatures by a remote sensing IR thermometer were used to quantify the characteristics of the modified and unmodified air. The boundary layer slope was steep close to the land-water interface and became shallower with downwind distance. Growth of the boundary layer was initially slower with stable lapse rates upwind than with neutral or unstable conditions over the water. An equilibrium height was found in many tests except under conditions of free convection when the internal boundary layer merged into the mixed layer inland and with sea-breeze conditions. The equilibrium height depended on downwind conditions and was greater with low wind speeds and strong land surface heating than with stronger winds and small land-water temperature differences. Current theoretical models are not adequate to predict the height of the boundary layer at the altitudes and distances studied but reasonably good predictions were given by an empirical model developed earlier. Wind speed in the modified air averaged about 70% of that at the coast but turbulence levels were several times higher both near the surface and aloft. These findings have important implications for diffusion from coastal sites.  相似文献   

15.
The development and characteristics of coastal internal boundary layers were investigated in 28 tests. These were made at all seasons and in both gradient and sea-breeze flows but only during mid-day periods. Measurements of turbulence and temperature were taken from a light aircraft which flew traverses across Long Island at successive altitudes parallel to the wind direction. These were used to locate the boundary between modified and unmodified air as a function of height and distance from the coast. The same measurements plus tower measurements of wind, turbulence and temperature, pilot balloon soundings and measurements of land and water surface temperatures by a remote sensing IR thermometer were used to quantify the characteristics of the modified and unmodified air. The boundary layer slope was steep close to the land-water interface and became shallower with downwind distance. Growth of the boundary layer was initially slower with stable lapse rates upwind than with neutral or unstable conditions over the water. An equilibrium height was found in many tests except under conditions of free convection when the internal boundary layer merged into the mixed layer inland and with sea-breeze conditions. The equilibrium height depended on downwind conditions and was greater with low wind speeds and strong land surface heating than with stronger winds and small land-water temperature differences. Current theoretical models are not adequate to predict the height of the boundary layer at the altitudes and distances studied but reasonably good predictions were given by an empirical model developed earlier. Wind speed in the modified air averaged about 70% of that at the coast but turbulence levels were several times higher both near the surface and aloft. These findings have important implications for diffusion from coastal sites.  相似文献   

16.
Air pollution sources such as oil platforms and ships are sometimes located near coastlines where the plumes can impact population centers. Models of overwater dispersion must account for the stability of the overwater boundary layer. An overwater dispersion model based on the standard Gaussian formula is described which uses measurements of the air-sea temperature difference, the wind speed, and the mixing depth to predict concentration patterns at the coastline. Internal boundary layers and complex terrain at the coastline are accounted for. This new model is evaluated using the results of three tracer experiments in United States coastal zones.  相似文献   

17.
大气边界层物理与大气环境过程研究进展   总被引:3,自引:2,他引:1  
张美根  胡非  邹捍 《大气科学》2008,32(4):923-934
总结了近5年来中国科学院大气物理研究所大气边界层物理和大气化学国家重点实验室(LAPC)在第二代超声风速温度仪研制、城市边界层研究、复杂地形大气边界层探测与数值模拟、湍流机理研究、大气污染模式发展与应用等领域的主要进展,其中,第二代超声风速温度仪的野外对比测试结果表明其主要性能完全达到了国际先进水平;北京城市化发展使得北京325 m气象塔周边近地面流场已经具备了典型城市粗糙下垫面的流场特征,近地面夏季平均风速呈现非常明显的逐年递减趋势;北京沙尘暴大风时期湍流运动主要是小尺度湍涡运动,而大风的概率分布偏离高斯分布,风速较大的一侧概率分布呈指数迅速衰减,大风中风速很大的部分具有分形特征;珠穆朗玛峰北坡地区两次综合强化探测实验是迄今为止在青藏高原大型山地中实施的针对山地环流和物质/能量交换最为全面和连续的大气过程探测实验;白洋淀地区的观测研究表明,非均匀边界层具有一般边界层不具备的特点,无论是边界层结构还是湍流输送方面,水、陆边界层之间存在一定的差异,凸显其地表非均匀性的作用;为了解决不同尺度、不同类型的大气污染问题和实际应用,研制或发展完善了多套大气污染模式系统,包括全球大气化学模式、区域大气污染数值模式、城市大气污染数值模式和微小尺度(如街区尺度)范围内污染物输送扩散模式。  相似文献   

18.
A mesoscale boundary-layer model is used to simulate low-level regional wind fields over the La Plata River of South America, a region characterized by a strong daily cycle of land–river surface-temperature contrast and low-level circulations of sea–land breeze type. The initial and boundary conditions are defined from a limited number of local observations and the upper boundary condition is taken from the only radiosonde observations available in the region. The study considers 14 different upper boundary conditions defined from the radiosonde data at standard levels, significant levels, level of the inversion base and interpolated levels at fixed heights, all of them within the first 1500 m. The period of analysis is 1994–2008 during which eight daily observations from 13 weather stations of the region are used to validate the 24-h surface-wind forecast. The model errors are defined as the root-mean-square of relative error in wind-direction frequency distribution and mean wind speed per wind sector. Wind-direction errors are greater than wind-speed errors and show significant dispersion among the different upper boundary conditions, not present in wind speed, revealing a sensitivity to the initialization method. The wind-direction errors show a well-defined daily cycle, not evident in wind speed, with the minimum at noon and the maximum at dusk, but no systematic deterioration with time. The errors grow with the height of the upper boundary condition level, in particular wind direction, and double the errors obtained when the upper boundary condition is defined from the lower levels. The conclusion is that defining the model upper boundary condition from radiosonde data closer to the ground minimizes the low-level wind-field errors throughout the region.  相似文献   

19.
An observational analysis of the structures and characteristics of a windy atmospheric boundary layer during a cold air outbreak in the South China Sea region is reported in this paper. It is found that the main structures and characteristics are the same as during strong wind episodes with cold air outbreaks on land. The high frequency turbulent fluctuations(period<1 min) are nearly random and isotropic with weak coherency, but the gusty wind disturbances(1 min相似文献   

20.
In southern China,cold air is a common weather process during the winter season;it can cause strong wind,sharp temperature decreases,and even the snow or freezing rain events.However,the features of the atmospheric boundary layer during cold air passage are not clearly understood due to the lack of comprehensive observation data,especially regarding turbulence.In this study,four-layer gradient meteorological observation data and one-layer,10-Hz ultrasonic anemometer-thermometer monitoring data from the northern side of Poyang Lake were employed to study the main features of the surface boundary layer during a strong cold-air passage over southern China.The results show that,with the passage of a cold air front,the wind speed exhibits low-frequency variations and that the wind systematically descends.During the strong wind period,the wind speed increases with height in the surface layer.Regular gust packets are superimposed on the basic strong wind flow.Before the passage of cold air,the wind gusts exhibit a coherent structure.The wind and turbulent momentum fluxes are small,although the gusty wind momentum flux is slightly larger than the turbulent momentum flux.However,during the invasion of cold air,both the gusty wind and turbulent momentum fluxes increase rapidly with wind speed,and the turbulent momentum flux is larger than the gusty wind momentum flux during the strong wind period.After the cold air invasion,this structure almost disappears.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号