首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Policy-makers of some fossil fuel-endowed countries wish to know if a given fossil fuel supply project is consistent with the global carbon budget that would prevent a 2 °C temperature rise. But while some studies have identified fossil fuel reserves that are inconsistent with the 2 °C carbon budget, they have not shown the effect on fossil fuel production costs and market prices. Focusing on oil, we develop an oil pricing and climate test model to which we apply future carbon prices and oil consumption from several global energy-economy-emissions models that simulate the energy supply and demand effects of the 2 °C carbon budget. Our oil price model includes key oil market attributes, notably upper and lower market share boundaries for different oil producer categories, such as OPEC. Using the distribution of the global model results as an indicator of uncertainty about future carbon prices and oil demand, we estimate the probability that a new investment of a given oil source category would be economically viable under the 2 °C carbon budget. In our case study of Canada’s oil sands, we find a less than 5% probability that oil sands investments, and therefore new oil pipelines, would be economically viable over the next three decades under the 2 °C carbon budget. Our sensitivity analysis finds that if OPEC agreed to reduce its market share to 30% by 2045, a significant reduction from its steady 40–45% of the past 25 years, then the probability of viable oil sands expansion rises to 30%.  相似文献   

2.
This paper analyzes trends of temperatures over Africa and seeks to quantify the most significant processes. Observations of air temperature reveal significant warming trends in the 925–600 hPa layer over tropical west Africa and the east Atlantic. This is related to the influence of desert dust and biomass burning emissions on the atmospheric energy budget. We calculate a net radiative absorption of ~??20 W m???2. The southern (northern) plume is rich in short-lived greenhouse gases (dust aerosols), and the atmospheric response, according to a simplified radiative transfer model, is a >3°C heating of the 2–4 km layer. The observed pattern of warming coincides with a mixture of dust, black carbon and short-lived greenhouse gases in space, time and height. Physical forcing provides a secondary source of regional warming, with sinking motions over the Sahel. The elevated warm layer stabilizes the lower atmosphere over and west of Africa, so drying trends may be anticipated.  相似文献   

3.
Results of a simple model of the effects of temperature on net ecosystem production call into question the argument that the large stocks of soil carbon and greater projected warming in the boreal and tu ndra regions of the world willlead to rapid efflux of carbon from these biomes to the atmosphere. We show that low rates of carbon turnover in these regions and a relatively greater response of net primary production to changes in temperature may lead to carbon storage over some limited range of warming. In contrast, the high rates of soil respiration found in tropical ecosystems are highly sensitive to small changes in temperature, so that despite the less pronounced warming expected in equatorial regions, tropical soils are likely to release relatively large amounts of carbon to the atmosphere. Results for high-latitude biomes are highly sensitive to parameter values used, while the net efflux of carbon from the tropics appears robust.  相似文献   

4.
Akihiko Ito 《Climatic change》2017,142(1-2):53-66
Geoengineering such as solar radiation management (SRM) can be an emergent option to avoid devastating climatic warming, but its ramifications are barely understood. The perturbation of the Earth’s energy balance, atmospheric dynamics, and hydrological cycling may exert unexpected influences on natural and human systems. In this study, I evaluate the impacts of SRM deployment on terrestrial ecosystem functions using a process-based ecosystem model (the Vegetation Integrative Simulator for Trace gases, VISIT) driven by the climate projections by multiple climate models. In the SRM-oriented climate projections, massive injection of sulphate aerosols into the stratosphere lead to increased scattering of solar radiation and delayed anthropogenic climate warming. The VISIT simulations show that canopy light absorption and gross primary production are enhanced in subtropics in spite of the slight decrease of total incident solar radiation. The retarded temperature rise during the deployment period leads to lower respiration, and consequently, an additional net terrestrial ecosystem carbon uptake by about 20%. After the SRM termination, however, along with the temperature rise, this carbon is released rapidly to the atmosphere. As a result of altered precipitation and radiation budget, simulated runoff discharge is suppressed mainly in the tropics. These SRM-induced influences on terrestrial ecosystems occurr heterogeneously over the land surface and differed among the ecosystem functions. These responses of terrestrial functions should be taken into account when discussing the costs and benefits of geoengineering.  相似文献   

5.
We explore allowable leakage for carbon capture and geological storage to be consistent with maximum global warming targets of 2.5 and 3 °C by 2100. Given plausible fossil fuel use and carbon capture and storage scenarios, and based on modeling of time-dependent leakage of CO2, we employ a climate model to calculate the long-term temperature response of CO2 emissions. We assume that half of the stored CO2 is permanently trapped by fast mechanisms. If 40?% of global CO2 emissions are stored in the second half of this century, the temperature effect of escaped CO2 is too small to compromise a 2.5 °C target. If 80?% of CO2 is captured, escaped CO2 must peak 300?years or later for consistency with this climate target. Due to much more CO2 stored for the 3 than the 2.5 °C target, quality of storage becomes more important. Thus for the 3 °C target escaped CO2 must peak 400?years or later in the 40?% scenario, and 3000?years or later in the 80?% scenario. Consequently CO2 escaped from geological storage can compromise the less stringent 3 °C target in the long-run if most of global CO2 emissions have been stored. If less CO2 is stored only a very high escape scenario can compromise the more stringent 2.5 °C target. For the two remaining combinations of storage scenarios and climate targets, leakage must be high to compromise these climate targets.  相似文献   

6.
Many studies have investigated the effects that misrepresentation of sub-grid cloud structure can have on the radiation budget. In this study, we perform 20-year simulations of the current climate using an atmosphere-only version of the Met Office Unified Model to investigate the effects of cloud approximation on model climate. We apply the “Tripleclouds” scheme for representing horizontal cloud inhomogeneity and “exponential-random” overlap, both separately and in combination, in place of a traditional plane-parallel representation with maximum-random overlap, to the clouds within the radiation scheme. The resulting changes to both the radiation budget and other meteorological variables, averaged over the 20?years, are compared. The combined global effect of the parameterizations on top-of-atmosphere short-wave and long-wave radiation budget is less than 1?W?m?2, but changes of up to 10?W?m?2 are identified in marine stratocumulus regions. A cooling near the surface over the winter polar regions of up to 3°C is also identified when horizontal cloud inhomogeneity is represented, and a warming of similar magnitude is found when exponential-random overlap is implemented. Corresponding changes of the same sign are also found in zonally averaged temperature, with maximum changes in the upper tropical troposphere of up to 0.5°C. Changes in zonally averaged cloud fraction in this location were of opposite sign and up to 0.02. The individual effects on tropospheric temperature of improving the two components of cloud structure are of similar magnitudes to about 2% of the warming created by a quadrupling of carbon dioxide.  相似文献   

7.
This study characterizes the black carbon in Agra, India home to the Taj Mahal—and situated in the Indo-Gangetic basin.The mean black carbon concentration is 9.5 μg m~(-3)and, owing to excessive biomass/fossil fuel combustion and automobile emissions, the concentration varies considerably. Seasonally, the black carbon mass concentration is highest in winter, probably due to the increased fossil fuel consumption for heating and cooking, apart from a low boundary layer. The nocturnal peak rises prominently in winter, when the use of domestic heating is excessive. Meanwhile, the concentration is lowest during the monsoon season because of the turbulent atmospheric conditions and the process of washout by precipitation. The ratio of black carbon to brown carbon is less than unity during the entire study period, except in winter(December). This may be because that biomass combustion and diesel exhaust are major black carbon contributors in this region, while a higher ratio in winter may be due to the increased consumption of fossil fuel and wood for heating purposes. ANOVA reveals significant monthly variation in the concentration of black carbon; plus, it is negatively correlated with wind speed and temperature. A high black carbon mass concentration is observed at moderate(1–2 m s~(-1)) wind speed, as compared to calm or turbulent atmospheric conditions.  相似文献   

8.
California’s hydropower system is composed of high and low elevation power plants. There are more than 150 high-elevation power plants, at elevations above 1,000 feet (300 m). Most have modest reservoir storage capacities, but supply roughly 74% of California’s in-state hydropower. The expected shift of runoff peak from spring to winter due to climate warming, resulting in snowpack reduction and increased snowmelt, might have important effects on power generation and revenues in California. The large storage capacities at low-elevation power plants provide flexibility to operations of these units under climate warming. However, with climate warming, the adaptability of the high-elevation hydropower system is in question as this system was designed to take advantage of snowpack, a natural reservoir. With so many high-elevation hydropower plants in California, estimation of climate warming effects by conventional simulation or optimization methods would be tedious and expensive. An Energy-Based Hydropower Optimization Model (EBHOM) was developed to facilitate practical climate change and other low-resolution system-wide hydropower studies, based on the historical generation data of 137 high-elevation hydropower plants for which the data were complete for 14 years. Employing recent historical hourly energy prices, the model was used to explore energy generation in California for three climate warming scenarios (dry warming, wet warming, and warming-only) over 14 years, representing a range of hydrologic conditions. The system is sensitive to the quantity and timing of inflows. While dry warming and warming-only climate changes reduce average hydropower revenues, wet warming could increase revenue. Re-operation of available storage and generation capacities help compensate for snowpack losses to some extent. Storage capacity expansion and to a lesser extent generation capacity expansion both increase revenues, although such expansions might not be cost-effective.  相似文献   

9.
In this paper we extend our earlier work with the Carbon Emissions Trajectory Assessment model (CETA) to consider a number of issues relating to the nature of optimal carbon emissions trajectories. We first explore model results when warming costs are associated with the rate of temperature rise, rather than with its level, as in our earlier work. We find that optimal trajectories are more strongly affected by the degree of non-linearity in the warming cost function than by whether the cost function is driven by the warming level or the warming rate. Next we briefly explore the implications of simple uncertainty and risk aversion for optimal emissions trajectories. We find that uncertainty and risk aversion cause optimal emissions trajectories to be somewhat lower, but that the effect is not noticeable in the near term and not dramatic in the long term; the long term effect on the shadow price of carbon is more marked, however. Finally, we experiment with scaling up the warming cost functions until optimal policies are approximately the same as a policy of stabilizing emissions at the 1990 level. Based on the results of this experiment, we conclude that damages would have to be very high to justify anything like a stabilization policy; and even in this case, a policy allowing intertemporal variation in emissions would be better.This paper does not represent the position of EPRI or of its members.  相似文献   

10.
Forests have an important role to play in climate change mitigation through carbon sequestration and wood supply. However, the lower albedo of mature forests compared to bare land implies that focusing only on GHG accounting may lead to biased estimates of forestry's total climatic impacts. An economic model with a high degree of detail of the Norwegian forestry and forest industries is used to simulate GHG fluxes and albedo impacts for the next decades. Albedo is incorporated in a carbon tax/subsidy scheme in the Norwegian forest sector using a partial, spatial equilibrium model. While a price of EU€100/tCO2e that targets GHG fluxes only results in reduced harvests, the same price including albedo leads to harvest levels that are five times higher in the first five years, with 39% of the national productive forest land base being cleared. The results suggest that policies that only consider GHG fluxes and ignore changes in albedo will not lead to an optimal use of the forest sector for climate change mitigation.

Policy relevance

Bare land reflects a larger share of incoming solar energy than dense forest and thus has higher albedo. Earlier research has suggested that changes in albedo caused by management of boreal forest may be as important as carbon fluxes for the forest's overall global warming impacts. The presented analysis is the first attempt to link albedo to national-scale forest climate policies. A policy with subsidies to forest owners that generate carbon sequestration and taxes levied on carbon emissions leads to a reduced forest harvest. However, including albedo in the policy alongside carbon fluxes yields very different results, causing initial harvest levels to increase substantially. The inclusion of albedo impacts will make harvests more beneficial for climate change mitigation as compared to a carbon-only policy. Hence, it is likely that carbon policies that ignore albedo will not lead to optimal forest management for climate change mitigation.  相似文献   

11.
As "the third pole", the Tibetan Plateau (TP) is sensitive to climate forcing and has experienced rapid warming in recent decades. This study analyzes annual and seasonal near-surface air temperature changes on the TP in response to transient and stabilized 2.0°C/1.5°C global warming targets based on simulations of the Community Earth System Model (CESM). Elevation-dependent warming (EDW) with faster warming at higher elevations is predicted. A surface energy budget analysis is adopted to uncover the mechanisms responsible for the temperature changes. Our results indicate a clear amplified warming on the TP with positive EDW in 2.0°C/1.5°C warmer futures, especially in the cold season. Mean TP warming relative to the reference period (1961–90) is dominated by an enhanced downward longwave radiation flux, while the variations in surface albedo shape the detailed pattern of EDW. For the same global warming level, the temperature changes under transient scenarios are ~0.2°C higher than those under stabilized scenarios, and the characteristics of EDW are broadly similar for both scenarios. These differences can be primarily attributed to the combined effects of differential downward longwave radiation, cloud radiative forcing, and surface sensible and latent heat fluxes. These findings contribute to a more detailed understanding of regional climate on the TP in response to the long-term climate goals of the Paris Agreement and highlight the differences between transient and stabilized warming scenarios.  相似文献   

12.
Abstract

Economic models of climate change often take the problem seriously, but paradoxically conclude that the optimal policy is to do almost nothing about it. We explore this paradox as seen in the widely used DICE model. Three aspects of that model, involving the discount rate, the assumed benefits of moderate warming, and the treatment of the latest climate science, are sufficient to explain the timidity of the model's optimal policy recommendation. With modifications to those three points, DICE shows that the optimal policy is a much higher and rapidly rising marginal carbon price; and that higher carbon price has a greater effect on physical measures of climate impacts. Our modifications exhibit nonlinear interactions; at least at low discount rates, there is synergy between individual changes to the model. At low discount rates, the inherent uncertainty about future damages looms larger in the analysis, rendering long-run economic modelling less useful. Our analysis highlights the sensitivity of the model to three debatable assumptions; it does not, and could not, lead to a more reliably ‘optimal’ cost of carbon. Cost-effectiveness analysis, focusing on the generally shorter-term cost side of the problem, reduces the economic paradoxes of the long run, and may make a greater contribution than economic optimization modelling.  相似文献   

13.
The potential greenhouse gas (GHG) emissions from the production of food for three different diets are compared using consequential Life Cycle Assessment. Diet 1 is an Average Danish Diet (ADD); diet 2 is based on the Nordic Nutritional Recommendations (NNR), whilst diet 3 is a New Nordic Diet (NND) developed by the OPUS project. The NND contains locally produced Nordic foods where more than 75 % is organically produced. NNR and NND include less meat and more fruit and vegetables than the ADD. All diets were adjusted to contain a similar energy and protein content. The GHG emissions from the provision of NNR and NND were lower than for ADD, 8 % and 7 % respectively. If GHG emissions from transport (locally produced versus imported food) are also taken into account, the difference in GHG emissions between NND and ADD increases to 12 %. If the production method (organic versus conventional) is taken into account so that the ADD contains the actual ratio of organically produced food (6.6 %) and the NND contains 80 %, the GHG emissions for the NND are only 6 % less than for the ADD. When the NND was optimised to be more climate friendly, the global warming potential of the NND was 27 % lower than it was for the ADD. This was achieved by including less beef, and only including organic produce if the GHG emissions are lower than for the conventional version, or by substituting all meat with legumes, dairy products and eggs.  相似文献   

14.
This work uses an energy balance climate model (EBCM) with explicit infrared radiative transfer, parametrized tropospheric temperature and humidity profiles, and separate stratosphere, troposphere, and surface energy balances, to investigate claims that a downward redistribution of tropospheric water vapor in response to surface warming could serve as a strong negative feedback on climatic change. A series of sensitivity tests is carried out using: (1) a variety of relationships between total precipitable water in the troposphere and temperature; (2) feedbacks between surface temperature and the vertical distribution of tropospheric water vapor at low latitudes; and (3) feedback between surface temperature or meridional temperature gradient and lapse rate. Fixed relative humidity (RH) enhances the global mean surface temperature response to a CO2 doubling by only 50% compared to fixed absolute humidity, giving a response of 1.8 K. When water vapor is assumed to be redistributed downward between 30°S–30°N such that a 1 K surface warming reduces total precipitable water above 600 hPa by 10%, the global mean surface air temperature response is reduced to 1.2 K. Assuming a stronger downward redistribution in relation to surface temperature change has a rapidly diminishing marginal effect on global mean and tropical surface temperature response, while slightly increasing the warming at high latitudes due to the parametrized dependence of middle-to-high latitude lapse rate on the meridional temperature gradient. A modest downward water vapor redistribution, such that absolute humidity in the upper troposphere at subtropical latitudes is constant as total precipitable water increases, can reduce the tropical temperature sensitivity to less than 1 K, while increasing the equator-to-pole amplification of the surface air temperature response from a factor of about three to a factor of four. However, it is concluded that whatever changes in future GCM response might occur as a result of new parametrizations of subgrid-scale processes, they are exceedingly unlikely to produce a climate sensitivity to a CO2 doubling of less than 1 K even if there is a strong downward shift in the water vapor distribution as climate warms. Received: 23 February 1998 / Accepted: 1 November 1999  相似文献   

15.
This paper analyses the optimal timing and macro-economic costs of carbon emission reductions that mitigate the global average atmospheric temperature increase. We use a macro-economic model in which there are two competing energy sources, fossil-fuelled and non-fossil-fuelled. Technological change is represented endogenously through learning curves, and niche markets exist implying positive demand for the relatively expensive non-fossil-fuelled energy source. Under these conditions, with a temperature increase constraint of 2 ° C, early abatement is found to be optimal, and, comparedto the results of many existing top-down models, the costs of this strategy prove to be low. We perform an extensive sensitivity analysis of our results regarding the uncertainties that dominate various economic and technological modeling parameters. Uncertainties in the learning rate and the elasticity of substitution between the two different energy sources most significantly affect the robustness of our findings.  相似文献   

16.
Preserving the Ocean Circulation: Implications for Climate Policy   总被引:3,自引:2,他引:1  
Climate modelers have recognized the possibility of abrupt climate changes caused by a reorganization of the North Atlantic's current pattern (technically known as a thermohaline circulation collapse). This circulation system now warms north-western Europe and transports carbon dioxide to the deep oceans. The posited collapse of this system could produce severe cooling in northwestern Europe, even when general global warming is in progress. In this paper we use a simple integrated assessment model to investigate the optimal policy response to this risk. Adding the constraint of avoiding a thermohaline circulation collapse would significantly reduce the allowable greenhouse gas emissions in the long run along an optimal path. Our analysis implies that relatively small damages associated with a collapse (less than 1% of gross world product) would justify a considerable reduction of future carbon dioxide emissions.  相似文献   

17.
To meet the low warming targets proposed in the 2015 Paris Agreement,substantial reduction in carbon emissions is needed in the future.It is important to know how surface climates respond under low warming targets.The present study investigates the surface temperature changes under the low-forcing scenario of Representative Concentration Pathways(RCP2.6)and its updated version(Shared Socioeconomic Pathways,SSP1-2.6)by the Flexible Global Ocean-Atmosphere-Land System(FGOALS)models participating in phases 5 and 6 of the Coupled Model Intercomparison Project(CMIP5 and CMIP6,respectively).In both scenarios,radiative forcing(RF)first increases to a peak of 3 W m^?2 around 2045 and then decreases to 2.6 W m^?2 by 2100.Global mean surface air temperature rises in all FGOALS models when RF increases(RF increasing stage)and declines or holds nearly constant when RF decreases(RF decreasing stage).The surface temperature change is distinct in its sign and magnitude between the RF increasing and decreasing stages over the land,Arctic,North Atlantic subpolar region,and Southern Ocean.Besides,the regional surface temperature change pattern displays pronounced model-to-model spread during both the RF increasing and decreasing stages,mainly due to large intermodel differences in climatological surface temperature,ice-albedo feedback,natural variability,and Atlantic Meridional Overturning Circulation change.The pattern of tropical precipitation change is generally anchored by the spatial variations of relative surface temperature change(deviations from the tropical mean value)in the FGOALS models.Moreover,the projected changes in the updated FGOALS models are closer to the multi-model ensemble mean results than their predecessors,suggesting that there are noticeable improvements in the future projections of FGOALS models from CMIP5 to CMIP6.  相似文献   

18.
Limiting global warming to ‘well below’ 2°C above pre-industrial levels and pursuing efforts to limit the temperature increase even further to 1.5°C is an integral part of the 2015 Paris Agreement. To achieve these aims, cumulative global carbon emissions after 2016 should not exceed 940 – 390?Gt of CO2 (for the 2°C target) and 167 – ?48?Gt of CO2 (for the 1.5°C target) by the end of the century. This paper analyses the EU’s cumulative carbon emissions in different models and scenarios (global models, EU-focused models and national carbon mitigation scenarios). Due to the higher reductions in energy use and carbon intensity of the end-use sectors in the national scenarios, we identify an additional mitigation potential of 26–37 Gt cumulative CO2 emissions up to 2050 compared to what is currently included in global or EU scenarios. These additional reductions could help to both reduce the need for carbon dioxide removals and bring cumulative emissions in global and EU scenarios in line with a fairness-based domestic EU budget for a 2°C target, while still remaining way above the budget for 1.5°C.

Key policy insights
  • Models used for policy advice such as global integrated assessment models or EU models fail to consider certain mitigation potential available at the level of sectors.

  • Global and EU models assume significant levels of CO2 emission reductions from carbon capture and storage to reach the 1.5°C target but also to reach the 2°C target.

  • Global and EU model scenarios are not compatible with a fair domestic EU share in the global carbon budget either for 2°C or for 1.5°C.

  • Integrating additional sectoral mitigation potential from detailed national models can help bring down cumulative emissions in global and EU models to a level comparable to a fairness-based domestic EU share compatible with the 2°C target, but not the 1.5°C aspiration.

  相似文献   

19.
20.
We compare changes in low birth weight and child malnutrition in 13 African countries under projected climate change versus socio-economic development scenarios. Climate scenarios are created by linking surface temperature gradients with declines in seasonal rainfall sea along with warming values of 1 °C and 2 °C. Socio-economic scenarios are developed by assigning regionally specific changes in access to household electricity and mother's education. Using these scenarios, in combination with established models of children's health, we investigate and compare the changes in predicted health outcomes. We find that the negative effects of warming and drying on child stunting could be mitigated by positive development trends associated with increasing mothers’ educational status and household access to electricity. We find less potential for these trends to mitigate how warming and drying trends impact birth weights. In short, under warming and drying, the risk of more malnourished children is greater than the risk of more children with low birth weights, but increases in child malnutrition could be averted in regions that increase access to educational resources and basic infrastructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号