首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Based on the moderate resolution imaging spectro-adiometer (MODIS)-acquired snow-covered days data (MSCD), validation of MSCD is performed by using 529 in situ observations of snow-covered days (SCD) from 2001 to 2006 in China. For the different characteristics of snow cover in four major snow-covered regions including the Tibetan Plateau, Xinjiang, and north-eastern and inner Mongolia, the validation process is divided into five parts for all of China. Our results indicate that except in the south-eastern part of the Tibetan Plateau, the MSCD is usually lower than the in situ SCD measurement. It is found that the MSCD have good polynomial regression agreement with the in situ measurements in Xinjiang and north-eastern and inner Mongolia with an R 2 values that reach 0.89, 0.78, and 0.87, respectively. Because the MSCD is smaller but with a good regression relationship with the in situ SCD, calibration of the MSCD images could significantly improve its precision in those regions. To be considered a stable snow-covered area, there must be greater than 60?days per year in which the pixels are covered by snow. Unstable snow-covered areas are ones in which fewer than 60?days but at least 1?day is covered by snow. The calibrated MSCD outcome indicates that the unstable snow-covered area can reach 555.2?×?104?km2, and the stable snow-covered area is approximately 273.1?×?104?km2. The area in the three major stable snow-covered regions of the Tibetan Plateau, Xinjiang, and north-eastern and inner Mongolia is approximately 100.4?×?104, 54.4?×?104, and 114.7?×?104?km2, respectively.  相似文献   

2.
For the first time a simulation of blowing snow events was validated in detail using one-month long observations (January 2010) made in Adélie Land, Antarctica. A regional climate model featuring a coupled atmosphere/blowing snow/snowpack model is forced laterally by meteorological re-analyses. The vertical grid spacing was 2 m from 2 to 20 m above the surface and the horizontal grid spacing was 5?km. The simulation was validated by comparing the occurrence of blowing snow events and other meteorological parameters at two automatic weather stations. The Nash test allowed us to compute efficiencies of the simulation. The regional climate model simulated the observed wind speed with a positive efficiency (0.69). Wind speeds higher than 12 m s ?1 were underestimated. Positive efficiency of the simulated wind speed was a prerequisite for validating the blowing snow model. Temperatures were simulated with a slightly negative efficiency (?0.16) due to overestimation of the amplitude of the diurnal cycle during one week, probably because the cloud cover was underestimated at that location during the period concerned. Snowfall events were correctly simulated by our model, as confirmed by field reports. Because observations suggested that our instrument (an acoustic sounder) tends to overestimate the blowing snow flux, data were not sufficiently accurate to allow the complete validation of snow drift values. However, the simulation of blowing snow occurrence was in good agreement with the observations made during the first 20 days of January 2010, despite the fact that the blowing snow flux may be underestimated by the regional climate model during pure blowing snow events. We found that blowing snow occurs in Adélie Land only when the 30-min wind speed value at 2 m a.g.l. is >10 m s ?1. The validation for the last 10 days of January 2010 was less satisfactory because of complications introduced by surface melting and refreezing.  相似文献   

3.
The long-term ice record (from 1964 to 2008) of an Arctic lake in northern Europe (Lake Kilpisj?rvi) reveals the response of lake ice to climate change at local and regional scales. Average freeze-up and ice breakup occurred on 9 November and 19 June, respectively. The freeze-up has been significantly delayed at a rate of 2.3 d per decade from 1964 onward (P?<?0.05). No significant change has taken place in ice breakup. Annual average ice thickness has become smaller since the mid-1980s (P?<?0.05). Air temperature during the early ice season significantly affected the ice thickness. The freeze-up date exhibits the highest correlation with the 2-month average daily minimum air temperature centered at the end of October, while the ice breakup date exhibits the highest correlation with the 2-month average daily maximal air temperature centered in mid May. A 1°C increase in the surface air temperature corresponds to a freeze-up later by 3.4?days and an ice breakup earlier by 3.6?days. Snow cover is a critical factor in lake-ice climatology. For cumulative November to March precipitation of less than 0.13?m, the insulating effect of the snow dominated, while higher rates of precipitation favored thicker ice due to the formation of snow ice. Variations in ice records of Lake Kilpisj?rvi can serve as an indicator of climate variations across the northern Europe. The North Atlantic Oscillation (NAO) does not significantly affect the ice season there, although both the local air temperatures and winter precipitation contain a strong NAO signal.  相似文献   

4.
Recent trends in seasonal cycles in China are analyzed, based on a homogenized dataset of daily temperatures at 541 stations during the period 1960–2008. Several indices are defined for describing the key features of a seasonal cycle, including local winter/summer (LW/LS) periods and local spring/autumn phase (LSP/LAP). The Ensemble Empirical Mode Decomposition method is applied to determine the indices for each year. The LW period was found to have shortened by 2–6 d (10 yr)-1, mainly due to an earlier end to winter conditions, with the LW mean temperature having increased by 0.2°C–0.4°C (10 yr)?1, over almost all of China. Records of the most severe climate extremes changed less than more typical winter conditions did. The LS period was found to have lengthened by 2–4 d (10 yr)?1, due to progressively earlier onsets and delayed end dates of the locally defined hot period. The LS mean temperature increased by 0.1°C–0.2°C (10 yr)-1 in most of China, except for a region in southern China centered on the mid-lower reaches of the Yangtze River. In contrast to the winter cases, the warming trend in summer was more prominent in the most extreme records than in those of more typical summer conditions. The LSP was found to have advanced significantly by about 2 d (10 yr)-1 in most of China. Changes in the autumn phase were less prominent. Relatively rapid changes happened in the 1980s for most of the regional mean indices dealing with winter and in the 1990s for those dealing with summer.  相似文献   

5.
We used daily precipitation data from a global high-resolution climate scenario to analyze the features of future precipitation including extreme and heavy rainfall. The scenario shows that the model reproduces the daily precipitation over South Korea well. The projections show an increase in annual precipitation of approximately 18% in the late 21st century, with the highest increase (38%) occurring in winter. The number of days with daily precipitation of less than 5 mm decreases, but that of daily precipitation of more than 5 mm increases slightly in the latter part of the 21st century. The peak of precipitation days shifted from July to August. The number of days with relatively small amounts of precipitation (10 and 30 mm d?1) increases most substantially in the winter season, but that for large amounts of precipitation (50, 80, 100, and 130 mm d?1) increases most in the summer season. Events with heavy precipitation rates of 100 and 130 mm d?1 are expected to occur in the winter season in the late 21st century, although no such events occurred during the winter season in the reference period.  相似文献   

6.
The available agro-climate resources that can be absorbed and converted into dry matter could directly affect crop growth and yield under climate change. Knowledge of the average amount and stability of available agro-climate resources for maize in the main cropping regions of China under climate change is essential for farmers and advisors to optimize cropping choices and develop adaptation strategies under limited resources. In this study, the three main maize cropping regions in China—the North China spring maize region (NCS), the Huanghuaihai summer maize region (HS), and the Southwest China mountain maize region (SCM)—were selected as study regions. Based on observed solar radiation, temperature, and precipitation data, we analyzed the spatial distributions and temporal trends in the available agro-climate resources for maize during 1981–2010. During this period, significantly prolonged climatological growing seasons for maize [3.3, 2.0, and 4.7 day (10 yr)–1 in NCS, HS, and SCM] were found in all three regions. However, the spatiotemporal patterns of the available agro-climate resources differed among the three regions. The available heating resources for maize increased significantly in the three regions, and the rates of increase were higher in NCS [95.5°C day (10 yr)–1] and SCM [93.5°C day (10 yr)–1] than that in HS [57.7°C day (10 yr)–1]. Meanwhile, decreasing trends in the available water resources were found in NCS [–5.3 mm (10 yr)–1] and SCM [–5.8 mm (10 yr)–1], whereas an increasing trend was observed in HS [3.0 mm (10 yr)–1]. Increasing trends in the available radiation resources were found in NCS [20.9 MJ m–2 (10 yr)–1] and SCM [25.2 MJ m–2 (10 yr)–1], whereas a decreasing trend was found in HS [11.6 MJ m–2 (10 yr)–1]. Compared with 1981–90, the stability of all three resource types decreased during 1991–2000 and 2001–10 in the three regions. More consideration should be placed on the extreme events caused by more intense climate fluctuations. The results can provide guidance in the development of suitable adaptations to climate change in the main maize cropping regions in China.  相似文献   

7.
利用南极长城站1985—2015年和中山站1989—2015年的天气现象记录和日平均气温资料,分析两站降水、降雨和降雪日数的长期变化特征及其变化趋势,并讨论了长城站降水形态变化与当地气温和阿蒙森低压变化的联系。结果表明:长城站降水日数较多,年总降水日数为236~343 d,有增加的趋势,变化速率为4.51 d/10a;其中降雨日数为74~185 d,降雪日数为157~282 d,增加的速率分别为2.68 d/10a和1.25 d/10a。而中山站年降水日数较少,年总降水日数为104~173 d,有减小的趋势,变化速率为-1.30 d/10a,中山站全年气温几乎都在0℃以下,降雨稀少,降雪为主要的降水形态。长城站年平均气温和降雨日数与总降水日数的比值(雨日比)显著正相关,在增温速率较大的秋季(3—5月),雨日比也显著增加(4.36%/10a)。降水形态受气温的影响很大,随着气温升高,长城站年降水日数中降雨日数的比重增加。秋季阿蒙森低压经向中心的东移有利于暖湿气流吹向南极半岛,也促进了降雨的发生。  相似文献   

8.
Changes in climatic variables at the sub-basins scale (having different features of land cover) are crucial for planning, development and designing of water resources infrastructure in the context of climate change. Accordingly, to explore the features of climate changes in sub-basins of the Source Region of Yellow River (SRYR), absolute changes and trends of temperature variables, maximum temperature (Tmax), minimum temperature (Tmin), mean temperature (Tavg) and diurnal temperature range (DTR), were analyzed annually and seasonally by using daily observed air temperature dataset from 1965 to 2014. Results showed that annual Tmax, Tmin and Tavg for the SRYR were experiencing warming trends respectively at the rate of 0.28, 0.36 and 0.31°C (10 yr)?1. In comparison with the 1st period (1965-1989), more absolute changes and trends towards increasing were observed during the 2nd period (1990-2014). Apart from Tangnaihai (a low altitude sub-basin), these increasing trends and changes seemed more significant in other basins with highest magnitude during winter. Among sub-basins the increasing trends were more dominant in Huangheyan compared to other sub-basins. The largest increase magnitude of Tmin, 1.24 and 1.18°C (10 yr)?1, occurred in high altitude sub-basins Jimai and Huangheyan, respectively, while the smallest increase magnitude of 0.23°C (10 yr)?1 occurred in a low altitude sub-basin Tangnaihai. The high elevation difference in Tangnaihai probably was the main reason for the less increase in the magnitude of Tmin. In the last decade, smaller magnitude of trend for all temperature variables signified the signal of cooling in the region. Overall, changes of temperature variables had significant spatial and seasonal variations. It implies that seasonal variations of runoff might be greater or different for each sub-basin.  相似文献   

9.
This study examines the potential impact of vegetation feedback on changes in summer climate aridity over the contiguous United States (US) due to the doubling of atmospheric CO2 concentration using a set of 100-year-long climate simulations made by a global climate model interactively coupled with a dynamic vegetation model. The Thornthwaite moisture index (I m ), which quantifies climate aridity on the basis of atmospheric water supply (i.e., precipitation) and atmospheric water demand (i.e., potential evapotranspiration, PET), is used to measure climate aridity. Warmer atmosphere and drier surface resulting from increased CO2 concentration increase climate aridity over most of the contiguous US. This phenomenon is due to larger increments in PET than in precipitation, regardless of the presence or absence of vegetation feedback. Compared to simulations without active dynamic vegetation feedback, the presence of vegetation feedback significantly alleviates the increase in aridity. This vegetation-feedback effect is most noticeable in the subhumid regions such as southern, midwestern and northwestern US, primarily by the increasing vegetation greenness. In these regions, the greening in response to warmer temperatures enhances moisture transfer from soil to atmosphere by evapotranspiration (ET). The increased ET and subsequent moistening over land areas result in weaker surface warming (1–2?K) and PET (3–10?mm?month?1), and greater precipitation (4–10?mm?month?1). Collectively, they result in moderate increases in I m . Our results suggest that moistening by enhanced vegetation feedback may prevent aridification under climatic warming especially in areas vulnerable to climate change, with consequent implications for mitigation strategies.  相似文献   

10.
In this study, the applicability of the statistical downscaling model (SDSM) in modeling five extreme precipitation indices including R10 (no. of days with precipitation ≥10?mm?day?1), SDI (simple daily intensity), CDD (maximum number of consecutive dry days), R1d (maximum 1-day precipitation total) and R5d (maximum 5-day precipitation total) in the Yangtze River basin, China was investigated. The investigation mainly includes the calibration and validation of SDSM model on downscaling daily precipitation, the validation of modeling extreme precipitation indices using independent period of the NCEP reanalysis data, and the projection of future regional scenarios of extreme precipitation indices. The results showed that: (1) there existed good relationship between the observed and simulated extreme precipitation indices during validation period of 1991–2000, the amount and the change pattern of extreme precipitation indices could be reasonably simulated by SDSM. (2) Under both scenarios A2 and B2, during the projection period of 2010–2099, the changes of annual mean extreme precipitation indices in the Yangtze River basin would be not obvious in 2020s; while slightly increase in the 2050s; and significant increase in the 2080s as compared to the mean values of the base period. The summer might be the more distinct season with more projected increase of each extreme precipitation indices than in other seasons. And (3) there would be distinctive spatial distribution differences for the change of annual mean extreme precipitation indices in the river basin, but the most of Yangtze River basin would be dominated by the increasing trend.  相似文献   

11.
This work presents the refractory black carbon(rBC)results of a snow and firn core drilled in West Antarctica(79°55'34.6"S,94°21'13.3"W)during the 2014?15 austral summer,collected by Brazilian researchers as part of the First Brazilian West Antarctic Ice Sheet Traverse.The core was drilled to a depth of 20 m,and we present the results of the first 8 m by comparing two subsampling methods—solid-state cutting and continuous melting—both with discrete sampling.The core was analyzed at the Department of Geological Sciences,Central Washington University(CWU),WA,USA,using a single particle soot photometer(SP2)coupled to a CETAC Marin-5 nebulizer.The continuous melting system was recently assembled at CWU and these are its first results.We also present experimental results regarding SP2 reproducibility,indicating that sample concentration has a greater influence than the analysis time on the reproducibility for low rBC concentrations,like those found in the Antarctic core.Dating was carried out using mainly the rBC variation and sulfur,sodium and strontium as secondary parameters,giving the core 17 years(1998?2014).The data show a well-defined seasonality of rBC concentrations for these first meters,with geometric mean summer/fall concentrations of 0.016μg L^?1 and geometric mean winter/spring concentrations of 0.063μg L^?1.The annual rBC concentration geometric mean was 0.029μg L^?1(the lowest of all rBC cores in Antarctica referenced in this work),while the annual rBC flux was 6.1μg m^?2 yr^?1(the lowest flux in West Antarctica records so far).  相似文献   

12.
This study investigates the recent extreme temperature trends across 19 stations in the Klang Valley, Malaysia, over the period 2006-16. Fourteen extreme index trends were analyzed using the Mann-Kendall non-parametric test, with Sen’s slope as a magnitude estimator. Generally, the annual daily mean temperature, daily mean maximum temperature, and daily mean minimum temperature in the Klang Valley increased significantly, by 0.07°C yr~(-1), 0.07°C yr~(-1)and 0.08°C yr~(-1),respectively. For the warm temperature indices, the results indicated a significant upward trend for the annual maximum of maximum temperature, by 0.09°C yr~(-1), and the annual maximum of minimum temperature, by 0.11°C yr~(-1). The results for the total number of warm days and warm nights showed significant increasing trends of 5.02 d yr~(-1)and 6.92 d yr~(-1),respectively. For the cold temperature indices, there were upward trends for the annual minimum of maximum temperature,by 0.09°C yr~(-1), and the annual minimum of minimum temperature, by 0.03°C yr~(-1), concurrent with the decreases in the total number cold days (TX10P), with-3.80 d yr~(-1), and cold nights (TN10P), with-4.33 d yr~(-1). The 34°C and 37°C summer days results showed significant upward trends of 4.10 d yr~(-1) and 0.25 d yr~(-1), respectively. Overall, these findings showed upward warming trends in the Klang Valley, with the minimum temperature rate increasing more than that of the maximum temperature, especially in urban areas.  相似文献   

13.
The direct and semi-direct radiative effects of anthropogenic aerosols on the radiative transfer and cloud fields in the Western United States (WUS) according to seasonal aerosol optical depth (AOD) and regional climate are examined using a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical-transport model (CTM) simulation. The two radiative effects cannot be separated within the experimental design in this study, thus the combined direct- and semi-direct effects are called radiative effects hereafter. The CTM shows that the AOD associated with the anthropogenic aerosols is chiefly due to sulfates with minor contributions from black carbon (BC) and that the AOD of the anthropogenic aerosol varies according to local emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary according to the characteristics of regional climate, in addition to the AOD. The effects on the top of the atmosphere (TOA) outgoing shortwave radiation (OSRT) range from ?0.2?Wm?2 to ?1?Wm?2. In Northwestern US (NWUS), the maximum and minimum impact of anthropogenic aerosols on OSRT occurs in summer and winter, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates on OSRT shows a bimodal distribution with winter/summer minima and spring/fall maxima, while the effect of anthropogenic BC shows a single peak in summer. The anthropogenic aerosols affect surface insolation range from ?0.6?Wm?2 to ?2.4?Wm?2, with similar variations found for the effects on OSRT except that the radiative effects of anthropogenic BC over AZNM show a bimodal distribution with spring/fall maxima and summer/winter minima. The radiative effects of anthropogenic sulfates on TOA outgoing longwave radiation (OLR) and the surface downward longwave radiation (DLRS) are notable only in summer and are characterized by strong geographical contrasts; the summer OLR in NWUS (AZNM) is reduced (enhanced) by 0.52?Wm?2 (1.14?Wm?2). The anthropogenic sulfates enhance (reduce) summer DLRS by 0.2?Wm?2 (0.65?Wm?2) in NWUS (AZNM). The anthropogenic BC affect DLRS noticeably only in AZNM during summer. The anthropogenic aerosols affect the cloud water path (CWP) and the radiative transfer noticeably only in summer when convective clouds are dominant. Primarily shortwave-reflecting anthropogenic sulfates decrease and increase CWP in AZNM and NWUS, respectively, however, the shortwave-absorbing anthropogenic BC reduces CWP in both regions. Due to strong feedback via convective clouds, the radiative effects of anthropogenic aerosols on the summer radiation field are more closely correlated with the changes in CWP than the AOD. The radiative effect of the total anthropogenic aerosols is dominated by the anthropogenic sulfates that contribute more than 80% of the total AOD associated with the anthropogenic aerosols.  相似文献   

14.
Aerosol and its effects, especially its indirect effects, on climate have drawn more and more attention in recent years. In this study, the first indirect radiative forcing (RF) of sulfate aerosol and its impacts on the regional climate in East Asia during the period from December 2008 to November 2009 were investigated. Affected by the general circulation and the conversion efficiency from SO2 to SO4 2? in aqueous phase, a remarkable seasonal variation of sulfate was found. The results show that the highest sulfate concentration as large as 24 g m?2 appears in the summer. The indirect RF due to sulfate aerosol at the top of atmosphere (TOA) and the surface is negative, which leads to a cooling effect on the surface by 0.12°C and a reduction of precipitation by 0.01 mm d?1. The tendencies of temperature and rainfall have significant diversity in space and time. The cloud feedback, associated with the hydrologic cycle and energy budget, is responsible for this discordant distribution. The variation of low cloud dominates the change of surface temperature. The subsidence due to the cooling effect in the mid atmosphere restrained and reduced the low clouds, leading to an apparent warm effect on the surface in Northeast Mongolia.  相似文献   

15.
Scenarios indicate that the air temperature will increase in high latitude regions in coming decades, causing the snow covered period to shorten, the growing season to lengthen and soil temperatures to change during the winter, spring and early summer. To evaluate how a warmer climate is likely to alter the snow cover and soil temperature in Scots pine stands of varying ages in northern Sweden, climate scenarios from the Swedish regional climate modelling programme SWECLIM were used to drive a Soil-Vegetation-Atmosphere Transfer (SVAT)-model (COUP). Using the two CO2 emission scenarios A and B in the Hadley centres global climate model, HadleyA and HadleyB, SWECLIM predicts that the annual mean air temperature and precipitation will increase at most 4.8°C and 315 mm, respectively, within a century in the study region. The results of this analysis indicate that a warmer climate will shorten the period of persistent snow pack by 73–93 days, increase the average soil temperature by 0.9–1.5°C at 10 cm depth, advance soil warming by 15–19 days in spring and cause more soil freeze–thaw cycles by 31–38%. The results also predict that the large current variations in snow cover due to variations in tree interception and topography will be enhanced in the coming century, resulting in increased spatial variability in soil temperatures.  相似文献   

16.
Various remote sensing products and observed data sets were used to determine spatial and temporal trends in climatic variables and their relationship with snow cover area in the higher Himalayas, Nepal. The remote sensing techniques can detect spatial as well as temporal patterns in temperature and snow cover across the inaccessible terrain. Non-parametric methods (i.e. the Mann–Kendall method and Sen's slope) were used to identify trends in climatic variables. Increasing trends in temperature, approximately by 0.03 to 0.08 °C year?1 based on the station data in different season, and mixed trends in seasonal precipitation were found for the studied basin. The accuracy of MOD10A1 snow cover and fractional snow cover in the Kaligandaki Basin was assessed with respect to the Advanced Spaceborne Thermal Emission and Reflection Radiometer-based snow cover area. With increasing trends in winter and spring temperature and decreasing trends in precipitation, a significant negative trend in snow cover area during these seasons was also identified. Results indicate the possible impact of global warming on precipitation and snow cover area in the higher mountainous area. Similar investigations in other regions of Himalayas are warranted to further strengthen the understanding of impact of climate change on hydrology and water resources and extreme hydrologic events.  相似文献   

17.
Using a robust global precipitation database, we analyze coast-to-interior seasonal precipitation distributions over the world’s major forest regions. We find that the active functioning of boreal forests in summer is associated with an intense ocean-to-land moisture transport, which declines in winter when forest functioning is minimal. This seasonal switch manifests itself as a change in the exponential scale length of precipitation distribution, which exceeds 15?×?103 km in summer but decreases to (3–4)?×?103 km in winter. In equatorial rainforests, which are photosynthetically active throughout the year, annual precipitation remains approximately constant, while the coefficient of variation of monthly precipitation significantly declines toward the continent interior. Precipitation over forest during the periods of active forest functioning is always higher than over the adjacent ocean. Such precipitation patterns support the biotic pump concept according to which forest cover drives the ocean-to-land atmospheric moisture transport on a continental scale.  相似文献   

18.
Atmospheric particle-bound mercury levels were measured in PM10 aerosols (HgP) at a rural site (Mahasar, Haryana) during winter 2014–15 and summer 2015. The PM10 HgP was determined by using Differential Pulse Anodic Stripping Voltammetry through standard addition methods while the trace metals were determined by using an Atomic Absorption Spectroscopy. The mass concentrations of HgP varied from 591 to 1533 pg/m3 with an average of 1009?±?306 pg/m3 during the winter, while the mass concentrations of HgP varied from 43 to 826 pg/m3 with an average of 320?±?228 pg/m3 during the summer. However, it is difficult to assess whether these levels are harmful or not because there is no standard value available as National Ambient Air Quality Standard. The higher concentrations of HgP during winters were possibly due to favourable local meteorological conditions for the stagnation of particulate matter in the lower atmosphere and the increased emissions from existing natural or anthropogenic sources, regional sources and long-range transportation. Relatively low concentrations of HgP during summer might be due to increased mixing heights as well as scavenging effect because some light to heavy rain events were observed during summer time sampling. However, among other metals determined, the concentration of HgP was the lowest during both the seasons. The study may be useful in assessing the health impacts of PM10 HgP and other metals.  相似文献   

19.
青藏高原冬春季积雪异常对中国春夏季降水的影响   总被引:27,自引:3,他引:27  
利用1956年12月~1998年12月共42a,青藏高原及其附近地区78个积雪观测站的雪深和我国160站月降水的距平资料,分析了其气候特征,并用SVD方法分析了冬春季积雪异常与春夏季我国降水异常的关系。用区域气候模式RegCM2模拟了青藏高原积雪异常的气候效应并检验了诊断分析的结果。分析表明,雪深异常,尤其是冬季雪深异常是影响中国降水的一个因子。研究证明,高原冬季雪深异常对后期中国区域降水的影响比春季雪深异常的影响更为重要。数值模拟的结果表明,高原雪深和雪盖的正异常推迟了东亚夏季风的爆发日期,减弱了季风强度,造成华南和华北降水减少,而长江和淮河流域降水增加。冬季雪深异常比冬季雪盖异常和春季雪深异常对降水的影响更为显著。机理分析指出,高原及其邻近地区的积雪异常首先通过融雪改变土壤湿度和地表温度,从而改变了地面到大气的热量、水汽和辐射通量。由此所引起的大气环流变化又反过来影响下垫面的特征和通量输送。在湿土壤和大气之间,这样一种长时间的相互作用是造成后期气候变化的关键过程。与干土壤和大气的相互作用过程有本质差别。  相似文献   

20.
Daily observations of wind speed at 12 stations in the Greater Beijing Area during 1960–2008 were homogenized using the Multiple Analysis of Series for Homogenization method. The linear trends in the regional mean annual and seasonal (winter, spring, summer and autumn) wind speed series were-0.26,-0.39,-0.30,-0.12 and-0.22 m s-1 (10 yr)-1 , respectively. Winter showed the greatest magnitude in declining wind speed, followed by spring, autumn and summer. The annual and seasonal frequencies of wind speed extremes (days) also decreased, more prominently for winter than for the other seasons. The declining trends in wind speed and extremes were formed mainly by some rapid declines during the 1970s and 1980s. The maximum declining trend in wind speed occurred at Chaoyang (CY), a station within the central business district (CBD) of Beijing with the highest level of urbanization. The declining trends were in general smaller in magnitude away from the city center, except for the winter case in which the maximum declining trend shifted northeastward to rural Miyun (MY). The influence of urbanization on the annual wind speed was estimated to be about-0.05 m s-1 (10 yr)-1 during 1960–2008, accounting for around one fifth of the regional mean declining trend. The annual and seasonal geostrophic wind speeds around Beijing, based on daily mean sea level pressure (MSLP) from the ERA-40 reanalysis dataset, also exhibited decreasing trends, coincident with the results from site observations. A comparative analysis of the MSLP fields between 1966–1975 and 1992–2001 suggested that the influences of both the winter and summer monsoons on Beijing were weaker in the more recent of the two decades. It is suggested that the bulk of wind in Beijing is influenced considerably by urbanization, while changes in strong winds or wind speed extremes are prone to large-scale climate change in the region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号