首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
PRECIS水平分辨率对宁夏气候模拟影响的试验   总被引:2,自引:0,他引:2       下载免费PDF全文
徐宾  许吟隆 《高原气象》2009,28(2):440-445
利用1979-1993年ECMWF再分析数据驱动区域气候模式系统PRECIS,分析设置水平网格距为50 km和25 km时对PRECIS模拟宁夏气候效果的影响.模拟结果表明:PRECIS在两种分辨率下能较好地模拟宁夏地区的逐月平均温度和降水的时间序列分布特征,以及逐日温度和逐日降水发生频率的分布特征.当PRECIS分辨率为25 km时,PRECIS对宁夏地区月平均气温、降水的模拟和日气温与日降水发生频率分布特征的模拟与实况更加吻合,而且对0℃附近温度和极端降水与极端气温模拟的效果明显改善.  相似文献   

2.
利用区域气候模式WRF对2003年夏季长江三角洲极端区域气候进行高分辨率模拟,通过与站点观测降水、TRMM反演降水的对比分析表明,模式较合理地模拟出2003年夏季长江三角洲降水的主要特征,模拟的夏季各月平均降水量和强降水中心位置及降水强度都与实况较接近;模拟和观测的江淮流域、长江流域及浙江南部的区域平均逐日降水序列的相关系数较高;模拟出小雨、中雨和暴雨三类不同等级的降水概率特征,对暴雨概率分布的模拟结果最好;还模拟出长江三角洲梅雨期的多次中尺度强暴雨事件,模拟的暴雨发生时间和发生区域及雨带南移、北跳与实况都很接近,但降水量略有偏差。模式合理模拟出2003年夏季高温天气较多以及受多次强降水冷却效应引起长江以南、以北地区温差较大的区域气候特征,模拟的最低、最高气温的空间分布及极大值中心与观测都较接近,最低气温模拟结果更好;还非常好地模拟出了区域平均的逐日最高、最低气温的时间演变特征,比降水更接近观测,并具有更高的时间相关系数。   相似文献   

3.
区域气候模式RIEMS对东亚气候的模拟   总被引:10,自引:4,他引:6  
利用区域环境集成系统模式对东亚地区进行了1987年1月到1996年12月的长期积分试验,重点考察了区域气候模式对东亚地区区域气候平均状况的模拟能力.结果表明:(1) RIEMS模式能够较好地模拟出不同季节温度的空间分布以及不同区域温度的年变化;同时模式模拟的季和月平均表面大气温度与观测之间偏差大约一般在1~2℃.(2)对于降水来说,RIEMS模式能够较好地模拟降水的季节变化以及空间分布特征;同时,也能够较好地模拟不同区域降水的年变化.就季节而言,模式模拟的冬季降水最好,相对较差的为夏季;同时,模式能够较好地模拟雨带季节性移动,但模拟的雨带较观测的雨带偏北,大约为2~3纬度.(3)RIEMS模式能够模拟出东亚地区观测的湿润和干旱分布规律,但对于西北干旱区较观测偏干.    相似文献   

4.
基于长江流域142个气象站1986—2005年月降水和气温数据,评估由MPI-ESM-LR模式驱动的CCLM区域气候模式对长江流域气温和降水的模拟能力,并采用EDCDF法对气温和降水预估数据进行偏差校正。结果表明:该区域气候模式能较好地模拟出长江流域平均气温的季节变化和空间分布特征,但模拟值无论在季节还是年际尺度上均高于观测值。对降水而言,该模式不能较好地模拟出降水的季节分布特征,导致春季、冬季及年模拟值高于观测值,而夏季和秋季模拟值低于观测值。总体而言,该模式对气温的模拟效果相对较好。偏差校正后的预估结果表明:在RCP4.5情景下,长江流域未来(2016—2035年)平均气温相对于基准期(1986—2005年)将升高0.66℃,年降水量将减少2.2%。  相似文献   

5.
PRECIS模式对陕西气候模拟能力验证   总被引:1,自引:0,他引:1  
使用英国Hadley气候中心的区域气候模式系统PRECIS已模拟的中国境内的数据,取其陕西区域内的模拟值与同期实际观测资料进行对比,分析验证PRECIS模式对陕西区域气候的模拟能力。结果表明:PRECIS模式能够模拟陕西30a年平均温度及温度趋势的空间分布特征,模式模拟值较实况值偏低0.35℃,误差小于3%;模拟的年均热浪(≥38℃)发生频次与实况相差不大;模式对年降水日数的模拟与实况值之间存在较好的一致性.大部分区域的偏差不大于10%;模式较好地反应了暴雨发生频率最高的区域是陕南中西部的趋势。  相似文献   

6.
RegCM3对山东夏季气候高分辨率模拟   总被引:1,自引:1,他引:0  
利用区域气候模式RegCM3及NCEP/DOE再分析资料,对山东地区1985-2000年夏季区域气候变化进行了高分辨率(20 km)的数值模拟试验.通过对模拟结果和山东地区较密集的观测资料的比较分析,检验了模式在该地区的模拟能力.结果表明:(1)区域气候模式RegCM3能够合理地模拟出山东区域中高层的主要环流特征;(2)数值模拟能够合理再现山东地区16 a夏季平均降水南高北低和地面气温西高东低的主要分布特征.同时也能够合理地模拟出1990和1998年山东地区夏季强降水的主要特征,以及1992和1999年的干旱;(3) 模式结果较好地反映了1985-2000年16 a夏季山东地区降水和地面气温变率的主要特征.  相似文献   

7.
区域气候模式对东亚气候时空演变特征的模拟研究   总被引:4,自引:2,他引:2  
利用区域环境集成模式系统对东亚地区进行了1987年1月到1996年12月的长期积分试验,重点采用经验正交函数分析方法分析和比较模式模拟及观测气候主分量时空特征,从而考察区域气候模式对东亚地区的区域气候模拟能力.结果表明:(1) RIEMS能够较好地抓住地面气温年平均状况及其年变化和年际变率的主要特征;(2)尽管模式对降水的模拟能力没有对地面气温模拟的强,但RIEMS模式基本上能够模拟出降水的空间分布以及降水的季节变化特征,同时能够抓住降水的年际变率.    相似文献   

8.
“三江源”地区未来气候变化的模拟分析   总被引:4,自引:0,他引:4  
利用ECMWF1979~1993年的再分析数据(ERA15)作为边界条件,驱动区域气候模式系统PRE-CIS(Providing Regional Climates for Impacts Studies)模拟"三江源"地区的月均降水与台站实际观测资料进行的对比表明,PRECIS模拟的降水值偏大,但总体上能够模拟出降水的季节变化特征。气候基准时段(1961~1990年)的模拟结果与同期观测资料的对比分析表明,PRECIS能够模拟出"三江源"地区降水的季节分布特征和空间差异,但模拟值总体偏大。相对于气候基准时段,SRESA2、B2情景下2071~2100年(2080s时段)"三江源"地区增温明显,两种情景下年均升温分别可达4℃和2.8℃,降水略有增加;冬季升温幅度最大,分别可达4.4℃和3.2℃,降水增加的比例也最大;夏季"三江源"地区的升温达到4.2℃和3℃以上,但有些地区的降水呈减少趋势。夏季降水量的减少和气温的升高会加剧"三江源"地区气候变干的趋势,导致源区水源补给不足。应当采取切实可行的措施保护江河源区的自然生态系统,避免源区气候环境的进一步恶化。  相似文献   

9.
区域气候模式REMO对东亚季风季节变化的模拟研究   总被引:8,自引:2,他引:6  
将欧洲区域气候模式REMO首次应用于东亚区域,利用该模式对1980年和1990年东亚季风季节变化进行了模拟研究,并将模拟结果与NCEP再分析资料进行比较,以检验该模式对东亚季风的模拟能力.研究表明,区域气候模式REMO能够较好地模拟出东亚地区高、低空的大气环流特征,模拟的高度场、流场和温度场与NCEP再分析资料场都比较一致.模拟结果显示了东亚季风的月变化和季节转换特征.模拟的降水场与GPCC降水资料的对比结果表明,REMO能较为成功地模拟出东亚地区降水的空间分布,并能较好地反映降水的季节变化及主要降水趋势,夏季降水模拟偏大,整个区域平均的降水量偏差约为18%左右.  相似文献   

10.
华北地区夏季降水模拟研究:区域气候模式性能评估   总被引:2,自引:1,他引:1       下载免费PDF全文
利用高分辨率区域气候模式Reg CM3对华北地区1991—2002年夏季气候进行了数值模拟,对照中国台站的实测资料,对模拟的华北地区夏季降水、温度进行了较为全面的比较,以检验模式的模拟性能。对平均场的模拟结果检验认为,该区域气候模式对华北地区夏季降水的空间分布模拟存在一定的误差,河套地区及黄河以南地区降水量接近实况,沿着太行山脉及东部沿海地区降水量明显偏多。模式对温度的模拟误差较小,较好地再现了气温的空间分布特征,但山西及以北地区模拟的温度略偏低。模式能够较好地模拟出华北地区夏季降水和气温的年际变化,成功再现了该区域降水和气温的异常变化。模式能够成功模拟出该区域降水和气温日变化特征,特别是对于逐年夏季的降水日变化过程的峰值和谷值均有成功表现,对于典型年份华北地区较强降水过程中降水发生的时间、落区、强度等也有再现能力,不足的是模拟的降水量比观测偏大。对于模式误差是否与地形或模式积云对流参数化方案等有关,需要进一步探讨。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

17.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

18.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
20.
正Aims Scope Advances in Atmospheric Sciences(AAS)is an international journal on the dynamics,physics,and chemistry of the atmosphere and ocean with papers across the full range of the atmospheric sciences,co-published bimonthly by Science Press and Springer.The journal includes Articles,Note and Correspondence,and Letters.Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号