首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Three atmospheric boundary layer(ABL) schemes and two land surface models that are used in the Weather Research and Forecasting(WRF) model, version 3.4.1, were evaluated with numerical simulations by using data from the north coast of France(Dunkerque). The ABL schemes YSU(Yonsei University),ACM2(Asymmetric Convective Model version 2), and MYJ(Mellor–Yamada–Janjic) were combined with two land surface models, Noah and RUC(Rapid Update Cycle), in order to determine the performances under sea-breeze conditions. Particular attention is given in the determination of the thermal internal boundary layer(TIBL), which is very important in air pollution scenarios. The other physics parameterizations used in the model were consistent for all simulations. The predictions of the sea-breeze dynamics output from the WRF model were compared with observations taken from sonic detection and ranging, light detection and ranging systems and a meteorological surface station to verify that the model had reasonable accuracy in predicting the behavior of local circulations. The temporal comparisons of the vertical and horizontal wind speeds and wind directions predicted by the WRF model showed that all runs detected the passage of the sea-breeze front. However, except for the combination of MYJ and Noah, all runs had a time delay compared with the frontal passage measured by the instruments. The proposed study shows that the synoptic wind attenuated the intensity and penetration of the sea breeze. This provided changes in the vertical mixing in a short period of time and on soil temperature that could not be detected by the WRF model simulations with the computational grid used. Additionally, among the tested schemes, the combination of the localclosure MYJ scheme with the land surface Noah scheme was able to produce the most accurate ABL height compared with observations, and it was also able to capture the TIBL.  相似文献   

2.
The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs(quantitative precipitation forecasts)are investigated by applying the HIRLAM(high resolutionlimited area model)to the summer heavy-rain cases in China.The performance of the control run,for which a 0.5°×0.5°grid spacing and a traditional“grid-box supersaturation removal+Kuo typeconvective paramerization”are used as the moist physics,is compared with that of the sensitivityruns with an enhanced model's moist physics(Sundqvist scheme)and an increased horizontalresolution(0.25°×0.25°),respectively.The results show:(1)The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud watercontent as an additional prognostic variable and taking into account briefly of the microphysicsinvolved in the cloud-rain conversion,does bring improvements in the model's QPFs.Althoughthe deteriorated QPFs also occur occasionally,the improvements are found in the majority of thecases,indicating the great potential for the improvement of QPFs by enhancing the model's moistphysics.(2)By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quitehigh compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without thesimultaneous enhancement in model physics and objective analysis,the improvements in QPFs arevery limited.With higher resolution,although slight amelioration in locating the rainfall centersand in resolving some finer structures of precipitation pattern are made,the number of the mis-predicted fine structures in rainfall field increases with the enhanced model resolution as well.  相似文献   

3.
A modified thermal time model(MTM) was developed to reproduce the leaf onset for summer-green vegetation in the Northern Hemisphere. The model adopts the basic concept of a thermal time model(TM) in that leaf onset is primarily triggered by growing degree days(GDD). Based on global phenology data derived from satellite observations, a new parameterization for the critical model parameter Tb(i.e., baseline temperature for GDD calculation) has been introduced, and the spatial distribution of Tb was calculated. Simulations of leaf onset during 1982–2000 in the range 30–90°N showed a significant improvement of MTM over the standard TM model with constant Tb. The mean error and mean absolute error of the climatological simulation were 1.11 and 6.8 days, respectively, and 90% of the model error(5th and 95 th percentiles) was between-12.4 and 13.7 days.  相似文献   

4.
Radiative transfer model simulations were used to investigate the erythemal ultraviolet(EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors(CFEUV) for UV-A[CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from-5.0% to 25.0% for aerosols, and from-9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions(i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%–4.1% per 0.1 albedo change,depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.  相似文献   

5.
Assessment of the nitrogen (N) balance and its long-term trend is necessary for management practices because of the negative environmental effects caused by an imbalance of reactive N in grassland ecosystems. In this study, we designed a module for the IAP-N (Improving Anthropogenic Practices of managing reactive Nitrogen) model to enable it to assess the N budget of regional grasslands. The module was developed to quantify the individual components of the N inputs and outputs for grassland ecosystems using livestock and human populations, grassland area, and fossil-energy consumption data as the model inputs. In this paper, the estimation approaches for individual components of N budget, data acquisition, and parameter selection are described in detail. The model was applied to assess the N budget of Inner Mongolia in 2006 at the county scale. The simulation results show that the most important pathway of N outputs from the grassland was livestock intake. The N output from livestock intake was especially large in the middle of Inner Mongolia. Biological fixation, atmospheric deposition, and livestock excreta deposition were comparably important for the N inputs into the grassland. The N budget for Inner Mongolia grassland in 2006 was -1.7×10 8 ±0.6×10 8 kg. The case study for Inner Mongolia shows that the new grassland module for the IAP-N model can capture the characteristics of the N budget in a semiarid grassland.  相似文献   

6.
The airflow and dispersion of a pollutant in a complex urban area of Beijing, China, were numerically examined by coupling a Computational Fluid Dynamics (CFD) model with a mesoscale weather model. The models used were Open Source Field Operation and Manipulation (OpenFOAM) software package and Weather Research and Forecasting (WRF) model. OpenFOAM was firstly validated against wind-tunnel experiment data. Then, the WRF model was integrated for 42 h starting from 0800 LST 08 September 2009, and the coupled model was used to compute the flow fields at 1000 LST and 1400 LST 09 September 2009. During the WRF-simulated period, a high pressure system was dominant over the Beijing area. The WRF-simulated local circulations were characterized by mountain valley winds, which matched well with observations. Results from the coupled model simulation demonstrated that the airflows around actual buildings were quite different from the ambient wind on the boundary provided by the WRF model, and the pollutant dispersion pattern was complicated under the influence of buildings. A higher concentration level of the pollutant near the surface was found in both the step-down and step-up notches, but the reason for this higher level in each configurations was different: in the former, it was caused by weaker vertical flow, while in the latter it was caused by a downward-shifted vortex. Overall, the results of this study suggest that the coupled WRF-OpenFOAM model is an important tool that can be used for studying and predicting urban flow and dispersions in densely built-up areas.  相似文献   

7.
The regional distribution of perceived temperatures (PT) for 28 major weather stations in South Korea during the past 22 years (1983–2004) was investigated by employing a human heat budget model, the Klima-Michel model. The frequencies of a cold stress and a heat load by each region were compared. The sensitivity of PT in terms of the input of synoptic meteorological variables were successfully tested. Seogwipo in Jeju Island appears to be the most comfortable city in Korea. Busan also shows a high frequenc...  相似文献   

8.
The seasonal variations of the Asian monsoon were explored by applying the atmospheric general circulation model R42L9 that was developed recently at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP/CAS). The 20-yr (1979-1998) simulation was done using the prescribed 20-yr monthly SST and sea-ice data as required by Atmospheric Model Intercomparison Project (AMIP)Ⅱ in the model. The monthly precipitation and monsoon circulations were analyzed and compared with the observations to validate the model‘s performance in simulating the climatological mean and seasonal variations of the Asian monsoon. The results show that the model can capture the main features of the spatial distribution and the temporal evolution of precipitation in the Indian and East Asian monsoon areas. The model also reproduced the basic patterns of monsoon circulation. However, some biases exis tin this model. The simulation of the heating over the Tibetan Plateau in summer was too strong. The overestimated heating caused a stronger East Asian monsoon and a weaker Indian monsoon than the observations. In the circulation fields, the South Asia high was stronger and located over the Tibetan Plateau. The western Pacific subtropical high was extended westward, which is in accordance with the observational results when the heating over the Tibetan Plateau is stronger. Consequently, the simulated rainfall around this area and in northwest China was heavier than in observations, but in the Indian monsoon area and west Pacific the rainfall was somewhat deficient.  相似文献   

9.
The A.M.Obukhov Institute of Atmospheric Physics,Russian Academy of Sciences (IAP RAS) climate model (CM) of intermediate complexity is extended by a spatially explicit terrestrial carbon cycle module.Numerical experiments with the IAP RAS CM are performed forced by the reconstructions of anthropogenic and natural forcings for the 16th to the 20th centuries and by combined SRES (Special Report on Emission Scenarios) A2-LUH (Land Use Harmonization) anthropogenic scenarios for the 21st century.Hereby,the impact of uncertainty in land-use scenarios on results of simulations with a coupled climate-carbon cycle model is tested.The simulations of the model realistically reproduced historical changes in carbon cycle characteristics.In the IAP RAS CM,climate warming reproduced in the 20th and 21st centuries enhanced terrestrial net primary production but terrestrial carbon uptake was suppressed due to an overcompensating increase in soil respiration.Around year 2100,the simulations the model forced by different land use scenarios diverged markedly,by about 70 Pg (C) in terms of biomass and soil carbon stock but they differed only by about 10 ppmv in terms of atmospheric carbon dioxide content.  相似文献   

10.
A six level regional primitive equation model has been formulated and tested for monsoon prediction. The model uses dynamic normal mode initialization scheme for obtaining initial balance. The physical processes included are: the large scale condensation, the Kuo type of cumulus convection, the surface friction, the sensible heat supply and evaporation over the sea. The actual smooth orography is included. The model has been integrated for 48 hrs using input of 7 July and 8 August 1979 when the domain of integration was dominated by an intense monsoon depression. In order to investigate the model simulation of formative stage of the depression, the model was also integrated using input of 4 July 1979.Furthermore, the envelope orography has been constructed and included in the model for investigating its effects on the monsoon prediction. Results of the model forecast are presented and discussed.  相似文献   

11.
The impacts of the enhanced model's moist physics and horizontal resolution upon the QPFs(quantitative precipitation forecasts) are investigated by applying the HIRLAM(high resolution limited area model) to the summer heavy-rain cases in China.The performance of the control run,for which a 0.5°×0.5°grid spacing and a traditional "grid-box supersaturation removal+Kuo type convective paramerization" are used as the moist physics,is compared with that of the sensitivity runs with an enhanced model's moist physics(Sundqvist scheme) and an increased horizontal resolution(0.25°×0.25°),respectively.The results show:(1) The enhanced moist physics scheme(Sundqvist scheme),by introducing the cloud water content as an additional prognostic variable and taking into account briefly of the microphysics involved in the cloud-rain conversion,does bring improvements in the model's QPFs.Although the deteriorated QPFs also occur occasionally,the improvements are found in the majority of the cases,indicating the great potential for the improvement of QPFs by enhancing the model's moist physics.(2) By increasing the model's horizontal resolution from 0.5°×0.5°,which is already quite high compared with that of the conventional atmospheric soundings,to 0.25°×0.25°without the simultaneous enhancement in model physics and objective analysis,the improvements in QPFs are very limited.With higher resolution,although slight amelioration in locating the rainfall centers and in resolving some finer structures of precipitation pattern are made,the number of the mis-predicted fine structures in rainfall field increases with the enhanced model resolution as well.  相似文献   

12.
云系模式研究:云场的宏微观结构模拟   总被引:7,自引:4,他引:7  
许焕斌 《气象学报》1995,53(3):349-357
用计算物理方法设计构造了一个云系模式,并用一个实例作为初始场进行了模拟,模拟的云场宏观特征与实况观测比较一致,微观结构比较合理,配套的模式输出数据处理和绘图程序包能给出云系的点(粒子谱)、线(垂直廓线)、面(结构剖面)、体(云场,云型,云量,云系形状)的多维宏微观结构的云场图象。  相似文献   

13.
The majority of climate change impacts assessments account for climate change uncertainty by adopting the scenario-based approach. This typically involves assessing the impacts for a small number of emissions scenarios but neglecting the role of climate model physics uncertainty. Perturbed physics ensemble (PPE) climate simulations offer a unique opportunity to explore this uncertainty. Furthermore, PPEs mean it is now possible to make risk-based impacts estimates because they allow for a range of estimates to be presented to decision-makers, which spans the range of climate model physics uncertainty inherent from a given climate model and emissions scenario, due to uncertainty associated with the understanding of physical processes in the climate model. This is generally not possible with the scenario-based approach. Here, we present the first application of a PPE to estimate the impact of climate change on heat-related mortality. By using the estimated impacts of climate change on heat-related mortality in six cities, we demonstrate the benefits of quantifying climate model physics uncertainty in climate change impacts assessment over the more common scenario-based approach. We also show that the impacts are more sensitive to climate model physics uncertainty than they are to emissions scenario uncertainty, and least sensitive to whether the climate change projections are from a global climate model or a regional climate model. The results demonstrate the importance of presenting model uncertainties in climate change impacts assessments if the impacts are to be placed within a climate risk management framework.  相似文献   

14.
In this study the relationship between climate model biases in the control climate and the simulated climate sensitivity are discussed on the basis of perturbed physics ensemble simulations with a globally resolved energy balance (GREB) model. It is illustrated that the uncertainties in the simulated climate sensitivity (estimated by the transient response to CO2 forcing scenarios in the twenty first century or idealized 2 × CO2 forcing experiments) can be conceptually split into two parts: a direct effect of the perturbed physics on the climate sensitivity independent of the control mean climate and an indirect effect of the perturbed physics by changing the control mean climate, which in turn changes the climate sensitivity, as the climate sensitivity itself is depending on the control climate. Biases in the control climate are negatively correlated with the climate sensitivity (colder climates have larger sensitivities), if no physics are perturbed. Perturbed physics that lead to warmer control climate, would in average also lead to larger climate sensitivities, if the control climate is held at the observed reference climate by flux corrections. Thus the effects of control biases and perturbed physics are opposing each other and are partially cancelling each other out. In the GREB model the biases in the control climate are the more important effect for the regional climate sensitivity uncertainties, but for the global mean climate sensitivity both, the biases in the control climate and the perturbed physics, are equally important.  相似文献   

15.
The macro and micro cloud physics structures and their evolution with time are the core of describing cloud fields in essence.They are necessary atmospheric environment not only in aviation and spaceflight activities but also for atmospheric radiation transfer and acid rain formation research.Unfortunately it is difficult to obtain an entire environmental cloud field by using observation methods directly.Thus,by use of computation physics method to build a cloud-systemmodel may be an indispensable way for this topic.This paper presented a cloud-system model for this goal,and simulated a real case.The results of computation showed that the macro structure of the cloud field was better consistent with real observation,and the micro structure was fairly reasonable.The output of model could provide all the information about the cloud field:(1)size-distribution spectrum of hydrometeor particles(point),(2)vertical profile(line),(3)horizontal or vertical section of macro and micro parameters(surface),and(4)cloud cover,pattern of cloud and configuration of cloud,etc.(body).  相似文献   

16.
GRAPES模式中物理过程时间计算精度对降水预报的影响   总被引:1,自引:0,他引:1  
对数值模式物理过程与动力框架耦合方案进行了分析, 在GRAPES模式中引进了ECMWF模式中的Wedi (1999) 耦合方案, 此方案考虑了两个时间层物理过程的影响, 即将上游点和到达点物理过程的影响同时反馈到动力框架中, 它是二阶时间精度的耦合方案, 比原一阶精度耦合方案更加合理和准确。利用GRAPES模式, 设计了Wedi耦合方案与原耦合方案的连续数值试验。试验结果表明, 在逐日降水预报中, Wedi耦合方案与原耦合方案降水预报的T评分 (Threat score) 互有高低, 但差别不大; 预报的降水量可能有较小的变化, 但不能使预报降水的等级出现本质的改变。但对其平均后的分析可知, 新引进的Wedi耦合方案对预报降水评分具有正的贡献。即新耦合方案完善和改进了GRAPES模式, 对提高模式的降水预报准确率具有正效果。  相似文献   

17.
    
Some features associated with Eastern China Precipitation (ECP), in terms of mean climatology, sea-sonal cycle, interannual variability are studied based on monthly rainfall data. The rainfall behavior over Eastern China has fine spatial structure in the seasonal variation and interannual variability. The revealed characteristics of ECP motivate us dividing Eastern China into four sub—regions to quantify significant lag—correlations of the rainfalls with global sea surface temperatures (SSTs) and to study the ocean’s pre-dominant role in forcing the eastern China summer monsoon rainfalls. Lagged correlations between the mid—eastern China summer monsoon rainfalls (MECSMRs) and the global SSTs, with SST leading to rain-fall, are investigated. The most important key SST regions and leading times, in which SSTs are highly corre-lated with the MECSMRs, are selected. Part of the results confirms previous studies that show links between the MECSMRs and SSTs in the eastern equatorial Pacific associated with the El Nino — Southern Oscillation (ENSO) phenomenon. Other findings include the high lag correlations between the MECSMRs and the SSTs in the high and middle latitude Pacific Ocean and the Indian Ocean, even the SSTs over the Atlantic Ocean, with SST leading—time up to 4 years. Based on the selected SST regions, regression equa-tions are developed by using the SSTs in these regions in respective leading time. The correlation coefficient between the observed rainfalls and regressed rainfalls is over 0.85. The root mean square error (RMSE) for regressed rainfall is around 65% of the standard deviation and about 15% of the mean rainfall. The regression equation has also been evaluated in a forecasting mode by using independent data. Discussion on the consistence of the SST—rainfall correlation with circulation field is also presented. This work was jointed supported by Chinese Academy of Sciences under Grant “Hundred Talents” for “Validation of Coupled Climate models” and by U.S. Department of Energy under Grant DEFG0285ER 60314 to SUNY at Stony Brook. The authors are grateful to Professor R. D. Cess at SUNY, Stony Brook for his supports.  相似文献   

18.
新世纪初我国数值天气预报的科技创新研究   总被引:8,自引:10,他引:8       下载免费PDF全文
概要介绍最近5年在国家科技攻关项目“中国气象数值预报系统科技创新研究”框架内所取得的主要成果,重点是卫星等遥感资料在变分同化中的应用,高分辨非静力数值预报模式的发展,全球资料同化与中期数值天气预报系统的发展,数值天气预报系统的模块化与并行计算,数值天气预报新技术的研究等,并扼要介绍我国新一代数值天气预报系统的业务应用试验。最后,对我国数值天气预报的进一步发展做了讨论。  相似文献   

19.
GRAPES中地形重力波拖曳物理过程的引进和应用试验   总被引:6,自引:2,他引:4  
在中国新一代全球中期/区域中尺度同化与预报系统(GRAPES)模式中引进了ECMWF地形重力波拖曳物理过程,填补了GRAPES全球中期数值预报系统中物理过程的空白。重新计算了地形重力波过程需要的地形静态资料数据,并与原ECMWF模式的地形静态参数进行了对比分析,验证了模式地形参数的正确性。利用GRAPES模式,进行了地形重力波拖曳物理过程影响的敏感性数值试验;结果表明:引进地形重力波拖曳过程以后,在存在大地形的区域,风场会发生变化,当纬向风遇到青藏高原时,一部分气流会产生爬坡效应而越过高原,使高原上空的西风气流减弱;另一部分气流会绕过高原,在高原的南侧产生绕流;随着模式积分时间的延长,风场变化会越来越明显,地形越复杂,风场的变化也越复杂;连续的模式积分试验结果显示,引进地形重力波过程,可以延长GRAPES模式的可用预报时效,提高了全球形势预报的准确率。通过对一次降水过程的模拟,对地形重力波过程影响降水预报的原因进行了简单分析。结果显示:引进地形重力波拖曳过程后,改变了大气流场的分布,使预报的流场更接近于大气真实状态,从而提高了降水预报的准确率。  相似文献   

20.
 Two ten-year simulations made with a European regional climate model (RCM) are compared. They are driven by the same observed sea surface temperatures but use different lateral boundary forcing. For one simulation, RCM AMIP, this forcing is obtained from a standard integration of a global general circulation model (GCM AMIP), whereas for the other simulation, RCM ASSIM, it is derived from a time series of operational analyses. The archive of analysis fields (surface pressure plus winds and temperatures on various pressure levels) is not sufficiently comprehensive to provide directly the full set of driving fields required for the RCM (in particular, no moisture fields are present), so these are obtained via a GCM integration, GCM ASSIM, in which the model is continuously relaxed towards the analysis fields using a data assimilation technique. Errors in RCM AMIP can arise either from the internal RCM physics or from errors in the lateral boundary forcing inherited from GCM AMIP. Errors in RCM ASSIM can arise from the internal RCM physics or the boundary moisture forcing but not from the driving circulation. Although previous studies have considered RCM integrations driven either by output from standard GCM integrations or operational analyses, our study is the first to compare parallel integrations of each type. This allows the total systematic error in an RCM integration driven by standard GCM output to be partitioned into components arising from the driving circulation and the internal RCM physics. These components indicate the scope for reducing regional simulation biases by improving either the driving GCM or the RCM itself. The results relate mainly to elements of surface climate likely to be influenced by both the driving circulation and regional physical processes operating in the RCM. For cloud cover, errors are found to arise largely from the internal RCM physics. Values are too low despite a positive relative humidity bias, indicating shortcomings in the parametrisation scheme used to calculate cloud cover. In summer, surface temperature and precipitation errors are also explained principally by regional processes. For example excessive solar heating leads to anomalously high surface temperatures over southern Europe and excessive drying of the soil reduces precipitation in the south eastern sector of the domain. The lateral boundary forcing reduces precipitation in the south eastern sector of the domain. The lateral boundary forcing also exerts some influence, mainly via a tropospheric cold bias which partially offsets the warming over southern Europe and also increases precipitation. In other seasons the lateral boundary forcing and the regional physics both contribute significantly to the errors in surface temperature and precipitation. In winter the boundary forcing (apart from moisture) is responsible for about 60% of the total error variance for temperature and about 40% for precipitation, due to the cold bias and circulation errors such as a southward shift in the storm track. The remaining errors arise from the regional physics, although for precipitation an excessive supply of moisture from the lateral boundaries also contributes. The skill of the mesoscale component of the surface temperature and precipitation distributions exceeds previous estimates, due to more realistic observed climatology. The mesoscale patterns are very similar in the two RCM simulations indicating that errors in the simulation of fine scale detail arise mainly from inadequate representations of local forcings rather than errors in the large-scale circulation. Circulation errors in RCM AMIP (e.g. cold bias, southward shift of storm track) are also present in GCM AMIP, but are largely absent in RCM ASSIM except in summer. This confirms evidence from previous work that the key to reducing most circulation errors in the RCM lies in improving the driving GCM. Regional processes only make a major contribution to circulation errors in summer, when reduced advection from the boundaries allows errors in surface temperature to be transmitted more effectively into the troposphere. Finally, we find evidence of error balances in the GCM which act to minimise biases in important climatological variables. This reflects tuning of the model physics at GCM resolution. In order to achieve simultaneous optimisation of the RCM and GCM at widely differing resolutions it may be necessary to introduce explicit scale dependences into some aspects of the physics. Received: 17 September 1997/Accepted: 10 March 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号