首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
孙伟中 《干旱气象》2000,18(1):18-22
统计分析了1987~1998年间,中川机场扬沙,浮尘和沙尘暴低能见度的年际、年、日变化及其现次数和持续时间等气候特征,得出风沙日数减少,扬沙低能见度主要出现在午后,浮尘低能见度主要出现在上午傍晚等结论。  相似文献   

2.
临沂市低劣能见度天气变化规律分析   总被引:1,自引:0,他引:1  
利用临沂市35年的能见度观测资料,分析了临沂市低劣能见度天气的变化规律,结果表明:低劣能见度(V≤4.0km)出现频率随年代变化呈明显的上升趋势,其年变化规律与雾、轻雾的年变化规律基本相同;烟、霾、扬沙、浮尘等干质天气现象对低劣能见度天气的变化规律影响不大。  相似文献   

3.
新疆的沙暴、扬沙、浮尘哪里最多? 新疆两大盆地多为沙漠腹盖,尤其是塔克拉玛干沙漠,气候干燥,且常有冷空气灌入.风吹沙土,易出现沙暴、扬沙、浮尘等天气现象,使能见度降低,直接影响交通运输.除此之外,沙尘污染作物、牧草和果树等,使光合作用的能力下降,授粉率降低.  相似文献   

4.
沙尘天气其强度可分为浮尘、扬沙、沙尘暴和强沙尘暴。浮尘是指在无风和风力很小的情况下 ,尘土和细沙均匀地浮游在空中 ,使水平能见度小于 1 0千米的现象。它多为远地形成的沙尘暴或扬沙带起的沙尘经高空气流传播而来。出现浮尘时天空发黄 ,太阳呈苍白或淡黄色。扬沙是指由于风力较大 ,将地面沙土吹起 ,水平能见度在 1~ 1 0千米之间的现象。沙尘暴是指特别强烈的沙尘 (瞬时风速大于 2 5米 /秒 ,风力 1 0级以上 ) ,地面水平能见度小于 1 5米。扬沙和沙尘暴都是由本地或上游地区尘沙被风吹起而造成的 ,多在春季较强冷空气过境的冷锋上或局地…  相似文献   

5.
扬沙与浮尘是两种相似的天气现象 ,笔者在工作中发现有的观测员对两者的界限模糊 ,以致造成记录偏差。所以 ,地面气象测报人员应从这两种现象的成因、对能见度的影响程度、颜色、风力及出现时间等方面的差异来加以区分 ,从而确保记录准确。1 成因差别  扬沙是本地或附近尘沙被风吹起而成 ,不同方向的尘沙浓度并不一致 ;浮尘多为远处尘沙经上层气流传播而来 (非本地尘沙被风吹起 ) ,或为沙尘暴、扬沙出现后尚未下沉的细粒浮游空中而成 ,各个方向的尘沙含量比较均匀。浮尘的出现永远滞后于扬沙 ,即出现浮尘时 ,远地或本地必定有扬沙或沙尘…  相似文献   

6.
利用塔克拉玛干沙漠大气环境观测试验站的两种前向散射能见度仪(CJY-1C和FD12)2009年6月14日—8月5日的探测数据和人工目测数据对各种天气下的能见度变化进行了对比分析。结果表明,FD12和CJY-1C型能见度仪数据有很好的一致性。在能见度较低时,FD12型能见度数据与平均值偏离程度最小,测量更加稳定。FD12型能见度仪数据更接近于目测能见度数据。对于两种能见度仪,两者在扬沙天气的相关性最好,浮尘天气下的相关性较好,沙尘暴天气次之,典型晴天下的相关性最小,可在监测浮尘和扬沙天气时互相替代使用。  相似文献   

7.
利用塔克拉玛干沙漠大气环境观测试验站的两种前向散射能见度仪(CJY-1C和FD12)2009年6月14日-8月5日的探测数据和人工目测数据对各种天气下的能见度变化进行了对比分析.结果表明,FD12和CJY-1C型能见度仪数据有很好的一致性.在能见度较低时,FD12型能见度数据与平均值偏离程度最小,测量更加稳定.FD12型能见度仪数据更接近于目测能见度数据.对于两种能见度仪,两者在扬沙天气的相关性最好,浮尘天气下的相关性较好,沙尘暴天气次之,典型晴天下的相关性最小,可在监测浮尘和扬沙天气时互相替代使用.  相似文献   

8.
利用南疆西部15个国家气象站1961—2019年逐日沙尘天气资料,采用气候倾向率和统计检验等方法对南疆西部沙尘天气的时空变化特征进行分析。研究表明:春季为南疆西部沙尘暴及浮尘天气出现最多的季节、扬沙天气出现次多的季节,分别占全年沙尘暴、扬沙、浮尘的49%、38%、43%;夏季为扬沙天气出现最多的季节、是沙尘暴、浮尘天气出现次多的季节,分别占全年沙尘暴、扬沙、浮尘的35%、43%、35%;冬季为低频季节,发生占比分别为7%、6%、14%。南疆西部沙尘天气呈东多西少特征,山区沙尘天气日数明显少于平原,浮尘天气平原地区分布均匀,沙尘暴、扬沙平原东部和南部区域多于平原腹地。沙尘天气日数年际变化振幅较大,沙尘暴、扬沙、浮尘日数整体呈明显减少趋势。浮尘年际变化周期显著,其次为扬沙与沙尘暴,1984和1977年为沙尘暴、浮尘统计定义上的突变年份,扬沙存在2个突变点,分别为1982和1992年。沙尘暴和扬沙的主导风向为偏西北风,浮尘主导风向为偏东北风,主导风向与地形影响关联密切。  相似文献   

9.
沙尘天气其强度可分为浮尘、扬沙、沙尘暴和强沙尘暴.浮尘是指在无风和风力很小的情况下,尘土和细沙均匀地浮游在空中,使水平能见度小于10千米的现象.  相似文献   

10.
浮尘、扬沙、沙尘暴都是由于大量尘沙致使水平能见度小于10.0km的视程障碍现象。在日常的地面观测中,三者极易混淆,尤其是扬沙和浮尘之间的区分更没有明确的界限。本文主要从三种现象的产生条件及其相互关系、伴随的天气现象和持续时间、天空的颜色和给人的感觉差别、结合周边地区综合考虑,四个方面来综合辨别。  相似文献   

11.
2007年1月15—17日拉萨地区出现了一次浮尘天气,造成空气质量污染,能见度下降;拉萨地区的生产、生活及交通运输受到了较大影响。应用欧洲中心客观分析场资料和逐日观测资料,主要从天气形势和气候特征分析了拉萨浮尘天气形成的原因和空气污染的局地气象条件。结果表明,由于冷暖空气在高原地区对峙,温度梯度和锋区加强;以及200hPa高空西风急流的影响,引发西藏地区大风,使干燥、疏松的地表形成扬沙、沙尘暴,大量的细小沙尘粒子随高空偏西气流携带至拉萨。加之拉萨本地低空处于弱辐合区,大气层结稳定,风速较小或静风,导致了拉萨浮尘天气形成。最后,给出了拉萨浮尘天气预报的思路,为拉萨浮尘天气的准确预报提供了一些参考信息。  相似文献   

12.
利用四川省1981—2013年雾、轻雾、吹雪、雪暴、烟幕、霾、沙尘暴、扬沙和浮尘9种视程障碍天气现象资料,对其发生日数、发生概率和分布特征进行统计。结果表明:(1)各天气现象发生日数排序为:轻雾>雾>浮尘>霾>烟幕>扬沙>沙尘暴>吹雪>雪暴。(2)轻雾和雾年发生日数为分别为176d/a和29d/a,日发生概率分别为48%和8%,远高出其他天气现象。(3)季节变化方面,雾和轻雾主要出现在秋季和冬季;霾、吹雪和雪暴集中出现在冬季;浮尘发生春季;扬沙多发生在冬季和春季;而沙尘暴、烟幕主要发生在春季和秋季。(4)变化趋势上轻雾基本保持平稳;烟幕呈增加趋势;而雾、霾、沙尘暴、扬沙和浮尘呈下降趋势。(5)大气层结稳定、水汽充足、风速较小、人口集中和排放量较大,易于盆地雾、轻雾、霾和烟幕的形成;不合理利用水和土地资源,北方地区沙尘天气随冷空气南下,是沙尘天气发生的重要原因;而吹雪和雪暴均发生在冬季降雪量大且风速较大的川西高原。  相似文献   

13.
利用2006—2019年南疆地区55个国家站的逐日观测和自动站小时数据资料,研究沙尘发生的精细化特征及沙尘暴起沙风速指标阈值。结果表明:南疆沙尘中心位于塔里木盆地中部至其南缘的民丰和且末一线,表现为中部多,东部西部少的分布特点,浮尘和沙尘暴的中心在民丰,而扬沙中心在塔中站;沙尘天气季节差异明显,秋、冬季沙尘最少,以浮尘为主,春、夏季是沙尘天气的高发季节,浮尘日与扬沙日数接近,约为沙尘暴的2倍,沙尘暴、扬沙的季节差异比浮尘天气更为明显;沙尘日变化呈白天多于夜间,下午多于上午的分布特点,18—20时是南疆地区出现沙尘暴、扬沙天气的高频时段;扬沙和沙尘暴的平均持续时间短,一般不超过3 h,巴州东南部平均持续时间最长;南疆不同地区沙尘天气发生的最小风速差异较大,存在区域性规律,而极大风速分布呈东部大于西部,北部大于南部,塔里木盆地中部和南部最小,春季的极大风速平均值大于夏季,差值较小的地区在和田地区,春季的极大风速离散度也较夏季大,各站极大风速的最小值范围在1.6—9.8 m·s-1之间。  相似文献   

14.
为了更好地研究沙尘气溶胶起沙和输送特征,2010年4—5月,在民勤周边沙地利用EZ LIDAR ALS300&ALS450型激光雷达和 GRIMM 180型颗粒物采样器进行了大气气溶胶的外场连续观测,取得了晴天、浮尘、扬沙和沙尘暴天气条件下沙尘气溶胶总后向散射垂直剖面图和PM10、PM2.5、PM1.0质量浓度采样资料,其中包含“0424”特强沙尘暴过程资料。结果表明:春季民勤近地层大气中沙尘气溶胶浓度较高,且随气象要素的变化很大;在整个观测期内,PM10、PM2.5、PM1.0的平均质量浓度分别为202.3、57.4 μg/m3、16.7 μg/m3。在不同天气条件下,PM10、PM2.5、PM1.0质量浓度的变化有很好的相关性,但变化趋势有所不同。在沙尘暴天气条件下,PM10的日平均质量浓度高达2469.1μg/m3,是背景天气条件下PM10日平均质量浓度的100多倍,是浮尘天气条件下PM10日平均质量浓度的8倍,是扬沙天气条件下PM10日平均质量浓度的2倍。PM2.5在沙尘暴天气下日平均质量浓度为460.3 μg/m3,是背景天气条件下PM2.5日平均质量浓度的45倍,是浮尘天气条件下PM2.5日平均质量浓度的6倍,是扬沙天气条件下PM2.5日平均质量浓度的1.4倍。PM1.0在沙尘暴天气条件下的日平均浓度为92.7 μg/m3,是背景天气条件下PM1.0日平均浓度的13倍,是浮尘天气条件下PM1.0日平均浓度的7倍,是扬沙天气条件下PM1.0日平均浓度的1.3倍。可见,风速增大时沙尘粒子浓度的增加对粒子粒径是有选择的,小粒子比重随沙尘浓度增加而相对减小,大粒子比重随沙尘浓度增加而相对增多;通过对“0424”特强沙尘暴过程的研究表明,一次沙尘暴过程往往包括沙尘暴、扬沙和浮尘天气中的两种类型;通过对激光雷达数据分析发现,在强沙尘暴发生过程当中,民勤沙地发生了非常严重的风蚀起沙现象。  相似文献   

15.
利用常规气象观测资料以及环保监测数据,对2010年4月8日辽宁沙尘天气过程的高低空天气形势和主要气象要素进行探讨,并对沈阳地区的空气污染状况进行分析。结果表明:沙尘天气过程主要是受贝加尔湖地区东移冷空气和蒙古低压的共同影响,强大的蒙古气旋造成地面强变压导致地面风速加大,是形成沙尘天气的动力因子;沙尘天气来临前后,风速、能见度和湿度等发生急剧变化;在沙尘天气影响下,沈阳地区的PM10浓度迅速上升,而大风等有利的扩散条件,造成黑碳、气态污染物SO2和NO2浓度出现不同程度的下降。  相似文献   

16.
为了得到沙尘粒子和沙尘质量浓度的实时定量特征,利用Grimm180粒子仪在塔克拉玛干沙漠对沙尘暴进行了实时观测。通过分析Grimm180粒子仪在2018年5月20日和24日两次沙尘暴过程观测的数据得到:在浮尘、扬沙和沙尘暴期间,PM2.5的质量浓度值随时间变化不大,一般PM2.5浓度值<1500μg·m-3,而PM10在不同阶段的变化比较明显,数值在2000~6000μg·m-3。沙尘粒子谱和沙尘质量浓度谱的分布形状在浮尘、扬沙和沙尘暴基本相同,当粒子直径>0.35μm时,粒子数浓度随直径的增大近似符合M-P分布。从浮尘到扬沙再到沙尘暴,小粒子区(D≤1μm)的占比越来越小,而中粒子区(1μm10μm)的粒子数越来越多并且占比越来越大。当粒子直径为0.35μm左右时,粒子数浓度达到最大值;当粒子直径在25~32μm时,沙尘质量浓度的值最大。在浮尘和扬沙阶段,PM2.5/PM10>25%;每分钟1 L体积内的沙尘粒子总数大约是4×105,最大沙尘质量浓度<20μg·L-1。在沙尘暴阶段,PM2.5/PM10<15%;每分钟1 L体积内的沙尘粒子总数>5×105,最大沙尘质量浓度>25μg·L-1。这些结论为准确地分析沙尘暴的定量特征提供了科学依据。  相似文献   

17.
本文首先介绍了PM10的基本概念以及对人体的危害和国际社会对其的重视程度,简单阐述了大同基准站PM10监测设备的基本原理,详细分析了PM10监测扬沙和烟尘等视程障碍天气的能力,用数据曲线清晰的展示出了PM10值在沙尘天气下的变化。同时详细分析了PM10值变化与能见度值的相互关系,通过分析提出了在一定的天气下可以参考PM10的值来判断能见度的观点。本文总结了PM10值与沙尘天气和能见度的关系。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号