首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
利用2008—2017年汛期(5—9月)杭州地区自动气象站观测资料和ECMWF ERA-Interim(0. 5°×0. 5°)全球再分析数据,对杭州地区短时强降水日(小时雨强≥20 mm)的分布特征和环流背景进行分析,结果表明:1)杭州地区短时强降水量和发生频次呈现北部大于南部,高值区位于主城区附近。2)造成杭州地区出现短时强降水的天气系统,依据其出现频率,大体可分为西风带低槽型、梅雨锋型、热带气旋型、副高边缘西风急流型和局地强对流型等5类。3)不同天气系统影响时,杭州地区短时强降水时空分布存在差异,时间分布上西风带低槽和副高边缘西风急流影响时,短时强降水主要发生在早晨到上午和傍晚到前半夜,热带气旋和局地强对流影响时降水主要集中在午后到夜里,梅雨锋型降水呈多时段频发的特点;空间分布上西风带低槽型有3个强降雨中心分别位于主城区、淳安南部和临安淳安交界山区;梅雨锋型分布较均匀,大值区位于临安中西部至富阳南部一带;热带气旋型分布呈北多南少,临安天目山区、主城区南部和富阳永安山区是3个中心;副高边缘西风急流型中心位于主城区和余杭区;局地强对流型分布不均匀,大值位于临安天目山区、建德东南部和主城区北部。4)针对不同类型的短时强降水分布特征,提出气象服务适宜采用的服务方式。  相似文献   

2.
天津地区080625强对流天气过程的分析   总被引:1,自引:0,他引:1  
强对流降水是天津地区重要的灾害性天气,为了研究该类天气发生发展的动力学、热力学机制,利用NCEP/NCAR再分析资料和FY-2C卫星逐时TBB资料对2008年6月25日天津的强对流降水过程进行研究,然后利用WRF(weather research and forecasting)中尺度数值模式对该次强对流降水过程进行数值模拟和诊断分析。结果表明:中尺度露点锋是该次强对流降水的重要机制,其对应的低层气流辐合所形成的强烈上升运动及相对应的强烈发展的对流云团,是此次天津强对流降水的直接影响系统;对流有效位能等参数的变化非常好地反映出此次强降水天气的发生和发展特征;较大的相对螺旋度与此次强对流天气的发生对应也较好。由此认为,中尺度露点锋锋生的动力学、热力学过程是此次强对流降水天气发生发展的重要机制。  相似文献   

3.
利用FY-2C红外卫星云图图像和TBB资料,结合地面常规气象观测资料、地面和高空天气图及物理量资料等,运用天气分析诊断方法,对2008年6月28日—7月3日发生在西藏中东部地区的一次强降水雷暴过程的发生、发展和演变的环流特征、卫星云图特征和物理量场特征进行分析,并试图建立预报标准,形成预报思路和预报概念模型。结果表明:本次过程在FY-2C卫星云图、大尺度环流形势场和物理量场上都有明显的特征。TBB低值区、水汽条件、垂直散度场配置、高温高湿、层结不稳定是预报强雷暴天气的着眼点。TBB低值带与强降水雷暴的落区有很好的对应关系。暴雨的发生区往往是TBB的相对低值中心,雨带摆动及强度与TBB低值带的摆动和强度相一致。TBB≤-33℃,应注意强降水的预报。TBB≤-50℃,可能有暴雨出现。TBB≤-60℃,可能出现大暴雨并伴有雷暴天气。TBB≤-33℃的范围越大、强度越强,降水持续的时间越长、降水强度越强。  相似文献   

4.
利用常规观测资料和云图资料数值产品资料等对西宁2016年8月22—23日的强降水天气过程进行了诊断和分析,结果表明:(1)此次强降水是西宁地区夏季典型的副热带高压内出现的强对流天气。具有利于强降水发生的大尺度环流系统配置,地面辐合线是此次强对流天气的中尺度触发机制。(2)水汽条件充沛,湿层较厚;低层暖高层冷形成了强的不稳定层结。(3)22日西宁地区θse的高能舌从700hPa延伸到500hPa,Δθse700-500≥10K;K指数为36℃,SI<0℃,CAPE值达到786.3J·kg~(-1),这些参数指示了大气的强不稳定。可以将上述指标作为西宁短时强降水预报的参考指标。过程中西宁上空0~6km的垂直风切变较弱。(4)过程中中尺度对流云团非常活跃,TBB≤-53℃的冷云团的位置和维持时间与强降水的落区和持续时间基本一致,可以考虑将TBB≤-53℃作为西宁地区强降水落区预报的中尺度特征指标。(5)强降水发生时雷达组合反射率显示最强回波达到了60dBZ,强降水的出现时间和落区与雷达组合反射率强回波的持续时间和强度有很好的对应。VIL在降水前期有大值,降水出现后有一个减小的过程。  相似文献   

5.
孙月环  成坤 《吉林气象》2015,(1):14-17,48
应用FY2E卫星云图和配合云顶亮度温度,结合天气图、地面实况资料,对2012年5月13-16日一次东北冷涡形成、发展及消亡的过程进行分析。通过6.7μm水汽云图和红外云图分析冷涡能量释放过程中,降水和雷暴分布特征,并且试图建立降水和雷暴落区预报依据。结果表明:本次过程在FY-2C卫星云图、大尺度环流形势场对冷涡反映都很敏感,冷涡降水主要发生在三四象限,强雷电主要发生在"逗点"云系形成过程中即成熟阶段,冷涡消亡过程中,瓦解的碎散云系由于有冷空气的作用,也会带来阵性不均匀雷阵雨天气。TBB低值带与强降水雷暴的落区有很好的对应关系,降水的发生区往往是TBB的相对低值中心,雨带摆动及强度与TBB低值带的摆动和强度相一致。TBB≤-30℃,应注意降水的预报,TBB≤-60℃,可能出现雷暴天气。雷暴的发生发展经常出现在水汽图上高空急流左侧的暗区和亮区的过渡带,暗区对应着水汽图上的干区,能量在这一区域可以得到有效的储存,在一定的触发条件下,不稳定能量释放,强对流天气出现。  相似文献   

6.
利用常规气象观测资料、地面自动站加密观测资料和FY2G卫星云图资料以及NECP 1°×1°FNL再分析资料等,对2016年6月30日—7月5日安徽省安庆地区梅雨锋暴雨过程中的中尺度对流系统(MCS)活动特征、MCS发展的环境场特征以及低层风场对MCS发展影响进行了分析。结果表明:梅雨锋上有多个MCS先后(或同时)生成、发展并沿正涡度带向下游移动并发展增强,成"列车效应"经过安庆地区并带来持续强降水。强降水落区发生在中尺度低空急流核的左侧,辐合区和上升运动区位于涡度中心东侧,导致MCS持续的向东发展移动并增强。对流层低层西南风急流为MCS发展增强提供了动力条件,并带来大量水汽在梅雨锋区汇集辐合。湖北至安徽上空850~500 hPa的湿度锋为强降水提供了有利的不稳定条件。  相似文献   

7.
应用地面加密降水观测资料、天气图资料和FY2-E红外卫星云图及TBB资料,对山东南部3次中尺度低涡暖切变线强降水的中尺度对流系统特征进行分析研究。结果表明:3次强降水都是产生在中尺度低涡环流东部的暖切变线附近,有较强的低空西南风气流,都是在鲁南和鲁中南部造成强降水,强降水中心都在鲁东南。3次强降水都由中尺度对流系统(MCS)直接影响产生,有多个中尺度云团发展和合并,有多个强对流云团中心。造成3次强降水的中尺度对流云团都是从鲁西南移入,向北发展,缓慢向东移动,在东部沿海达到最强。最低TBB在-62~-78℃,造成1h降水量达30~137mm的强降雨,在同一测站产生强降水的时间为1~3h。对于同一个MCS降雨强度与TBB成反比。"09.8.17"和"12.7.09"的MCS东移快,造成强降水的时间为18~19h,"12.7.09"的MCS东移慢,造成强降雨的时间达25h。"09.8.17"的TBB较高,最低TBB为-61.1℃,但是雨强最大,最大1h雨量达137.2mm,"12.7.09"的TBB最低,达到-78.2℃,但是最大1h雨量为88.3mm。  相似文献   

8.
长江流域产生暴雨的中尺度对流系统(Mesoscale convective systems,MCS)是雨季强降水的重要影响系统,深入研究它的组织结构、活动规律及其发生发展机制,对提高暴雨的预报能力有重大意义。近3年来依托国家自然基金重点项目对中尺度对流系统展开了一系列研究,包括对长江流域产生暴雨的MCS进行组织形态分类、分析了不同线状MCS的结构特征、合成分析了各线状MCS产生的环境条件;我国三阶地形对降水的影响,尤其是山地—平原环流对梅雨锋夜间降水的影响;中尺度地形对对流降水的影响;湿斜压热动力耦合强迫激发MCS发生发展的影响;最后总结了长江流域产生暴雨的MCS的物理概念模型。  相似文献   

9.
利用2016—2020年6—7月长江流域735站气象观测资料、NCEP/NCAR再分析资料及雨情信息对长江流域主要暴雨过程的区域性特征、天气系统及成因进行了初步探讨。结果表明:(1)2016—2020年6—7月长江流域降水过程对流层中高层主要受加强西伸的西太平洋副热带高压及高空低槽东移带来的梅雨锋影响,中低层主要影响系统是切变线、低涡、台风倒槽,边界层有一半的降水过程发生在暖区或受静止锋影响;(2)影响长江流域暴雨过程的主要天气形势分为纬向环流型、两高(西太平洋副热带高压与南亚高压)之间型、经向型和偏东气流型;(3)长江流域降水差异同副高脊线位置和夏季风北推进程以及短时强降水落区有很好的相关性。  相似文献   

10.
利用近10 a FY-2系列红外云图资料、MICAPS常规资料、新疆105个基本气象观测站逐小时降水量资料,参考国内外中尺度对流系统(MCS)标准,给出了新疆区域MCS判识标准。统计分析新疆35次短时强降水过程的MCS空间分布及参数演变特征,总结新疆不同区域MCS预警阈值。基于卫星天气应用平台(SWAP)平台追踪检验短时强降水对应MCS特征参数变化,表明新疆MCS的TBB预警阈值下限偏低4℃,上限偏高2~4℃;天山山区、南疆偏西地区的TBB梯度为0.3℃·km~(-1),北疆偏西、巴州北部与我国中东部一致。短时强降水发生在引导气流方向靠近暖区一侧的冷云盖边缘TBB梯度最大处,TBB梯度图对云团发展变化表现更清楚。基于SWAP平台定位追踪对流云团对下游可能发生的强降水有2~6 h预警时效,且30 min外推预报与实况基本一致,对新疆强降水短临预报预警有一定的指示意义。  相似文献   

11.
2014年长江流域三次暴雨过程卫星云图释用研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用实况探空资料和风云2C、2D卫星探测资料,对2014年7月西太平洋副高与西风带低槽共同作用下长江流域出现的三次暴雨过程进行分析,将三次过程卫星云图以及各种物理要素场配置进行对比,得到以下结论。云系表现为典型的梅雨锋云系特征,云系位于高空槽前580线与副高外围588线之间。降水云带由对流云团、稳定性降水云团及混合性降水云带三部分组成。梅雨锋中的MCC云团十分活跃。随着云团最强对流的逐渐减弱,云团面积迅速膨胀,并持续数小时后很快减小,强降水主要发生在云团发展和成熟期中。强降水还与对流有关,降水强度总体上跟TBB强度呈反相关,TBB越低降水越强。梅雨锋云系的分布与各层的垂直速度场、涡度场、散度场有很好的对应关系,与中高层的涡度平流场也有较好的对应关系,云带总体位置与上升运动区、低层辐合和高层辐散区、正涡度平流区位置近乎重叠。比湿通量、比湿通量散度和假相当位温等温湿参量的分布特征能很好锋面云带的移动、发展和分布特征。   相似文献   

12.
祁秀香  郑永光 《气象》2009,35(11):17-28
2007年夏季川渝地区及江淮流域持续性降水、极端强降水和强对流事件频发.利用强暴雨发生时段2007年6月28日至7月26日逐时FY-2C红外TBB资料对这两个地区及周边区域(25°~38°N、100°~130°E)进行普查,共获得570个生命史≥3小时的中尺度对流系统(MCS).MCS的定义为-52℃ TBB闭合等值线内TBB≤-52℃的面积≥400km~2,不区分形状与生命史.MCS识别由计算机自动完成,MCS追踪由人工完成.普查结果发现,云南西北部至四川西部、四川东部与重庆、云贵高原东部和广西北部山区至洞庭湖、淮河流域四个区域是MCS活跃区,但淮河流域又有三个波动状MCS活跃中心.普查区域内总体MCS和川渝地区活动最频繁的MCS持续时间为3~7小时,但江淮流域活动最频繁的MCS生命史为4~9小时.按时间尺度将570个MCS分成三类,第一类MCS生命史3~5小时,第二类MCS生命史6~11小时,第三类MCS生命史≥12小时.三类MCS的地理分布特征及触发机制各不相同:第一、二类MCS在西太平洋副高平均位置的内、外侧都有发生,它们的发生、发展及移动受中尺度因素影响明显,可能与地形、中尺度辐合线等有关;第三类MCS发生在西太平洋副热带高压平均位置的外侧,其发生、发展及移动路径受天气尺度环境控制因素显著.三类MCS日变化具有明显不同的日变化特征.三类MCS的形成高峰都出现在午后.第一类MCS无显著的夜发性特征,第二、三类MCS有较显著的夜发性特征.第一、二类MCS在午后最活跃,但第三类MCS活动最活跃时段在下半夜(18UTC).川渝地区和江淮流域的MCS都具有多峰型日变化特征,但二者的活跃时段有所不同.本文还给出了2个引发强降水的MCS典型个例及1个长生命史MCS演变特征.  相似文献   

13.
基于常规观测资料、NCEP(2.5°×2.5°)再分析资料、FY-2G卫星云图资料和多普勒雷达等资料对2018年6月10日发生在甘肃省平凉市的冰雹等强对流天气过程进行分析,得出以下结论:(1)此次强对流天气过程属于典型的西北气流型,高空强冷平流、强对流发生区明显的切变线和地面辐合线以及高层气流引导地面辐合线附近生成的中尺度对流系统MCS,是造成此次强天气的主要影响系统。(2)中尺度辐合线和干线为此次强对流天气提供较好的触发机制;强对流发生区螺旋度的异常增大为雹暴系统的发展增强提供了强有力的环境场条件;强垂直风切变可促使不稳定能量释放形成冰雹等天气,和湿斜压作用共同形成MCS发生发展的有利条件;冰雹发生区0℃层、-20℃层高度及二者之间的厚度均有利于大冰雹的形成。(3)卫星云图中MCS发展明显,容易给局地强对流输送能量,利于强对流的维持发展,且强对流区主要位于云顶亮温TBB低值区的后部和南部,多普勒雷达资料显示,引发强对流天气的回波单体附近,悬垂回波、弱回波区、钩状回波等特征明显,对应径向速度图有明显的中气旋、中层径向辐合及风暴顶辐散等特征配合,对此次冰雹等强对流天气有很好的指示作用。  相似文献   

14.
一次梅雨锋暴雨的中尺度对流系统及低层风场影响分析   总被引:2,自引:1,他引:1  
杨舒楠  路屹雄  于超 《气象》2017,43(1):21-33
本文利用常规气象观测资料,地面自动站加密观测资料和FY-2D、FY-2E卫星云图以及NCEP 1°×1°的FNL分析资料、EC 0.25°×0.25°的细网格模式数据等,对2015年6月15—18日梅雨锋暴雨过程的中尺度对流系统(MCS)活动特征、对流层低层风场对MCS发展的影响以及梅雨锋暴雨的垂直环流特征等进行了研究,结果表明:天气尺度梅雨锋上叠加的MCS的产生及向下游移动,以及其在安徽中部到江苏南部正涡度带作用下的发展增强,造成了江苏南部的局地强降水。强降水与中尺度低空急流核的位置吻合较好。在垂直方向上,高空急流入口区右侧与低空急流核左前方叠加,高低空急流耦合作用明显。在降水过程中,对流层低层具有较强的垂直风切变,有利于垂直涡度的增强和MCS的发展。对流层低层的垂直风切变也有利于不同源地的水汽在梅雨锋区汇集。梅雨锋北侧的干冷空气在对流层低(中)层以东北(西北)路径向锋区移动。南侧的暖湿气流沿西南路径移动、抬升,接近锋区后质点在上升过程中逐渐转向东移,在高空急流的抽吸作用下,快速向东流出,近地面层空气存在跨锋面环流。梅雨锋系统垂直方向上的次级环流是高层风场强烈辐散以及空气运动过程中质量补充和循环的结果。  相似文献   

15.
冷涡背景下两次强对流天气对比分析   总被引:1,自引:0,他引:1  
2010年5月29-30日和2012年6月12日山东半岛均出现由高空冷涡造成的强对流天气,但其强度和范围却差异较大。综合分析天气形势、探空资料、卫星云图、多普勒雷达和风廓线仪等资料,结果表明:两者均受冷涡低槽影响,前者为地面气旋,后者为冷锋过境;水汽图上水汽区的干湿边界、暗区等与强对流的发生发展有着密切关系;红外云图 TBB≤-48℃的范围基本与出现对流的区域吻合,TBB≤-52℃的区域与强降水区域比较吻合,但当湿层比较浅薄时,也可能只出现雷暴天气,而非强降水。  相似文献   

16.
利用1°×1°经纬度的NCEP再分析资料、地面1 h降水和卫星黑体辐射亮度温度资料,分析了2006年6月5~8日引发福建北部大暴雨的梅雨锋上的中尺度对流系统活动,探讨了梅雨锋上或锋前暖区一侧中尺度对流系统触发和增强的动力机制,并进一步研究了强降水凝结潜热造成的非绝热加热在对流系统发生发展中的作用。结果发现:福建北部强降水产生是由梅雨锋上或锋前多个β中尺度或α中尺度的强对流系统活动造成的,这些中尺度对流系统的发生发展与大尺度地转强迫造成的上升运动、武夷山脉等的地形动力强迫抬升作用、梅雨锋锋生以及锋面的阻挡和直接抬升作用有关。梅雨锋上强降水造成的非绝热加热在中尺度对流系统的形成和发展中起到了重要作用。最后,总结出梅雨锋上中尺度对流系统发生发展的概念模型。  相似文献   

17.
利用常规气象观测资料、FY-2E TBB及NCEP FNL1°×1°全球分析资料,对2013年7月四川省眉山地区一次暴雨过程和中尺度对流系统(MCS)特征进行分析。结果表明:(1)暴雨过程由两个中-β尺度的MCS在眉山地区合并加强所致,暴雨中心刚好位于两个中-β尺度MCS的合并交接地带的梯度大值区,强降水出现在对流系统迅速发展和再次加强阶段。(2)高原切变东移南压和副高东退是影响这次MCS的大尺度环流背景。低层辐合和弱冷空气配合是此次MCS的触发条件。(3)暴雨中心在降水前期处于高能高湿对流不稳定的环境中,有利于MCS的生成和加强。  相似文献   

18.
一次云南强对流暴雨的中尺度特征分析   总被引:2,自引:2,他引:0  
鲁亚斌  李华宏  闵颖  胡娟  许迎杰  杨竹云 《气象》2018,44(5):645-654
利用NCEP/NCAR再分析资料及常规观测资料与雷达、卫星等非常规观测资料,综合分析了2014年6月6日云南暴雨过程的天气成因及中尺度对流系统特征。结果表明:500hPa前倾槽、700hPa切变线及地面冷锋是此次暴雨过程的天气尺度影响系统;高能高湿的对流不稳定层结、明显的垂直风向切变是强对流天气形成的有利条件;在Q矢量散度辐合区内多个β中尺度对流系统(MCS)发生发展,短时强降水主要出现在MCS移动方前沿对流活跃的云顶亮温(TBB)等值线密集区,雨强变化与TBB等值线梯度变化密切相关;多普勒雷达及地闪资料显示多个γ中尺度对流系统是强对流暴雨产生的直接影响系统,雷暴易发生于回波强度在35~45dBz、回波顶高超过10km的区域,中尺度辐合线、第二类γ中尺度辐合区附近负地闪密集区与短时强降水、雷暴天气有很好的对应关系。  相似文献   

19.
利用NCEP FNL再分析、FY2D/G逐时云顶亮温(TBB)、新疆北部区域自动站和闪电定位及EC-thin再分析资料,对2013—2020年暖季新疆北部36例短时强降水事件进行分析。结果表明:新疆北部短时强降水的直接影响系统是涡旋云系和带状云系中生成的MCS,MCS主要位于涡旋云系中部和带状云系南部,MCS强度在-32℃~-52℃;地面温度锋和露点锋及中尺度锋区、切变线和气旋式辐合风场、中低压是触发MCS的主要原因。地闪最强时刻发生在MCS发展到成熟阶段,短时强降水发生在地闪密集区附近;短时强降水发生时地闪频次迅速增多,之后迅速减小,并以负地闪为主。因地形作用形成的中尺度系统,其发生发展对短时强降水预报具有一定的指示意义。地面温度锋和露点锋及中尺度锋区主要出现在阿尔泰山脉、萨吾尔山系的沿山及其丘陵地区,因山脉和河谷平原的热力差异形成;因此,新疆北部短时强降水落区与地形有密切的关系。  相似文献   

20.
利用2018—2020近三年青海河湟谷地低涡切变影响下强降水天气个例地面观测、NCEP 1°×1°再分析、FY-2G云图相当黑体亮温温度、模式及雷达拼图等资料,对比分析相同环流背景影响下不同类型强降水环境条件和成因差异,以及初步评估模式预报能力。结果表明:伴有雷暴、冰雹、雷暴大风等混合性强降水天气称为强降水Ⅰ型,以纯短时强降水为主的强降水天气称为强降水Ⅱ型。低涡切变是两种类型强降水的影响系统,强降水Ⅰ型400~300 hPa高空冷平流入侵促使低涡切变系统加强东移,地面冷锋发展在河湟谷地形成锢囚锋。强降水Ⅱ型受副热带高压西进阻挡,低涡切变系统和地面冷锋减弱消失;强降水Ⅰ型主要具有较强的高空干冷急流、高的下沉对流有效位能,较高的700 hPa和400 hPa温差以及强的垂直风切变均为强对流发生提供动力条件,产生的强天气以风雹类为主,而强降水Ⅱ型具有较高的0℃层和-20℃层高度、较高的抬升凝结高度,产生的强天气以短时强降水为主;强降水Ⅰ型云图特征主要表现为午后发展起来组织化程度高的冷涡云系,相当黑体亮温(TBB)初始中心数值在-45~- 35℃,发展阶段TBB下降至-75~-40℃,强降水Ⅱ...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号