首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 110 毫秒
1.
基于作物系数与水分生产函数的向日葵产量预测   总被引:2,自引:0,他引:2       下载免费PDF全文
利用河套灌区向日葵2012年田间水分、分期播种试验数据和两个站点的农业气象历史资料,研究基于向日葵作物系数和水分生产函数的产量预测方法。结果表明:向日葵标准作物系数在生育期内的变化规律是前期小、中期大、后期小, 最高值为1.21, 出现在开花期。标准作物系数与出苗后日数和大于0℃积温有很好的二次和三次多项式关系,拟合优度在0.93以上。在分析相对叶面积指数和作物系数关系的基础上,提出标准作物系数的相对叶面积指数订正方法,得出河套灌区向日葵作物系数的动态计算式,为水分生产函数中实际蒸散量的计算提供支撑。建立以Jensen模型为基础的向日葵水分生产函数,得到对水分亏缺的敏感顺序从高到低是开花期、花序形成期、成熟期、苗期。综合应用向日葵作物系数方程和水分生产函数模型计算分期播种产量,与实际产量分别相差4.4%和4.1%,初步证明该文提出的方法对产量预测较为理想,在该地区具有很好的适用性。  相似文献   

2.
利用时域反射仪测定的土壤水分估算农田蒸散量   总被引:19,自引:0,他引:19       下载免费PDF全文
简要介绍了时域反射仪(TDR)测定土壤含水量的原理和方法,根据TDR实测的土壤水分和农田水量平衡原理,估算了冬小麦生育期内不同供水条件下的农田蒸散量,探讨了TDR探针不同埋设方式对测定土体贮水量以及对估算的农田蒸散量的影响,根据充分供水区测定的最大可能蒸散量、非充分供水区的实际蒸散量,以及用气象资料计算的参考作物蒸散量,分别计算了冬小麦生育期内的作物系物Kc和土壤水分胁迫系数Ks。  相似文献   

3.
基于冠层温度的冬小麦水分胁迫指数的实验研究   总被引:8,自引:0,他引:8       下载免费PDF全文
在田间实验基础上对冬小麦田逐日14时基于冠层温度的作物水分胁迫指数,(CWSI)进行了计算和分析。同一时刻干旱处理CWSI高于湿润处理;麦田灌溉后CWSI4~6天降到极小值,表明了灌水后作物从水分胁迫状态恢复所需的时间;从本次灌溉后CWSI达到极小值至再次灌溉期间,CWSI呈持续增加趋势。这些表明CWSI较好地反映了因土壤供水不足导致的作物水分胁迫。CWSI与叶水势之间呈明显的负相关关系。CWSI等于0.4,相当于实际蒸散与可能蒸散的比率为60%,是指示冬小麦发生严重水分胁迫的关键性指标。  相似文献   

4.
内蒙古河套灌区春玉米作物系数试验研究   总被引:2,自引:1,他引:1       下载免费PDF全文
作物系数曲线是估算作物生长季耗水量变化的重要参数。基于2013年4—9月内蒙古巴彦淖尔市临河区田间水分试验和1994—2013年气象站观测资料,利用水量平衡法反求春玉米作物系数,分析生长季内的变化规律, 建立动态模拟方程,并与联合国粮农组织 (FAO) 分段直线法结果进行比较, 提出胁迫条件下作物系数的叶面积修正方法。结果表明:玉米作物系数随发育进程可用三项式曲线描述,变化趋势与产量水平无关, 但随产量增高而变幅增大;以出苗后相对积温为时间变量建立模拟方程效果较好,决定系数 (R2) 均在0.92以上;模拟计算出各站点最大 (1.30~1.48) 和平均 (0.831~0.919) 作物系数,与FAO分段直线法计算的典型值和区间值基本一致,生长中期平均相对误差为3.4%~7.2%;提出利用相对叶面积指数修正作物系数的计算方法;通过2014年实例检验,土壤水分模拟值与实测值的平均相对误差为6.3%,相对误差小于15%的占95.8%。  相似文献   

5.
根据南京地区粳稻、籼稻两个品种水稻分别在干旱、水层条件下的逐时、逐日蒸散量观测资料,采用Penman-Monteith模型(以下简称PM模型)对水稻蒸散量进行模拟,并对比模拟蒸散值与观测蒸散值。通过计算,对PM模型的可靠性进行验证。结果表明:(1)水层条件下PM模型的精度比干旱条件下高。(2)模拟值乘以作物系数后,与蒸散实际测量值更加接近。(3)通过敏感性分析可知,使用PM模型进行蒸散量模拟时,方程中各个因子取值的准确性对模拟结果的精确度有较大影响,计算时要合理确定各个因子值。(4)水层条件下稻田的蒸散量明显大于干旱条件下的蒸散量。  相似文献   

6.
相对湿润度指数在农业干旱监测业务中的应用   总被引:7,自引:0,他引:7       下载免费PDF全文
该文介绍相对湿润度指数在逐日滚动的农业干旱监测业务中应用的处理方法。文中采用联合国粮农组织推荐的方法进行潜在蒸散的计算和作物系数订正,提出了作物根区可吸收土壤总有效含水量的概念,并替代作物根区土壤总有效含水量进行水分胁迫条件下的作物系数订正,观察济南站2008年1—5月冬小麦实际蒸散量的计算结果,发现在蒸发强烈的春季,水分胁迫效果明显;提出了复合相对湿润度指数、区域综合相对湿润度指数等概念,对相对湿润度指数进行应用上的演化,解决了干旱演变过程中存在的前期土壤水分盈亏的累积影响问题,实现了县域内农业干旱状况的综合评定,并突破单种作物生长季的局限,实现了农业干旱的周年监测。通过对山东省114个测墒站2008年2月28日—12月8日人工测墒与区域综合相对湿润度指数的干旱等级对比,3048组有效数据中,2012组数据吻合,总吻合率为66%,其中,黄河、东平湖、微山湖灌溉区及鲁西北大部吻合率在50%以下;中东部地区多在70%以上;从全年情况来看,春季吻合率较低,夏季吻合率较高。  相似文献   

7.
怀来地区蒸渗仪测定玉米田蒸散发分析   总被引:3,自引:0,他引:3  
利用2012年和2013年怀来遥感综合试验站蒸渗仪、涡动相关仪和自动气象站观测资料,分析了土壤蒸发和玉米农田蒸散的日、季节变化,用多元回归分析法研究了气象因子(净辐射、空气温度、空气湿度、风速)、土壤水分和农田蒸散量的关系,并将蒸渗仪蒸散观测值与涡动相关仪蒸散量观测值进行了比较。结果表明,土壤蒸发和玉米农田蒸散日变化曲线较一致,季节性差异明显;怀来地区日蒸散量与净辐射和土壤水分相关性较好,与其他影响因子相关性不明显;蒸渗仪的农田代表性受其观测范围内的作物长势影响显著,涡动相关仪观测的蒸散量与蒸渗仪观测值相关关系较好,蒸渗仪观测值较涡动相关仪观测值高10.5%,这是由于不能同周围农田进行热交换,蒸渗仪内平均土壤温度较农田高了9.5%,导致蒸渗仪对蒸散量的相对高估。  相似文献   

8.
基于2014年辽宁省锦州地区雨养玉米农田生态系统涡度相关观测数据,分析了锦州地区玉米农田生态系统水汽通量的变化特征,并结合小气候观测数据探讨了水汽通量的调控机制。结果表明:2014年锦州地区玉米农田生态系统各月水汽通量均呈明显的单峰型变化规律,玉米农田生态系统生长季日平均水汽通量可达非生长季的10.31倍。锦州玉米农田生态系统7月水汽通量最大,日最大水汽通量可达0.1202 g·m-2·s-1。玉米农田年蒸散量为417.37 mm,非生长季蒸散总量为49.57 mm,略大于同期降水量;生长季前期5月和6月玉米农田蒸散量占降水量的比例分别为52.0%、71.0%;7月、8月和9月玉米农田的蒸散量大于降水量,其中7月玉米农田的蒸散量为降水量的3.00倍,而此期间正值玉米开花授粉阶段,水分胁迫严重影响玉米产量。玉米农田生长季的水汽通量与净辐射存在显著的正相关关系,同时水汽通量在一定程度上受气温和饱和水汽压差的调控影响。  相似文献   

9.
黄淮海平原冬小麦最大可能蒸散的估算   总被引:1,自引:1,他引:0       下载免费PDF全文
作物最大可能蒸散考虑了作物及当地地表状况,为当地地表实际覆盖情况下实际蒸散的理论上限值,能客观分析作物对水分的需求程度和农业干旱状况。基于遥感(叶面积指数和地表反照率)数据和逐日气象数据,利用Penman-Monteith公式,计算黄淮海平原小麦种植区27个气象站冬小麦生育期2000-2015年逐日蒸散,提取得到冬小麦生育期逐日最大可能蒸散数据集,并分析其时空变化特征及成因。结果表明:与联合国粮农组织(FAO)单作物系数法计算的最大可能蒸散Ek对比,区域平均最大可能蒸散Ec的时间变化趋势与Ek一致,空间分布上Ec符合客观实际。黄淮海平原冬小麦全生育期、越冬期和返青-拔节期Ec均呈北低南高的分布特征,日平均值分别为1.99 mm,0.44 mm和2.75 mm;其余3个生育期(越冬前、抽穗期、乳熟-成熟期)在空间分布上差异不大,日平均值分别为1.23 mm,4.71 mm和3.74 mm。冬小麦不同生育期(含全生育期)Ec的空间分布主要受叶面积指数分布特征的影响,二者呈显著正相关关系。  相似文献   

10.
在1987~1988年乌兰乌苏站的试验资料基础上,综合考虑了影响玉米田蒸散的气象,作物生物学特性和土壤水分等因素,采用可能蒸散,叶面积指数以及相对有效土壤湿度建立了玉米田实际蒸散量的计算模式。与实测值相比,计算效果较好。  相似文献   

11.
The two-step and one-step models for calculating evapotranspiration of maize were evaluated in a semi-humid and drought-prone region of northern China. Data were collected in the summers of 2013 and 2014 to determine relative model accuracy in calculating maize evaopotranspiration. The two-step model predicted daily evaoptranspiration with crop coefficients proposed by FAO and crop coefficient calibrated by local field data; the one-step model predicted daily evapotranspiration with coefficients derived by other researcher and coefficients calibrated by local field data. The predicted daily evapotranspiration in 2013 and 2014 growing seasons with the above two different models was both compared with the observed evapotranspiration with eddy covariance method. Furthermore, evapotranspiration in different growth stages of 2013 and 2014 maize growing seasons was predicted using the models with the local calibrated coefficients. The results indicated that calibration of models was necessary before using them to predict daily evapotranspiration. The model with the calibrated coefficients performed better with higher coefficient of determination and index of agreement and lower mean absolute error and root mean square error than before. And the two-step model better predicted daily evapotranspiration than the one-step model in our experimental field. Nevertheless, as to prediction ET of different growth stages, there still had some uncertainty when predicting evapotranspiration in different year. So the comparisons suggested that model prediction of crop evapotranspiration was practical, but requires calibration and validation with more data. Thus, considerable improvement is needed for these two models to be practical in predicting evapotranspiration for maize and other crops, more field data need to be measured, and an in-depth study still needs to be continued.  相似文献   

12.
In this study, weighing lysimeters were used to investigate the daily crop coefficient and evapotranspiration of wheat and maize in the Fars province, Iran. The locally calibrated Food and Agriculture Organization (FAO) Penman–Monteith equation was used to calculate the reference crop evapotranspiration (ETo). Micro-lysimetry was used to measure soil evaporation (E). Transpiration (T) was estimated by the difference between crop evapotranspiration (ETc) and E. The single crop coefficient (K c) was calculated by the ratio of ETc to ETo. Furthermore, the dual crop coefficient is composed of the soil evaporation coefficient (K e) and the basal crop coefficients (K cb) calculated from the ratio of E and T to ETo, respectively. The maximum measured evapotranspiration rate for wheat was 9.9 mm?day?1 and for maize was 10 mm?day?1. The total evaporation from the soil surface was about 30 % of the total wheat ETc and 29.8 % of total maize ETc. The single crop coefficient (K c) values for the initial, mid-, and end-season growth stages of maize were 0.48, 1.40, and 0.31 and those of wheat were 0.77, 1.35, and 0.26, respectively. The measured K c values for the initial and mid-season stages were different from the FAO recommended values. Therefore, the FAO standard equation for K c-mid was calibrated locally for wheat and maize. The K cb values for the initial, mid-, and end-season growth stages were 0.23, 1.14, and 0.13 for wheat and 0.10, 1.07, and 0.06 for maize, respectively. Furthermore, the FAO procedure for single crop coefficient showed better predictions on a daily basis, although the dual crop coefficient method was more accurate on seasonal scale.  相似文献   

13.
高素华  康玲玲 《气象》2005,31(6):74-76
采用最大可能蒸散、作物实际蒸散、水分盈亏、水分订正系数评价了黄土高原多沙粗沙区主要作物(春小麦、冬小麦、春玉米、夏玉米和棉花)和草地生长季水分供需状况,结果表明,需水量:冬小麦>棉花>春玉米>春小麦>夏玉米;水分订正系数:春玉米>夏玉米>棉花>春小麦>冬小麦。草地需水量为350~450mm,水分订正系数0.95以上,水分供需矛盾小,实施退耕还牧无论对缓解水资源短缺,还是改善生态环境,在黄土高原多沙粗沙区都是十分有效的措施。  相似文献   

14.
气象干旱指数在东北春玉米干旱监测中的改进   总被引:4,自引:1,他引:3       下载免费PDF全文
利用土壤相对湿度数据和县级春玉米单产数据,在气象干旱指数SWAP(standardized weighted average of precipitation)的基础上,研究我国东北地区春玉米受干旱影响的界限指标,结果表明:SWAP在春玉米播种-出苗期低于-0.9,出苗-拔节期低于-1.0,拔节-抽穗期低于-1.2,抽穗-乳熟期低于-0.7时,土壤相对湿度偏低,即气象干旱一般为中旱时,不利于春玉米生长。以此构建春玉米干旱指数,对比我国东北地区春玉米干旱指数与省级农作物干旱受灾面积的关系,发现两者相关关系显著,尤其在典型干旱年份,两者对应关系更好,说明构建的东北地区春玉米干旱指数能够较好地反映干旱对春玉米的实际影响。利用东北地区县级春玉米单产数据对春玉米干旱指数进行等级划分,划分结果可为东北地区春玉米防旱减灾和安全生产提供参考。  相似文献   

15.
近30年东北春玉米发育期对气候变化的响应   总被引:12,自引:4,他引:8       下载免费PDF全文
基于1981—2010年东北地区55个农业气象观测站发育期数据、16个气象站逐日气象资料,采用趋势变率、秩相关分析、主成分分析和结构方程模型等方法,分析了近30年东北春玉米关键发育期的变化特征,探讨了春玉米发育期对不同时间尺度气象因子的响应规律。结果表明:1981—2010年春玉米关键发育期 (播种期、抽雄期、成熟期) 均有延后趋势,大部分地区春玉米生长前期 (播种期—抽雄期) 日数减少,生长后期 (抽雄期—成熟期) 日数增加,全生育期日数增加。在绝大多数年份,春玉米播种期在温度适播期之后,成熟期在初霜日之前。近30年对东北春玉米生育期日数影响最大的气象要素为温度,主成分分析结果显示,年际尺度的升温、温度生长期的延长和作物生长期的高温对生育期日数影响显著;结构方程模型指出,作物生长期的最高温度和最低温度对生育期日数影响有间接效应,主导气象要素能够解释生育期日数变异的44%。全球变暖背景下,东北春玉米发育期变化是作物响应气候变化和农业生产适应气候变化的共同结果。  相似文献   

16.
华北地区玉米田实际蒸散量的计算   总被引:6,自引:2,他引:6       下载免费PDF全文
以简化农田实际蒸散的计算过程为目的,利用1999年河北定兴县中国气象科学研究院农业气象试验基地的玉米田0~300 cm土壤湿度和气象要素的实测资料以及华北地区5个站1991~1995年0~50 cm土壤湿度和气象资料,探讨由简化参考蒸散模式计算玉米田实际蒸散的可能性;对比了Priestley-Taylor模式和FAO(1998)Penman-Menteith模式的计算结果,以农田试验资料为基础,采用叶面积系数和平均土壤相对湿度为因子,建立了实际蒸散的计算模式。并以华北地区8个站1999~2000年0~50 cm土壤湿度和气象资料进行验证,平均误差一般为10%~15%.  相似文献   

17.
A field experiment was conducted in a maize field in 2006 in an arid area of the Yellow River Basin in China. The daytime evapotranspiration (ETc) and soil evaporation beneath the maize canopy (E g) were measured by Bowen ratio energy balance method and micro-lysimeters, respectively. The results showed that the total ETc during maize growth season was 696 mm, and the maximum values occurred at about 90–140 days after sowing. The crop coefficient (K c), which was calculated from the ratio of ETc to reference evapotranspiration (ET0), was quite different from the values reported by other researchers in similar climate areas, with average values of 0.34, 0.47, 1.0 and 0.9 for initial, development, mid-season and late-season stages, respectively. High correlations between leaf area index (LAI) and average K c for every 4 days were obtained. The total E g was 201.4 mm with average values ranged from 0.92 to 2.05 for four growth stages of maize; and accounted for around 28.9 % of ETc. The ratio E g/ETc showed high negative relationship with LAI. These results were very important in precise management of irrigation for maize in Yellow River Basin areas.  相似文献   

18.
Over recent years, the Iberian Peninsula has witnessed an increase both in temperature and in rainfall intensity, especially in the Mediterranean climate area. Plant phenology is modulated by climate, and closely governed by water availability and air temperature. Over the period 1986–2012, the effects of climate change on phenology were analyzed in five crops at 26 sites growing in Spain (southern Europe): oats, wheat, rye, barley and maize. The phenophases studied were: sowing date, emergence, flag leaf sheath swollen, flowering, seed ripening and harvest. Trends in phenological response over time were detected using linear regression. Trends in air temperature and rainfall over the period prior to each phenophase were also charted. Correlations between phenological features, biogeographical area and weather trends were examined using a Generalized Lineal Mixed Model approach. A generalized advance in most winter-cereal phenophases was observed, mainly during the spring. Trend patterns differed between species and phenophases. The most noticeable advance in spring phenology was recorded for wheat and oats, the “Flag leaf sheath swollen” and “Flowering date” phenophases being brought forward by around 3 days/year and 1 day/year, respectively. Temperature changes during the period prior to phenophase onset were identified as the cause of these phenological trends. Climate changes are clearly prompting variations in cereal crop phenology; their consequences could be even more marked if climate change persists into the next century. Changes in phenology could in turn impact crop yield; fortunately, human intervention in crop systems is likely to minimize the negative impact.  相似文献   

19.
邵小路  姚凤梅  张佳华  李先华 《气象》2013,39(9):1154-1162
本文利用卫星遥感资料以及常规气象资料驱动基于地表净辐射、植被指数、平均气温和日温差的蒸散模型来估测日实际蒸散量,并与栾城站涡动相关法测量的实际蒸散作对比验证。定性分析了实际蒸散与各相关影响因子的时空变化规律;通过蒸散干旱指数(EDI)分析华北地区的干旱分布特点,并分别与PDSI指数和降水距平百分率作对比。结果表明:ET模型估测的蒸散值与实测值的相关性很好,其模拟精度对于大面积干旱监测的空间尺度上是可用的;EDI距平指数表征干旱分布的空间分辨率较高,且对旱情的指示和干旱程度的判定比较可靠。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号