首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
寿县地区小麦和水稻田地表反照率观测分析   总被引:4,自引:0,他引:4  
利用寿县气候观象台2007年10月~2008年9月地表反射率观测资料,分析了农田地表反照率的季节变化,对比了小麦和水稻在不同生长期的平均反照率,讨论了天气状况和天气过程对反照率的影响.结果表明,在小麦和水稻的生长期内,地表反照率变化相似,均先增大后减小.在作物生长初期,水稻田平均反照率低于小麦田反照率约0.02;中期时,两者相近;成熟后,水稻反照率高于小麦反照率约0.04.降水过后,晴空地表反照率减小.  相似文献   

2.
1997/1998年青藏高原西部地区辐射平衡各分量变化特征   总被引:9,自引:1,他引:9  
利用中日亚洲季风机制研究计划1997年9月~1998年10月在青藏高原西部改则和狮泉河2个站点自动气象站辐射平衡的观测资料,分析了高原西部2个地区辐射平衡各分量在不同季节的季节平均日变化和年变化特征,并且还与1979年5~8月第一次青藏高原气象科学实验的辐射观测资料和1982,1983年青藏高原辐射平衡观测实验的结果进行了比较分析。结果发现:高原西部辐射平衡各分量的变化不仅有季节之间和年际的差异,高原西部的不同地区之间的变化也有较大的差异:(1)总辐射在春夏两季相差很小,改则春季(3~5月平均)日变化的极大值甚至比夏季(6~8月平均)还大;(2)地表反照率的年际变化及两地之间的差异均可能较大;(3)大气逆辐射日变化、年变化特征与其他辐射分量明显不同,其日变化、年变化的位相均晚于其他分量;(4)两地之间地面辐射平衡的年变化似乎有一个位相差,改则的月平均最大值和最小值均较狮泉河晚了约1个月,因此从冬季到夏季的大部分时间里,改则的地面辐射平衡是小于狮泉河的,而在从夏季到冬季的大部分时间里,改则是大于狮泉河的。  相似文献   

3.
黄土高原陇东地区有着特殊的气候背景和下垫面,对这一地区陆气相互作用特征和影响因素的观测分析对改进和发展陆面过程模式以及气候变化研究有重要意义。利用陇东平凉陆面过程与灾害天气观测研究站连续一年的陆面过程观测资料,分析了雨养农田降水量、土壤含水量、辐射、反照率和能量通量的季节变化,以及降水、土壤含水量和农业生产活动对能量分配的影响。结果表明,陇东地区降水量季节分布不均,土壤含水量有明显季节差异,随降水有明显波动;辐射通量的季节变化较为规律,短波辐射的日均值受天气状况影响,波动较大;地表反照率呈明显的季节变化,全年正午反照率最大值为0.83,出现在降雪后,生长季随着作物的生长,反照率下降至0.2以下,农作物收割以后的裸土反照率随降水变化明显,反照率与土壤体积含水量呈明显的线性相关关系;湍流能量通量日循环和季节变化明显,地表能量分配在很大程度上受降水影响,同时农业生产活动也对其有较大影响,主导能量通量有较大的月际波动,潜热通量月平均日变化峰值最大为240.8 W·m~(-2),出现在5月,感热通量为192.5 W·m~(-2),出现在4月;在年尺度上,正午净辐射多被感热通量消耗,感热通量约占35%,潜热通量约占32%,低于灌溉农田;在冬小麦快速生长季(3-5月),潜热通量约占34%,远低于灌溉的冬小麦田,研究站点的蒸散发过程受到水分限制。  相似文献   

4.
利用“中国西北干旱区陆气相互作用观测试验(NWC-LAIEX)”所获取一年的地面辐射观测资料(2000年5月~2001年4月),比较分析了我国典型干旱区敦煌戈壁、临泽沙漠和藏北高原五道梁地区地表辐射能量的收支特征。结果表明:3个地区各辐射分量季节变化明显,春季一般为跳跃式增加,而秋季则急剧减小,敦煌和临泽地区总辐射月总量几乎全年都小于藏北高原的五道梁地区,冬季最为明显。五道梁和临泽地区的地表反照率有较明显的季节变化和日变化,季节变化是夏季较小,冬季大;而敦煌戈壁地区的反照率不论是季节变化还是日变化,都比较平缓;3个地区相比,临泽沙漠地区的反照率最大,五道梁地区次之,敦煌戈壁地区最小。敦煌戈壁和临泽沙漠地区的地面向上长波辐射和大气逆辐射都比藏北高原的五道梁地区大。地面有效辐射在敦煌戈壁和临泽沙漠地区是夏季大,冬季小;而在藏北高原的五道梁地区则是春秋季大,冬夏季小。地面有效辐射与地面吸收辐射之比敦煌戈壁和临泽沙漠地区量值相近,藏北高原的五道梁地区较小,夏季尤为突出。在夏季,五道梁的地表净辐射要远远大于其他两个地区,冬季3个地区量值相当。与地表净辐射相对应,五道梁地区的地面热源强度在夏季大于敦煌戈壁地区,在冬季相差不大。  相似文献   

5.
地表反照率是表征陆面过程地表能量收支的关键物理参数,对于准确以及定量化地理解高原上的能量和水分循环过程有着至关重要的作用。利用黄河源区玛曲和玛多两个高寒草地站点长达8年的地表反照率观测数据,对GLASS (Global Land Surface Satellite)、MODIS (Moderate Resolution Imaging Spectroradiometer)和GlobAlbedo地表反照率产品进行了评估与分析。结果显示,玛曲地表反照率的年际变化较小,集中在0. 16~0. 28。各遥感产品在玛曲地区精度各有不同:GlobAlbedo反照率平均比地面观测偏高0. 048;而GLASS和MODIS反照率分别偏低0. 074和0. 063。统计值表明,MODIS产品精度相对最高,其中RMSE=0. 069,R=0. 710。受积雪影响,玛多地区地表反照率年际变化较大。遥感产品中,GLASS产品精度相对较高,其中RMSE=0. 104,R=0. 598。玛曲站地表反照率值为:冬季春季秋季夏季,平均值依次为0. 25,0. 22,0. 19和0. 18。玛曲站年平均地表反照率为0. 21;玛多站为0. 25,而且季节变化较玛曲站更显著,呈现近似"U"形分布。夏季反照率最小,平均值为0. 18,秋季为0. 22,与春季较为接近,冬季平均值最大为0. 33。基于两个观测站点的对比表明,三种遥感地表反照率产品春夏季与地面观测一致性较好,秋季反照率开始增大的时间比观测早,冬季后期反照率的值明显小于地面观测。另外,GLASS和MODIS产品的差异也在秋冬季达到最大。MODIS分离雪和云的能力使其在秋冬季的表现更好。  相似文献   

6.
疏勒河上游流域多年冻土区辐射变化分析   总被引:1,自引:0,他引:1  
利用2008年7月-2010年10月祁连山区西段疏勒河上游流域多年冻土区苏里梯度观测系统的辐射数据,分析了该区域的辐射变化特征.结果表明,向下短波辐射、向下和向上长波辐射、净辐射月总量季节性变化明显,冬、春季较小,夏、秋季较大;向上短波辐射月总量的季节变化不明显.日平均向下短波辐射、向下和向上长波辐射有明显的季节变化,1月或12月达到最小值,6月或7月达到峰值;1-3月和12月日平均向上短波辐射振幅变化较小,而4月和10月则变化较大.净辐射日变化冬、春季较小,且振幅也较小,夏、秋季较大,且振幅也较大;辐射四分量的日变化都呈单峰型.生长季节的地表反照率较小,非生长季较大;每年10月地表反照率的日平均变化起伏较大,日变化基本呈“U”形,早晚高、中午低.  相似文献   

7.
南水北调华北受水区植被与降水的关系研究   总被引:2,自引:0,他引:2  
华北地区年际归一化植被指数(NDⅥ)的变化与降水的年际变化有相当强的正相关,降水量增加会显著的改善植被覆盖.华北的NDⅥ变化显示了很强的季节变化特征,6月是华北农作物种植和生长的关键时期,但该月的需水量并不大,农作物生长旺季在7~8月.北京、邢台和潍坊的7月份农作物增长最快,月平均相对NDⅥ增长速度为0.4,8月的为0.2,因此,在7~8月农作物生长需水量最大,相当降水量接近180 mm,因此,在调配农业用水时应充分考虑这些因子.    相似文献   

8.
河北地区边界层内不同高度风速变化特征   总被引:15,自引:4,他引:11  
为了研究城市化进程对风速变化的影响,利用1971-2006年河北省境内邢台、张家口和乐亭3个探空站高空风观测资料和对应地面站风观测资料,统计分析了边界层内距地面10m、300m、600m、900m 4个高度的长期风速变化特征,比较了不同高度风速变化趋势的异同.分析结果表明:3站年和季节平均风速随着距地面高度的增加而变大,但最大的风速垂直递增率出现在从10m到300m之间;各站各高度层月平均风速具有明显的季节变化特征,春季风速最大,夏季较小;在近36年里,3站平均的地面(10m高)年和季节平均风速变化存在显著的减少趋势,300m以上各高度层平均风速一般也降低,但远没有地面明显;不同高度平均风速变化趋势的差异可能主要是由城市化以及台站附近观测环境的改变引起的,这使得地面风速明显减弱;但地面以上各层平均风速同样存在一定减弱现象,说明背景大气环流的变化也是地面风速下降的原因之一.  相似文献   

9.
藏北高原地表反照率的初步研究   总被引:5,自引:9,他引:5  
李英  胡泽勇 《高原气象》2006,25(6):1034-1041
基于中日合作项目“全球协调加强观测计划之亚澳季风青藏高原试验”(CAMP/Tibet)在藏北高原D105站、Amdo站、MS3478站以及BJ站的观测数据资料,分析了该地区地表反照率的时空分布特征。结果表明:藏北高原地区的地表反照率具有明显的日变化和月/季节变化特征。冬、春季的日变化曲线呈“U”形,且曲线形状的变化不如夏、秋季大。6~9月的月平均反照率在全年中最低,5月份月平均反照率波动较大。从季节平均值来说,冬季>春季>秋季>夏季。该地区的平均地表反照率为0.2457;反照率的空间分布很不均匀,其值的大小、曲线的形状在不同站点都很不一样,这与站点的地理位置有关,但天气状况和下垫面属性也起了很大的作用。  相似文献   

10.
本文采用1956--1976年100毫巴月平均高度资料计算了各个季中月各个纬度带准常定扰动对角动量输送的谱,研究其季节变化和周期变化。计算表明,100毫巴等压面上准常定扰动对角动量的输送几乎全部由波数1—3的超长波完成的。各波输送在各个季节以及在高纬和低纬都呈现不同的特点。功率谱分析表明,在低纬(35°N以南)盛行13—14个月,28—29个月和57个月的周期。指出准两年振荡可能与1波输送和3波输送的相互作用有某种联系。  相似文献   

11.
青藏高原晴空行星反照率与地面反照率关系的研究   总被引:14,自引:1,他引:14       下载免费PDF全文
本文利用了大气-地球系统的物理模型推导了晴空行星反照率与地面反照率之间的相互关系,指出当仅考虑一次地面反射时,行星反照率是地面反照率的一次线性函数,当考虑到大气与地面的多次反射时,两者的关系设为二次抛物线函数,并利用1986年中美青藏高原联合考察期间的地面辐射资料以及同期NOAA-9的GAC资料对上述关系进行了试验,结果表明,两种关系都能较好地反映出青藏高原行星反照率与地面反照率之间的关系,但二次函数表现的物理意义更为明确。 青藏高原作为一个特殊的地理类型,其行星反照率与地面反照率的相互关系与全球纬向平均相比较也有明显的差异,本文讨论了这些差异的物理意义,同时分别讨论了该地区可见光和近红外这二个通道的滤过反照率与地面分光谱反照率之间的关系。 青藏高原晴空反照率与地面反照率关系的研究为利用AVHRR资料反演青藏高原地面反照率的数值分布图提供了理论依据和具体方法。  相似文献   

12.
太阳活动11年周期对气候系统中准两年振荡的影响(英)   总被引:3,自引:0,他引:3  
用一个有外强迫的、简单的动力系统研究气候系统中的准两年振荡(平均周期长度比两年稍长或稍短的准周期振荡)。结果显示,准两年周期性源于该系统对于受11年周期调制的季节强迫的非线性响应。当系统的非线性固定时,准两年震荡的周期长度和振幅随季节变化的强度和太阳活动11年周期变化的强度而变化。这可能是造成气候中准两年震荡的性质有时空变化的原因之一。  相似文献   

13.
对CMIP5全球气候模式中年代际回报试验的气温资料及其简单集合平均(Multi-model ensemble mean,EMN)和贝叶斯模式平均的结果(Bayesian Model Averaging,BMA)进行经验正交函数(Empirical Orthogonal Function,EOF)分解和Morlet小波分析,检验评估各个模式及其EMN和BMA对东亚地面气温的方差、气温时空分布特征及周期变化的回报能力。结果表明,10个模式、EMN、BMA都能很好地回报出1981—2010年东亚地面气温的方差分布,其中BMA回报效果最好。EOF分析表明,BMA能较好地回报出东亚地面气温第一模态的时空分布。MIROC5能较好地回报出第二模态的趋势变化,但却不能回报出气温的年际变率。绝大多数模式和EMN、BMA虽然能回报出东亚地面气温的变化趋势,但是对气温年际变率的回报仍然是比较困难的。CMCC-CM对气温变化主模态的3~5 a的周期变化特征回报效果最好,和NCEP资料的结果最为接近。  相似文献   

14.
利用OMI卫星资料2006—2017年的483.5 nm波长的气溶胶柱单次散射反照率日均数据,分析了整层大气气溶胶单次散射反照率在长三角地区的时空分布特征,特别是其年际、月、季节变化特征.长江三角洲地区的大气气溶胶柱单次散射反照率越靠近海洋越大,而越靠近内陆越小.日均气溶胶柱单次散射反照率在0.881~0.971范围内变化,多年的平均值为0.939±0.024,最大分布概率出现在0.965~0.970区间,其值约为25%.长三角地区大气气溶胶柱单次散射反照率的年平均值集中于0.938~0.940之间,年际变化很小,变化值小于1%;月均柱单次散射反照率在6、8、9月有最大值,其值为0.968,而在2月有最小值,其值为0.915;季节平均单次散射反照率在夏季最大,其值为0.968,而在冬季最小,其值为0.919.  相似文献   

15.
翁衡毅 《大气科学进展》2003,20(2):303-309,T002
用一个有外强迫的、简单的动力系统研究气候系统中的准两年振荡(平均周期长度比两年稍长或稍短的准周期振荡)。结果显示,准两年周期性源于该系统对于受H年周期调制的季节强迫的非线性响应。当系统的非线性固定时,准两年震荡的周期长度和振幅随季节变化的强度和太阳活动11年周期变化的强度而变化。这可能是造成气候中准两年震荡的性质有的空变化的原因之一。  相似文献   

16.
多年冻土区与季节冻土区地表反照率对比观测研究   总被引:3,自引:0,他引:3  
利用多年冻土区唐古拉气象站与季节冻土区那曲毕节气象站2008年辐射、土壤未冻水含量及积雪等数据,对两种冻土类型下垫面上的地表反照率进行分析研究,得出两站地表反照率均呈现冬春季较大,夏秋季较小的规律,并且,积雪使地表反照率形成极大值,最大极值接近0.9。唐古拉站的地表反照率整体上比毕节站大,年平均地表反照率分别为0.38和0.31。地表反照率月较差(每月日平均地表反照率最大值与最小值的差值)冬季毕节站高于唐古拉站,而夏秋季节则相反。晴天,两站地表反照率均呈现"U"形,表现出早晚大、中午小,春、夏、秋、冬各季节典型晴天的地表反照率日平均值唐古拉站分别为0.23、0.20、0.20和0.25,毕节站为0.26、0.21、0.22和0.29。此外,讨论了两站太阳高度角和土壤湿度对地表反照率的影响,得出两站地表反照率随太阳高度角的增大均呈现e指数衰减趋势,土壤湿度与地表反照率呈负相关关系,且降雨对地表反照率的变化影响较大。  相似文献   

17.
青藏高原GLASS地表反照率产品精度分析   总被引:2,自引:0,他引:2  
应用2003年青藏高原3个站点的地表反照率观测结果,对比分析了GLASS(Global LAnd Surface Satellites)地表反照率1 km×1 km分辨率产品的精度,结果表明,GLASS黑空反照率、白空反照率与地表反照率地面观测结果的总体变化趋势基本一致,能够有效地反映实际地表状态的变化;局地积雪和云覆盖对GLASS地表反照率产品的精度影响较大,云覆盖导致GLASS地表反照率可能比实际地表反照率高;消除云覆盖和局地积雪的影响后,GLASS黑空反照率、白空反照率与地表反照率地面观测结果的均方根误差显著降低,分别为0.0155和0.0190。  相似文献   

18.
青藏高原不同地区辐射特征对比分析   总被引:13,自引:7,他引:6       下载免费PDF全文
武荣盛  马耀明 《高原气象》2010,29(2):251-259
利用"全球协调加强观测计划(CEOP)之亚澳季风青藏高原试验"(CAMP/Tibet)在藏北高原的BJ站、NPAM站及中国科学院珠穆朗玛峰大气与环境综合观测研究站、纳木错多圈层相互作用综合观测研究站和藏东南高山环境综合观测研究站2007年的辐射观测资料,分析了这些地区不同下垫面地表辐射各分量及地表反照率的日变化和月际变化特征。结果表明,向下短波辐射受太阳高度角的影响存在明显的日变化和月际变化;向上短波辐射的月际变化基本与总辐射一致,在个别月份由于高原积雪造成地表反照率较高,从而使晴天向上短波辐射全年较高;向下长波辐射存在基本的季节变化,最大值出现在天空总云量较多的夏季(6~8月),最小值出现在冬季(12月和1月);向上长波辐射基本上都是夏季为全年最大,冬季为全年最小。这与地表温度的年变化情况相一致。高原不同地区各季节晴天地表净辐射存在差异,NPAM站和藏东南站由于下垫面植被覆盖较好,净辐射值各季节均高于其它各站;NPAM站、纳木错站和珠峰站地表反照率日变化曲线呈"U"型,BJ站和藏东南站日变化相对复杂,藏东南站全年月平均地表反照率较小且变化不大,其他各站存在基本的年变化趋势。  相似文献   

19.
青藏高原地表反照率计算研究   总被引:13,自引:1,他引:13  
根据改进的甚高分辨率扫描辐射仪(AVHRR)5个观测波段的光谱特征,经多次试验,设计了一组从卫星观测的地-气系统的辐射测值中提取晴空资料的多通道门槛值判识法和提取月平均反照率的合成法;并对1992年NOAA-12卫星获取的AVHRR资料进行计算处理,分析提取晴空数据,在此基础上按卫星轨道覆盖周期合成计算得到的晴空行星反照率和地表反照率,并且计算了逐月的地表反照率。对计算结果做了初步分析和认真比较。  相似文献   

20.
利用MODIS地表双向反照率产品(MOD43B1),结合地表海拔高度和地表覆盖类型资料,计算并分析了中国地区晴空反照率的时空分布,以及地表反照率与地形和地表覆盖的关系.首先,利用改则自动气象站的地基观测对MODIS地表反照率进行了对比验证.验证结果表明卫星观测可以较好地反映反照率随时间的变化,MODIS地表反照率与地表实测反照率符合较好.年平均地表反照率与海拔高度有很好的相关,反照率的高值出现在高海拔山区.冬春季节,我国高海拔山区因积雪覆盖成为反照率的高值区;夏秋季节,地表反照率主要受地表土壤湿度和植被盖度的影响,沙地和沙漠地带反照率最高.最后,计算了中国典型地表类型的反照率随时间的变化,结果表明大部分地表类型的反照率具有较大的时间变化,地表反照率在春秋季节较大,夏季反照率较小.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号