首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
与华北地区春季降水量异常关联的大气环流异常   总被引:13,自引:1,他引:12  
华北地区的春旱极大地影响着农作物的播种和生长.因此,尽管华北地区的春季1降水量没有夏季降水量那么多,但它的变化规律及其原因也是一个非常值得研究的问题.在本文中,我们指出,相对平均值而言,华北地区春季降水量的年际变化相当大.早年降水量的变化幅度相对较小,而降水多的年份之间降水量却有相当大的变化.进而,我们分析了在年际变化时间尺度上,与华北地区春季降水异常相关联的大尺度大气环流异常.发现在华北春季降水多时,东亚地区上空在整个对流层中存在一反气旋式环流异常,即与季节演变特征相符,而在热带地区存在与季节演变相反的环流异常.东亚地区上空这种反气旋式环流使得东亚大槽偏东、偏弱,并使得在我国东部地区出现南风异常,这种南风异常一直达到华北地区,为华北地区的降水提供有利条件.此外,反气旋式异常随高度向西斜,也为扰动的发展提供了有利的环流背景.本文对对流层高层经向风的分析结果表明,与华北春季降水密切相关的东亚地区反气旋式环流异常和南北风异常与出现在北半球中纬地区的波列有关系,但关于该波列产生的原因却有待进一步的研究.    相似文献   

2.
华北春季降水量的年际和年代际变化特征   总被引:1,自引:0,他引:1  
王建波  姚圣贤  朱霞 《山东气象》2005,25(4):21-22,25
用华北春季降水量资料,采用EOF分解、Yamamoto分析、最大熵谱分析等方法对华北地区春季降水量的时空分布特征进行了初步研究,指出3月降水量的年代际变化不明显,4月和5月降水量存在基本反相的年代际变化,华北春季及各月降水量第一特征向量的空间分布均为全区一致型,并和相应时期的降水量距平百分率具有相同的年际及年代际变化特征.  相似文献   

3.
西安近57年降水量变化分析   总被引:1,自引:0,他引:1  
利用1951—2007年西安国家气象观测站二级站的月降水量资料,分析西安年代际、季和月降水量演变趋势。结果表明:西安年降水量总体呈下降趋势,20世纪90年代降水递减趋势明显。1991—2007年17a平均比历年(1951—2007年)平均减少28.7mm,比前40a(1951—1990年)平均减少40.9mm;季节降水量秋季、冬季为递增趋势,其中秋季递增率较大;春季、夏季为递减趋势。其中春季递减率较大,年代际平均递减率为9.7mm/10a。月降水量递减率较大的有:3,4,5,7,8月和11月,月降水年代际平均递减率分别为2,4,2,7,3,4mm/10a;6月,9月和10月降水量递增率较大,月降水年代际平均增长率分别为3,4,4mm/10a;其他月份随年代际变化不明显。  相似文献   

4.
华北汛期降水量变化中年代际和年际尺度的分离   总被引:39,自引:12,他引:39       下载免费PDF全文
陆日宇 《大气科学》2002,26(5):611-624
华北地区汛期(7月和8月)降水量的变化中,不仅具有年际变化的特征,同时还具有明显的年代际变化特征.我们将这两种时间尺度进行分离,即将降水量的变化进行5年滑动平均,以滑动平均值代表年代际变化,并以每年的汛期降水量与滑动平均值的差代表去除了年代际变化后的年际变化.然后,利用NCAR/NCEP再分析资料对与这两种不同时间尺度相关联的大气环流异常进行了分析,发现两者具有不同的表现,说明影响这两种不同时间尺度的物理原因可能是不同的.与年代际变化相对应的大气环流异常主要表现为出现在我国东部地区的南北风异常以及欧亚大陆上空的位势高度异常.若对这两种时间尺度不进行分离,而直接按讨论年际变化的一般方法简单地分析与年际变化相关联的大气环流异常时,所得到的分析结果中既包含与华北降水年代际变化相关联的大气环流异常,又包含与去除年代际变化后的年际变化相关联的大气环流异常.而除去年代际变化后,与华北汛期降水年际变化相关联的大气环流异常主要表现为在东亚上空位势高度和纬向风的异常,意味着急流在涝年位置偏北.  相似文献   

5.
北京相当暴雨日数的气候特征   总被引:9,自引:0,他引:9  
根据北京99年6~8月的逐日降水资料和274年6~8月总降水量资料, 分析了相当暴雨日数与总降水量及旱涝等级的相关性,给出相当暴雨日数与总降 水量的定量关系式,建立了北京274年汛期相当暴雨日数资料序列。分析表明: 相当暴雨日数概念的引入,可以把汛期总降水量中暴雨过程降水与非暴雨过程降 水分开,证实汛期旱涝变化只取决于暴雨过程的总次数和强度;相当暴雨日数是 一个气候统计量,有与总降水量一致的周期变化,但其年际变率和3.5年周期比 总降水量更显著,其概率分布满足泊松分布;与旱涝等级比较,相当暴雨日数与 总降水量的相关性更好,且有利于研究形成汛期旱涝灾害的暴雨过程特征。  相似文献   

6.
佛山市暴雨的气候特征及天气系统配置   总被引:2,自引:2,他引:0  
采用佛山1957~2009年降水量和天气图资料,运用统计学和天气学等方法,对近53年佛山市暴雨的气候特点及环流特征进行分析.结果表明:佛山暴雨主要集中在汛期(4~9月),汛期暴雨频次的变化呈略增加的趋势,有明显的年际、年代际变化特征;暴雨月际分布呈典型的双峰型,主峰在5~6月,次峰在8月.小波分析显示,暴雨频次存在准2...  相似文献   

7.
华南前汛期降水变率的分析   总被引:23,自引:2,他引:21       下载免费PDF全文
利用华南16个站1951~1996年逐年、月和候降水量资料,分析了前汛期(4~6月)总降水量及前汛期开始期的变化特征.结果表明,全区前汛期总降水量变化有相当好的一致性.以降水异常的空间分布基本可划分成6种类型.根据候降水量变化,逐年前汛期开始期大体可分成4类,即:全区偏早(14年);全区偏晚(16年);东部早西部晚(7年)和东部晚西部早(9年).总之,无论是前汛期降水量还是前汛期开始日期都具有明显的年际变化和年代际变化特征  相似文献   

8.
基于Hurst指数的黑龙江省作物生长季降水趋势研究   总被引:1,自引:0,他引:1  
基于黑龙江省78个气象站1971—2016年逐日降水资料,综合采用墨西哥帽小波分析、Hurst指数分析等方法,对黑龙江省作物生长季(5—9月)降水量变化和未来趋势进行分析及预测。结果表明:1971—2016年,黑龙江省生长季、5月、6月降水量存在7 a、14 a、7 a左右的主周期,7月、8月、9月降水量存在2 a、3 a、7 a左右的第1主周期及6 a、11 a、21 a左右的第2主周期,各月均存在最近几年降水偏多的趋势;作物生长季降水量年际间为波动式振荡变化,7月、8月振荡幅度相对较大。年代际变化总体存在增加—减少—增加趋势,20世纪80年代、90年代降水量普遍偏多,2010年以来出现急转升高变化;单站各月Hurst指数均在0.5以上,降水存在比较明显的赫斯特现象;降水主要出现在夏季且以7月最为集中,最近几年降水偏多、7月异常降水集中以及主要流域未来7月降水的持续增加趋势在农业防灾减灾上值得关注。  相似文献   

9.
华北5月降水年际变化特征及其成因   总被引:2,自引:4,他引:2  
本文采用华北5月降水资料,NCEP资料以及COADS海温资料,借助相关分析、合成分析等方法研究了华北5月降水的总体分布特征,并从总体上探讨了其与海温、大气环流年际变化的关系及其影响机制。结果表明:华北5月降水存在年际变化特征,降水量偏少年份多于偏多的年份,降水偏少年降水量与平均值相差较小,而降水偏多年降水量与平均值相差较大;华北5月降水与(25~50°N,110~145°E)一带大气环流(200 hPa)的年际变化及前期低纬大气环流的年际变化均有显著的正相关关系;中纬度西传Rossby波列与低纬赤道印度洋海温的变化是引起华北5月降水年际变化的重要原因。  相似文献   

10.
近58年柳州市汛期降水特征分析   总被引:6,自引:1,他引:5  
利用柳州市1951~2008年的月降水量资料,采用线性倾向估计和小波分析方法,分析了近58a柳州市汛期(4~9月)降水的变化特征。结果表明:近58a来柳州市汛期降水主要呈波动性变化,线性趋势变化不明显,但前汛期降水总体呈上升趋势,降水量约增加87mm;后汛期降水量总体呈下降趋势,约减少了89mm。因此,前汛期有变涝趋势,后汛期有变旱趋势。近58年柳州市汛期降水年代际变化的主要周期为20~25a,20世纪80年代以后,汛期降水存在周期10-15a的年代际变化。20世纪80年代以前,柳州市汛期降水主要的年际变化周期2~4a,以后的年际变化周期是4~8a。  相似文献   

11.
黄淮海地区植被活动对气候变化的响应特征   总被引:6,自引:2,他引:4       下载免费PDF全文
基于1982 -2003年GIMMSNDVI遥感数据和气象资料, 综合运用趋势分析、相关分析、奇异值分解等方法, 分析我国黄淮海地区植被活动对气候变化响应的时空特征。结果表明:黄淮海地区整体气候变暖趋势比较明显, 干旱化尚不显著, 年平均植被NDVI表现为略微增加的趋势。在年尺度上, 温度是敏感性最强的气候因子, 全年温度、降水、相对湿度对植被NDVI动态变化具有正效应, 而蒸发量具有负效应; 在季尺度上, 温度、降水的敏感性最强。自然植被对降水的敏感性最强, 其次是温度; 农业植被对温度的敏感性最强, 其次是降水。植被对气候变化响应的空间特征表现为, 植被主要生长季平均NDVI与温度距平场空间结构一致, 与蒸发量距平场反位相对应, 与降水量距平场呈北、南部正负相反分布, 与相对湿度距平场呈南、北向正负相反的空间分布。  相似文献   

12.
我国夏季降水与青藏高原春季NDVI的关系   总被引:6,自引:1,他引:5       下载免费PDF全文
利用1982年1月-2001年12月NDVI资料、台站降水资料和NCEP/NCAR再分析资料, 通过相关分析和合成分析方法, 初步分析了我国夏季降水与青藏高原春季植被的关系及可能机理。结果发现:青藏高原春季NDVI与我国夏季降水相关系数从南到北呈西北-东南向“ + - +”带状分布。合成分析也表明:青藏高原春季NDVI大、小值年降水年内分布也存在明显差异。降水的上述差异, 可能是由于青藏高原春季NDVI变化导致热源效应改变, 引起大气环流变化造成的。对环流分析也发现:大气环流的变化特征与降水变化表现出很好的一致性。  相似文献   

13.
内蒙古植被NDVI变化特征分析   总被引:2,自引:0,他引:2  
对植被状况和植被覆盖的研究可以反映植被受环境条件影响产生的时空变化。文章根据GIMMS-NDVI数据集1982—2006年影像数据,分析内蒙古农田、森林、草原三种植被类型NDVI年内、年际的变化趋势以及植被覆盖变化特征的空间差异。各植被类型变化曲线都呈现4—7月NDVI激增,8—10月NDVI猛降,冬季农田、草原植被覆盖接近裸土的特点。农田夏季NDVI平均值的历年线性变化趋势通过显著性检验,森林夏季NDVI平均值呈现下降的趋势,草原夏季NDVI平均值呈现上升的趋势,但都不显著。  相似文献   

14.
中国地区降水持续性的季节变化特征   总被引:6,自引:1,他引:5  
于文勇  李建  宇如聪 《气象》2012,38(4):392-401
本文利用我国588个气象站1969-2008年逐12小时的降水资料,分析了中国地区降水持续性的空间分布特征及其季节演变规律。分析结果表明,35°N以南,西部和东部年平均的降水平均持续时间较长,中部略短;35°N以北,西北和内蒙西部最短,东北地区北部略长。将降水事件按持续时间分类自南向北,东南地区、江淮和黄淮地区、东北和华北北部地区短时降水(持续一个时次,12小时)的降水量和降水频率占全年总降水的比例逐渐增加,持续性降水(持续3个时次及以上)的比例减少。降水平均持续时间随季节的变化基本能反映出江南春雨、江淮梅雨、东北和华北夏季雨季、关中盆地和汉水谷地的秋雨以及青藏高原地区和西南地区夏季雨季。同时,东南地区秋冬季节、江淮和黄淮地区10月上旬和西南地区10月下旬存在降水平均持续时间的峰值,与降水量的变化不一致,是由持续性降水频率的增加和短时降水频率的减少造成的。此外,东部三个区域降水平均持续时间的夏季季节内变化对应了季风雨带的“北跳和南撤”过程。  相似文献   

15.
The relationship between vegetation on the Tibetan Plateau (TP) and summer (June–August) rainfall in China is investigated using the normalized difference vegetation index (NDVI) from the Earth Resources Observation System and observed rainfall data from surface 616 stations in China for the period 1982–2001. The leading mode of empirical orthogonal functions analysis for summer rainfall variability in China shows a negative anomaly in the area from the Yangtze River valley to the Yellow River valley (YYR) and most of western China, and positive anomalies in southern China and North China. This mode is significantly correlated with summer NDVI around the southern TP. This finding indicates that vegetation around the southern TP has a positive correlation with summer rainfall in southern China and North China, but a negative correlation with summer rainfall in YYR and western China. We investigate the physical process by which vegetation change affects summer rainfall in China. Increased vegetation around the southern TP is associated with a descending motion anomaly on the TP and the neighboring area to the east, resulting in reduced surface heating and a lower Bowen ratio, accompanied by weaker divergence in the upper troposphere and convergence in the lower troposphere on the TP. In turn, these changes result in the weakening of and a westward shift in the southern Asian High in the upper troposphere and thereby the weakening of and an eastward withdrawal in the western Pacific subtropical high. These features result in weak circulation in the East Asian summer monsoon. Consequently, enhanced summer rainfall occurs in southern China and North China, but reduced rainfall in YYR.  相似文献   

16.
青藏高原冬季NDVI与西南地区夏季气温的滞后关系   总被引:1,自引:1,他引:0       下载免费PDF全文
该文利用EOF分解得到的1982—2001年西南地区夏季平均、最高和最低气温的时空特征显示, 西南地区夏季平均、最高气温的时空变化具有很好的一致性, 尤其是川渝地区20世纪80年代为气温负距平, 90年代开始有明显升温。利用GIMMS NDVI和西南4省市96个台站的气温资料进行了相关分析、合成分析以及SVD分析, 得到前期冬季青藏高原植被影响该区夏季气温的滞后关系以及影响较大的区域。结果表明:西南地区夏季平均气温、最高气温对青藏高原冬季植被变化较敏感, 其中青藏高原西部NDVI与西南地区夏季气温的相关强于东部; 青藏高原NDVI异常偏高对应西南地区夏季气温偏高, 其中最高气温升高较明显, 增温最大值出现在7月, 位于西南地区北部; 青藏高原冬季植被变化与西南地区平均气温、最高气温和最低气温的最佳耦合模态中影响程度及关键区域略有差异, 青藏高原冬季NDVI与夏季平均气温关系最密切, 其中青藏高原东北大部分地区和南部 (包括拉萨及林芝东部地区) 的影响最大, 气温对前期青藏高原NDVI变化反应的敏感区主要位于四川盆地及其附近地区。  相似文献   

17.
本文利用1966~1983年雪盖资料分析了亚欧大陆北部及青藏高原地区的雪盖特征及其与我国温度及降雨的关系。分析指出亚欧大陆雪盖的年变化大,但变化趋势平稳;而高原地区的年变化小,但变化多波动。夏季高原雪盖面积占高原总面积的百分比远比业欧大陆的要大(指40°N以上大陆)。冬半年亚欧大陆雪盖变化与我国各地3周内温度变化呈负相关。夏季亚欧大陆北部雪盖大时,我国长江以北(华北除外)降雨偏少,华南偏多;反之亦然。  相似文献   

18.
ENSO与中国东部地区夏季降水相关性年代际变化特征   总被引:2,自引:2,他引:2       下载免费PDF全文
利用国家气候中心提供的中国160站1951~2000年逐月降水资料,Hadley中心提供的1951~2000年逐月全球海表层温度资料,采用线性相关分析和滑动相关分析方法,探讨了ENSO与中国东部地区夏季降水的年际关系及二者年际关系的年代际变化特征。结果表明,夏季Nino3区海温与中国东部夏季降水年际关系同期相关显著,且二者的年际关系存在明显的年代际变化,年际相关型分3个阶段:,第1阶段(1972年前)为“东西型”,第2阶段(1973~1983年)为“南北型”,第3阶段(1984年后)也为“南北型”。  相似文献   

19.
This study is based on the premise that, in the Sahel/Sudanian belt of Africa, the main determinants of interannual variation in vegetation dynamics are rainfall and land cover type. We analyzed the spatio-temporal sensitivity of the NOAA-AVHRR 8 km-resolution vegetation index (NDVI) to (i) annual rainfall variability (0.5° × 0.5° resolution) acquired over a 25-year period (1982-2006); and (ii) land use changes in the different eco-climatic regions of the Bani catchment in Mali (130 000 km2). During the period 1982-2006, there was no clear trend in rainfall over the catchment, whereas there was a strong positive trend in the NDVI, both when the NDVI values were corrected using annual rainfall variability and when they were not. We divided the catchment into three eco-climatic regions based on the relationship between the annual NDVI and rainfall. In each region, we analyzed the observed greening in relation to changes in land use after correcting for the effect of annual rainfall on the NDVI. Results show that there is a mixed level of agreement between the land cover changes at the grid cell scale and the spatial pattern of the NDVI trend. Increased cropping does not explain the increase in the annual NDVI, except in the Sahelian part of the catchment. We hypothesize that the natural vegetation dynamics related to the non-linear rainfall patterns during the 25-year study period were responsible for these results.  相似文献   

20.
The impact of strong (weak) intraseasonal oscillation (ISO) over South China Sea (SCS) and South Asia (SA) in summer on the SCS and SA summer monsoon and the summer rainfall in Eastern China are studied by using the NCEP-NCAR analysis data and the rainfall data of 160 stations in China from 1961 to 2010. It is found that the impacts are significantly different in different months of summer. The study shows that in June and July cyclonic (anticyclonic) atmospheric circulation over SCS and SA corresponds to strong (weak) ISO over SCS. In August, however, strong (weak) ISO over SCS still corresponds to cyclonic (anticyclonic) atmospheric circulation over SA. In June and August cyclonic (anticyclonic) atmospheric circulation over South Asia corresponds to strong (weak) ISO over SA while a strong (weak) ISO corresponds to anticyclonic (cyclonic) atmospheric circulation over SA in July. Besides, in June the strong (weak) ISO over SA corresponds to cyclonic (anticyclonic) atmospheric circulation over SCS, while in July and August the atmospheric circulation is in the same phase regardless of whether the ISO over SA is strong or weak. The impacts of the strong(weak)ISO over SCS on the rainfall of eastern China are similar in June and July, which favors less (more) rainfall in Yangtze-Huaihe Rivers basin but sufficient (deficient) rainfall in the south of Yangtze River. However, the impacts are not so apparent in August. In South Asia, the strong (weak) ISO in July results in less (more) rainfall in the south of Yangtze River but sufficient (deficient) rainfall in Yangtze-Huaihe Rivers basin. The influence on the rainfall in eastern China in June and August is not as significant as in July.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号