首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 109 毫秒
1.
利用联合台风预警中心(Joint Typhoon Warning Center,JTWC)最佳路径资料、逐小时降水资料和ERA5再分析资料,研究2017年5月26—31日孟加拉湾风暴与高原低涡共同影响下青藏高原一次强降水过程,结果表明:风暴和南支槽共同作用下建立的孟加拉湾至青藏高原的水汽输送带为高原低涡-切变线区域的降水提供水汽。南支槽后冷气流在青藏高原南部陡坡下沉形成冷垫,孟加拉湾偏南暖湿气流首先沿冷垫向北抬升,爬上青藏高原后向北在高原切变线附近再次抬升,增加降水区地表至对流层高层大气中的可降水量。风暴偏南风暖湿气流与青藏高原北部干冷空气交汇产生锋生,大气湿斜压性显著增长,湿等熵线密集陡立导致垂直涡度剧烈发展,有利于高原低涡加强。风暴北上过程中其高层反气旋式出流加强青藏高原槽前西南风高空急流,辐散增强有利于低层切变线发展和高原低涡东移,产生大范围强降水。高原低涡切变线与风暴水汽输送的正反馈作用,为降水区提供持续视热源和视水汽汇,有利于青藏高原降水系统的维持和发展。  相似文献   

2.
段旭  张瑾文 《大气科学》2015,39(3):526-534
5月和10~11月是孟加拉湾风暴活动的两个"峰值"期, 风暴对西南水汽输送有重要影响, 本文利用2001~2010年10年的JTWC(Joint Typhoon Warning Centre)风暴资料和NCEP(National Centers for Environmental Prediction)/NCAR(National Center for Atmospheric Research)1°×1°再分析资料, 研究风暴"双峰"期对西南水汽输送的贡献, 结果表明:风暴水汽向北输送最强, 其次是向东输送, 其它方向的输送较弱;在风暴中心区域及西南水汽通道, 各层和整层的 通量均大于气候平均值, 风暴的西南水汽输送特征显著;两个"峰值"期风暴的经向水汽输送比纬向几乎大一倍, 5月"峰值"期孟加拉湾风暴在西南方向的实际水汽输送总量约是10~11月的2倍, 孟加拉湾风暴前"峰值"期(5月)对水汽输送的影响大于后"峰值"期(10~11月), 孟加拉湾风暴是5月西南水汽输送的主要系统之一。  相似文献   

3.
对照常规天气图实况资料,检验几种常用NWP产品对2008年7月5日山东一次强降水过程的形势场预报和降水预报,并对其物理量场进行诊断分析.结果表明,暴雨落区与诸多物理量场的配置紧密相关;暴雨区出现在低层水汽辐合中心移动路径上,位于与水汽通量散度强辐合中心和强上升运动中心接近处;暴雨区移动方向与水汽通量大值中心、△θse(500-850)负值中心长轴方向一致,水汽通量散度低层辐合、高层辐散两者均满足时有利于强降水发生;200 hPa高空辐散的抽吸作用远比仅有低层辐合更有利于上升运动发展;地面强降水区出现在200 hPa强辐散中心所在处.  相似文献   

4.
利用常规气象观测资料、自动站资料和数值预报,对黄南2018年7月20日中到大雨过程从天气形势、物理量场、数值预报等方面进行分析。结果表明:大降水的影响系统是新疆分裂短波槽东移与南支切变共同作用,地面冷锋及中尺度副合线触发强降水。在大降水发生前,大降水区均处于高能区中,能量锋区基本上位于青海的东部,中低空层结不稳定,从低层到高层青海中东部整层为上升运动,最强上升速度在500hPa~400hPa之间;从各指数来看在强降水发生前不稳定指数增大;水汽源地孟加拉湾海域,沿副热带高压外围西南气流输送到大降水区,且配合中低层水汽通量辐合,高层辐散,为大降水区提供较强的水汽供应及水汽辐合,青海东至东南部q≥12g/kg。数值降水模式预报中,降水时段和降水落区与实况较吻合,但量级误差大,尤其对单站的短时强降水造成的大雨预报效果更差,需结合当地气象条件加以订正。  相似文献   

5.
通过分析4月29日至30日红河州地区大-暴雨过程整个大气的环流特征,水汽条件(水汽输送、水汽辐合)和动力条件(涡度、散度、上升运动),孟加拉湾风暴移向,副热带高压位置的变化等等形势,均与此次强降水过程有相应的关系,诊断分析此次过程为今后预报提供参考信息。  相似文献   

6.
利用1979-2013年美国关岛联合台风警报中心(JTWC)孟加拉湾热带气旋数据以及美国国家环境预报中心和美国国家大气研究中心(NCEP/NCAR)发布的2.5°×2.5°再分析资料、0.5°×0.5°降水格点资料,分析了35年初夏(5月)17个北上孟加拉湾风暴活动期间青藏高原及其周边地区降水、大气环流、水汽和热量收支及其气候异常特征,探讨孟加拉湾风暴活动对青藏高原大气环流的可能影响。结果表明:初夏孟加拉湾风暴活动期间,我国降水主要分布在青藏高原南侧、西南和华南地区,并相对于初夏气候平均表现为正异常。风暴北上过程伴随南亚高压北上,南支槽加深,青藏高原切变系统活跃等环流特征。与初夏平均相比,青藏高原东南部大气上升运动异常增强。同时受北上孟加拉湾风暴水汽和热量输送影响,该区域视热源和视水汽汇呈正异常区,而风暴影响下垂直运动增强是其热量和水汽收支异常的主要原因。  相似文献   

7.
利用NCEP再分析资料、地面加密降水资料和风云-2卫星红外云图,对2004年云南初夏的一次强降水过程的大尺度环流背景、中尺度系统和水汽输送特征及来源情况进行了较为详尽的分析研究。结果表明:(1) 高低空环流的有利配置、印缅槽与东亚冷槽的相互作用,为此次云南地区暴雨的产生提供了有利条件;(2) 暴雨至少与四个连续生消的对流云团活动直接相关,强降水落区与云南的地形特征相关不大,只与低层辐合线有很好的一致性,而辐合线的发展演变与冷暖空气的势力对比相关;(3) 对降水区三维结构的分析表明,中尺度对流系统强烈发展区的低层为强辐合、正相对涡度,高层为辐散、负相对涡度;中低层有较强的上升运动,低层湿度较大、有不稳定能量的蓄积和释放;(4) 对云南水汽输送分析表明,直接影响此次云南强降水的水汽输送主要来源于孟加拉湾,并且引起此次云南强降水的水汽辐合是由风场辐合引起的,而水汽平流在这一地区为弱的干平流;同时,在较强的西南气流下,水汽辐合可存在于较高的气压层。   相似文献   

8.
2001年5月云南除东北部的昭通地区外,先后出现了1949年以来罕见的大雨、暴雨和连阴雨天气过程,其中以5月30日1200 UTC~6月2日1200 UTC的暴雨过程最强.本文采用常规资料、加密的降水和卫星资料对其进行了分析.结果表明,此次强降水过程是在有利的环流背景下,由中尺度系统造成的.云南有着特殊的地理位置和气候条件,其降水过程与我国的东部及华南沿海大不相同,主要结果如下:1)印缅槽与东亚冷槽的相互作用,有利于西南地区暴雨的发生.2)低空急流的产生和加强与暴雨之间存在一定的关系,它不但为暴雨提供了丰富的水汽,还有可能造成位势不稳定层结,且急流上扰动可诱使对流不稳定发展,致使强降水的发生.3)在有利的大尺度背景下产生的近地层中尺度辐合线以及它们之间的相互作用是产生此次强降水的重要系统,这类辐合线与我国东部的降水系统有很大的不同,与云南的地形特点密切相关.4)云南及其周边的特殊地形为此次强降水的产生提供了帮助.雨团大部分在原地生消,移动较少,形成了两个少动的雨强中心,中尺度对流云团的产生和发展与中尺度辐合线相交区关系密切.5)对降水区三维结构的分析表明,中尺度对流系统强烈发展区的低层为强辐合、正相对涡度,高层为强辐散、负相对涡度;存在整体的上升气柱,并在其左右两侧为下沉气流,且此气柱是高湿、低层存在对流性不稳定.6)对水汽来源和收支分析表明,这次云南强降水的水汽可能主要来自于孟加拉湾.  相似文献   

9.
利用常规观测资料、NCEP再分析资料、地形数据等,对2019年7月7—13日青藏高原东南侧滇西北地区持续性强降水天气过程进行综合分析。结果表明:西太平洋副热带高压控制中南半岛,伊朗高压稳定在印度西部附近,中高纬冷空气不断渗透南下,使印度东部低值系统长时间存在,其前部西南气流与副高西侧偏南气流汇合后持续影响滇西北,有利于孟加拉湾水汽向滇西北输送。强降水期间滇西北地区低层水汽通量散度呈负值,水汽辐合较强。整层大气低层辐合—高层辐散,上升运动强烈,抽吸作用明显;中低层大气高能高湿,处于对流不稳定状态。滇西北处于喇叭地形底部,两侧高大地形有利于引导水汽在滇西北汇聚,为持续强降水提供充足水汽;怒江州处于迎风坡,地形强迫抬升增强降水,使得怒江州降水量大于迪庆州和丽江市。  相似文献   

10.
本文利用常规地面及高空观测资料、加密自动站资料及多普勒雷达资料等,从环境条件及雷达特征等方面对2019年鸡西市一次极端短时强降水天气进行分析,结果表明:强降水发生在宽广且深厚的西风槽稳定维持背景下,降水区中层有冷空气入侵,低层位于槽前暖湿气流中,一致的西南风输送水汽至降水区。850 hPa槽线是本次对流天气的触发系统,上冷下暖及午后地面温度迅速升高造成热力不稳定,另外,低层绝对水汽含量较高是本次短时暴雨发生的重要条件。从雷达产品上看,麻山区的降水是由多单体风暴形成的,其中包含有超级单体风暴,单体依次经过降水区,强对流过程持续3 h,一定的"列车效应"使其出现了短时暴雨天气。  相似文献   

11.
冬半年副热带西风南支槽结构和演变特征研究   总被引:11,自引:3,他引:8  
索渺清  丁一汇 《大气科学》2009,33(3):425-442
南支槽是冬半年副热带南支西风气流在高原南侧孟加拉湾地区产生的半永久性低压槽, 本文从气候学角度探讨其结构和演变特征。结果表明: (1) 南支槽10月在孟加拉湾北部建立, 冬季 (11~2月) 加强, 春季 (3~5月) 活跃, 6月消失并转换为孟加拉湾槽; 10月南支槽建立表明北半球大气环流由夏季型转变成冬季型, 6月南支槽消失同时孟加拉湾槽建立是南亚夏季风爆发的重要标志之一。 (2) 南支槽在700 hPa表现明显, 其槽前干暖平流的输送有利于昆明准静止锋形成和维持, 槽后冷湿平流也与孟加拉湾冷涌关系密切。 (3) 冬季辐散环流下沉支抑制了南支槽前上升运动的发展, 这时低层辐合, 中层辐散, 南支槽前上升运动一般只伸展到对流层中层600 hPa左右。春季随着辐散环流减弱, 东亚急流入口区南侧辐散中心的出现使得垂直运动向上迅速伸展。 (4) 从气候平均看冬季水汽输送较弱, 上升运动浅薄, 无强对流活动, 南支槽前降水不明显, 雨区主要位于高原东南侧昆明准静止锋至华南一带。春季南支槽水汽输送增大, 同时副高外围暖湿水汽输送加强, 上升运动发展和对流增强, 南支槽造成的降水显著增加, 因此春季是南支槽最活跃的时期。  相似文献   

12.
本文利用NCEP高空再分析和地面自动站观测资料,针对2013年7月7日20时~11日20时四川地区一次特大暴雨过程,分析了其各层的环流形势、低层的水汽通量、水汽通量散度,各层的涡度场、散度场、垂直运动,以及西南涡影响下降水的发生发展机制。得到:这次暴雨过程,850h Pa上的水汽主要来自孟加拉湾,从西南方向向四川地区输送,同时配合低层辐合高层辐散的结构和持续上升运动,以及对流不稳定层结的形成,降水极易发生,而西南涡的稳定少动、南北转动等异常活动是这次持续性强降水的主要成因。一方面,500h Pa高原槽不断东移和西北方向源源不断的冷空气补充,另一方面,东边西天平洋副热带高压的阻挡作用,使西南涡不断发展但局限于源地周边活动,难以东移出川,因此,带来了川西高原边缘与四川盆地西部地区的持续性强降水天气。  相似文献   

13.
李向红  黄嘉宏 《气象科技》2006,34(2):151-156
分析1980~2002年主汛期(5~7月)广西锋面型大范围暴雨期间孟加拉湾对流云团演变及与之相应高低空环流变化,结果表明:孟加拉湾强对流在广西暴雨发生前3天发展最为旺盛,受孟加拉湾低槽引导,对流云团爬上中南半岛进入广西,当其与高原东移的云团相结合时再次发展,造成广西大范围暴雨。分析200 hPa高度场和流场结果表明:当广西暴雨发生时,孟加拉湾、中南半岛及广西受200 hPa南亚高压控制。分析850 hPa水汽通量矢量场结果表明:广西锋面型暴雨发生时,从孟加拉湾到广西上空有一西南气流的水汽输送带,广西暴雨水汽主要来源于孟加拉湾。  相似文献   

14.
孟加拉湾对流对广西秋季暴雨影响分析   总被引:2,自引:2,他引:2  
利用综合观测数据1 °×1 °FNL和2.5 °×2.5 °NCEP再分析资料、以及卫星云顶黑体辐射温度资料(TBB),对2015年11月广西出现的三次暴雨过程(8日、11—12日和20日)的850 hPa水汽通量散度及水汽输送特征进行了对比分析。8日和20日暴雨的低层水汽主要来自南海,11—12日连续暴雨的水汽来自南海和孟加拉湾。暴雨前后TBB的分析表明,在暴雨发生前2~3 d,孟加拉湾对流发展到最强,孟加拉湾对流对广西秋季暴雨具有前兆信号特征。暴雨前后TBB时空剖面表明,暴雨发生前孟加拉湾对流有向广西波动传播的特征。模式敏感性实验显示,当关闭孟加拉湾对流2~3 d后,广西48 h累计雨量减小。   相似文献   

15.
南支槽与孟加拉湾风暴结合对一次高原暴雪过程的影响   总被引:5,自引:2,他引:3  
索渺清  丁一汇 《气象》2014,40(9):1033-1047
利用NCEP/NcAR逐6 h 1°×1°。再分析资料与常规和非常规观测资料,对2007年11月云南德钦高原暴雪产生的原因进行了研究,探讨南支槽与孟加拉湾风暴结合对高原东南部强烈天气的影响过程。结果表明:(1)在南支槽和孟加拉湾风暴结合的天气尺度条件下,槽前偏南风低空急流受高原大地形阻挡产生的高原切变线是高原暴雪的直接影响系统;(2)由于地形和冷空气的作用,上升运动向北倾斜使高原对流层中上层首先出现上升运动,整层上升运动在高原切变线和次级环流上升支的共同作用下强烈发展。孟加拉湾风暴北上与南支槽结合、高原切变线北移和风暴低压临近使德钦上升运动出现三次增强;(3)南支槽前偏南风低空急流向北输送水汽,部分水汽被抬升到高空,部分水汽绕过高原东南角向下游输送。高空水汽经高原上空沿着高空西风急流向下游远距离输送。高、低空水汽通道不重合往往会影响高原及其下游强降水落区的预报。受高空水汽输送影响,高原东南部纵向岭谷区具有高层大气最先增湿的特征,近地层水汽通量长时间强烈辐合有利于高原暴雪的形成;(4)上游冷空气沿南支西风到达孟加拉湾,促使南支槽加深和维持有利于引导盂加拉湾风暴北上,南支槽前偏南风低空急流把暖湿空气输送上高原,同时横槽转竖冷空气从高原南下,冷暖空气在德钦交汇形成强锋区也是暴雪产生的一个有利条件。(5)高原暴雪的锋区结构具有中纬度锋面天气特征,在暴雪发生的锋区附近,满足倾斜位涡发展和条件性对称不稳定。  相似文献   

16.
2001年5月云南除东北部的昭通地区外,先后出现了1949年以来罕见的大雨、暴雨和连阴雨天气过程,其中以5月30日1200 UTC~6月2日1200 UTC的暴雨过程最强。本文采用常规资料、加密的降水和卫星资料对其进行了分析。结果表明,此次强降水过程是在有利的环流背景下,由中尺度系统造成的。云南有着特殊的地理位置和气候条件,其降水过程与我国的东部及华南沿海大不相同,主要结果如下:1)印缅槽与东亚冷槽的相互作用,有利于西南地区暴雨的发生。2)低空急流的产生和加强与暴雨之间存在一定的关系,它不但为暴雨提供了丰富的水汽,还有可能造成位势不稳定层结,且急流上扰动可诱使对流不稳定发展,致使强降水的发生。3)在有利的大尺度背景下产生的近地层中尺度辐合线以及它们之间的相互作用是产生此次强降水的重要系统,这类辐合线与我国东部的降水系统有很大的不同,与云南的地形特点密切相关。4)云南及其周边的特殊地形为此次强降水的产生提供了帮助。雨团大部分在原地生消,移动较少,形成了两个少动的雨强中心,中尺度对流云团的产生和发展与中尺度辐合线相交区关系密切。5)对降水区三维结构的分析表明,中尺度对流系统强烈发展区的低层为强辐合、正相对涡度,高层为强辐散、负相对涡度;存在整体的上升气柱,并在其左右两侧为下沉气流,且此气柱是高湿、低层存在对流性不稳定。6)对水汽来源和收支分析表明,这次云南强降水的水汽可能主要来自于孟加拉湾。  相似文献   

17.
In this paper,NCEP reanalysis data,intensive observation data collected from field experiment,model simulation data,and topographic trial data are fully analyzed to study a severe heavy rainfall event during 5 6 June 2008 in South China.Unlike most warm region rainfall cases,this one is associated with an obvious vortex system,which draws in water vapor and energy from the southwest monsoon surges ahead of a low trough above the Bengal Bay (BLT,Bengal Low Trough).At the lower troposphere,three currents,especially the southwest current and the east current,converge into the southeast of the vortex.Thus,the distributions of strong vorticity,water vapor,and ascending motion cause frequently occurrence and growth of convection there.The possible reasons for this rainfall event are summarized as a conceptual model.  相似文献   

18.
This study investigates influencing weather systems for and the effect of Tibetan Plateau (TP)’s surface heating on the heavy rainfall over southern China in June 2010, focusing on the four persistent heavy rainfall events during 14-24 June 2010. The ma jor weather systems include the South Asian high, midlatitude trough and ridge, western Pacific subtropical high in the middle troposphere, and shear lines and eastward-moving vortices in the lower troposphere. An ensemble of convection-permitting simulations (CTL) is carried out with the WRF model for these rainfall events, which successfully reproduce the observed evolution of precipitation and weather systems. Another ensemble of simulations (SEN) with the surface albedo over the TP and its southern slope changed artificially to one, i.e., the surface does not absorb any solar heating, otherwise it is identical to CTL, is also performed. Comparison between CTL and SEN suggests that the surface sensible heating of TP in CTL significantly affects the temperature distributions over the plateau and its surroundings, and the thermal wind adjustment consequently changes atmospheric circulations and properties of the synoptic systems, leading to intensified precipitation over southern China. Specifically, at 200 hPa, anticyclonic and cyclonic anomalies form over the western and eastern plateau, respectively, which enhances the southward cold air intrusion along the eastern TP and the divergence over southern China;at 500 hPa, the ridge over the northern plateau and the trough over eastern China are strengthened, the southwesterly flows along the northwestern side of the subtropical high are intensified, and the positive vorticity propagation from the plateau to its downstream is also enhanced significantly;at 850 hPa, the low-pressure vortices strongly develop and move eastward while the southwesterly low-level jet over southern China strengthens in CTL, leading to increased water vapor convergence and upward motion over the precipitation region.  相似文献   

19.
利用常规资料、NCEP FNL分析资料和HYSPLIT模式,对2008—2017年川西高原持续性暴雨过程的时空分布、环流分型、水汽源地和输送路径进行分析。结果表明:①2008—2017年川西高原单站持续性暴雨的总频次为337次,在21次区域持续性暴雨中,位于高原与盆地过渡区的泸定、康定、汶川出现持续性暴雨次数最多;②7月发生频率最高,持续时间多为3~4天;③将影响川西高原暴雨的环流分型为两槽一脊型、一脊一槽型、西风槽型和偏西气流型,其中孟加拉湾气旋影响有16例,6—7月个例都有孟加拉湾气旋的存在;④川西高原上空气团主要通过4条路径进入,源自北大西洋、地中海和伊朗中北部的西北路径占比29%,源自里海到咸海之间地区的东北路径占比17%,源自热带印度洋洋面的西南和东南路径各占比43%和11%,偏北路径的空气质点起始高度比偏南路径的高,相应的温度和水汽含量也偏低;⑤将水汽输送分为"S"型、偏西气流型和偏南气流型3个类型。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号