首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
地形的动力作用与冷锋锋生研究   总被引:5,自引:1,他引:5       下载免费PDF全文
肖庆农  伍荣生  张颖 《大气科学》1997,21(3):289-296
本文建立了一个考虑天气尺度水平变形场的二维、滞弹性、非静力平衡锋生模式,对冷锋过山时的锋生锋消机制进行了数值研究,试验结果表明:当无地形影响时,由于变形场的锋生作用与摩擦等因子的锋消作用相互抵消,冷锋最终达到其强度的准定常状态;当考虑地形影响时,地形强迫环流与锋面环流相互作用,使得锋面强度在山前和山后发生变化,在冷锋开始爬坡时锋生,爬过半山腰后开始锋消,过山顶后锋面强度变化不明显或者有微弱锋生,到达山脚后开始强烈锋生,并在地形下游其强度达到最大;总之,冷锋在翻越山脉或从高原移到平原之后,锋面发展的强度比冷锋不遇到地形时的更大。  相似文献   

2.
对称和非对称地形对冷锋锋生过程的影响   总被引:1,自引:0,他引:1  
农尚尧  吕克利 《大气科学》1994,18(Z1):879-888
本文利用半地转模式研究了对称和非对称地形以及双地形对冷锋锋生过程的影响。计算结果显示,地形坡度愈大,越容易产生背风气旋,并且其强度也愈大;背风气旋的强度主要由背风坡坡度决定。山对锋面垂直速度的增幅作用随地形坡度增大而增大,地形坡度越大.出现多次极大上升速度的可能性也越大。冷锋过双地形时,其锋面强度有两次减弱和加强的过程,上升速度得到明显加强,并有可能在锋前产生多条中尺度上升运动带,在合适的水汽条件下,冷锋过双地形有可能产生多重中尺度雨带,其间隔与锋面本身的尺度相当。  相似文献   

3.
In order to study the characteristics of cold frontal motion over the arbitrary topography, the velocity of cold frontal movement is derived by using the one layer shallow-water model. The results show that there exist the retardation in upwind side and rapid descent in the lee slope when the cold front crosses the topography.  相似文献   

4.
Summary A three-layer version of Davies' (1984) model is used to investigate orographic impact on fronts. Uniform potential vorticity is assumed for each layer. The uppermost layer represents the flow ahead and above a frontal zone approaching a mountain. The frontal zone is represented by the second layer and the cold air behind it by the third layer of the model. The upper layer induces weak frontogenesis when the frontal zone is moving towards the mountain. However, rapid frontogenesis sets in when the zone's leading edge is climbing up the slope while part of the frontal zone is still in the plain. When, finally, the whole frontal zone is moving up the slope, the flow evolution strongly depends on the structure of the frontal zone: frontolysis as well as frontogenesis can occur.With 5 Figures  相似文献   

5.
Observations have been made of the ice-crystal morphology of snow which fell at two sampling sites during a warm front followed by a cold front in the Sierra Nevada of the western United States. The snow sampling and ice crystal observations were conducted at Kingvale (KV) and Hobart Mills (HM), California, which are located at almost identical elevations on the upwind and down wind sides of the Sierra Nevada crest, respectively.These observations and several mesoscale features of one of the storms, have been used to study the substantial changes which occurred in the stable oxygen isotopic composition (δ18O) of the precipitation at the two sites.At the beginning of the period of observation, a low level warm front lay across the region and its elevation lowered with time from 2.5 km to 1.7 km. This decrease of the frontal surface height was accompanied by a steady increase in the δ18O values.In the pre-cold frontal passage time periods, the δ18O values at the upwind site signified warmer origin ice crystal morphology than the downwind site. This is explained by orographic effects and the production of supercooled liquid water at low elevations on the upslope side of the Sierra Nevada.During the passage of the surface cold front, the differences in δ18O at the two sites were quite small probably because the orography plays a less significant role in the precipitation production process during such events.The δ18O peaked around −13% which translates to an “equivalent temperature” of −10.7°C for ice phase water capture at the upwind site KV. At site HM downwind of the Sierra crest, and 25 km east of KV, the weighted mean ice phase water capture occurred at elevations some 5 to 6°C colder than at KV, because of subsidence and loss of supercooled liquid water in the lower elevations on the lee side.  相似文献   

6.
谈哲敏  伍荣生 《气象学报》2000,58(2):137-150
文中利用一个包含地形、边界层摩擦作用的二层锋面简化模型 ,讨论了地形、边界层对冷锋锋面结构、环流的动力学影响作用问题。冷锋的倾斜主要与冷锋暖区的地转流分布、锋面移动速度、锋面与地形的相对位置有关。当冷锋位于迎风坡时 ,其坡度减小 ,位于背风坡时 ,其坡度增大。在静止冷锋存在两类不同的环流系 ,即位于大气低层、地面锋附近的反时针环流系和远离地面锋的顺时针环流系。静止冷锋位于背风坡 ,其冷域中的这支闭合环流增强 ,范围增大 ,而位于冷锋界面上的环流转向点沿锋面上移 ,暖域中沿锋面的暖空气运动范围变大。当静止冷锋位于迎风坡时 ,结果相反。冷锋移动较慢时 ,其冷域远离地面锋的这支顺时针环流主体可被地形完全阻塞在迎风坡。当静止冷锋移离地形时 ,由于地形作用可在锋面暖域、地形下游形成一个背风槽。地形对锋区的垂直运动影响主要通过地形与边界层共同作用 ,改变锋区流场辐合辐散的分布及地形强迫抬升两条途径实现。由于边界层摩擦的辐合作用 ,在地面冷锋的前缘可形成一支范围较窄、强度较大的上升运动带 ,当冷锋位于迎风坡时 ,其强度增强 ,当冷锋位于背风坡时 ,其强度减弱。当冷锋位于背风坡时 ,在暖区沿锋面上升的暖空气运动范围增大 ,可以出现沿锋面相间隔的多个上升区  相似文献   

7.
地形对于气流运动影响的数值研究   总被引:7,自引:3,他引:7  
建立了二维、非静力平衡的数值模式,研究地形对上游气流的阻挡以及大振幅背风波谷与下坡风的形成。结果表明:地形的阻挡效应受地形高度、大气层结及地形非对称性等因子的影响。数值试验与理论分析都证明地形越高、层结越稳定时阻挡作用越强;同样条件下,迎风坡坡度大的地形容易对气流形成阻挡。此外,分析了地形高度、大气层结、地形非对称性以及基本入流大小对背风波谷及下坡风强度影响的规律,并通过一次实际观测对数值模拟结果进行了检验。  相似文献   

8.
Summary  A semi-geostrophic model of frontal passage over topography was developed to examine the effects of the interaction of a well developed front with an isolated mountain, and the subsequent orographically induced flow evolution. The analytic representation of the primary wave and its frontal structure gives us the ability to control the environmental and geometrical constraints and perform an exploration of parameter space. A number of problems appearing because of this approach are discussed. The results shown relate the characteristics of the orographic perturbation to varying amplitude of the primary wave and varying frontal intensity, but suggest that the representation of flow blocking by the mountain,which this model lacks, is crucial for the representation of frontal intensification in the lee of orography. Received March 2, 1999/Revised May 7, 1999  相似文献   

9.
新疆克拉玛依强下坡风暴的机理研究   总被引:1,自引:0,他引:1  
卢冰  史永强  王光辉  岳斌 《气象学报》2014,72(6):1218-1230
利用美国中尺度数值模式 WRF 对2013年3月7—8日克拉玛依强风进行了模拟,对下坡风发生、发展和结束3个阶段的三维结构特征进行了分析,并由此提出克拉玛依强下坡风的形成机制模型:上游地区出现中高层西南风、低层西北风并伴有强冷平流的配置,当风速不断增大时,气流能够翻越加依尔山在背风坡侧形成重力波,重力波相位向气流上游方向倾斜产生非线性效应,促进了波不稳定区域的形成并导致波破碎,形成湍流活跃层,不断把上层的能量向下传播;克拉玛依中低层形成三层夹心的大气层结稳定度分布,出现明显的过渡气流带从而导致强下坡风的形成;南北风分量在低层和中层符号相反,形成了临界层,不断吸收上层波能量并向地面传送,强下坡风暴不断维持发展。最后利用2006—2012年克拉玛依33个强下坡风过程中的探空观测资料对提出的形成机制进行了验证。  相似文献   

10.
吕克利  农尚尧 《大气科学》1995,19(2):183-191
本文利用半地转模式,讨论了双冷锋的锋生过程及其越过山脉的演变。结果显示,在变形场作用下,双冷锋在移行过程中会发生上层锋合并的现象。在锋生过程中,下层前一条冷锋加强远大于后一条,在上层则是后一条冷锋的加强远大于前一条。地形对双冷锋有重大影响,山的迎风坡对冷锋移行有阻挡作用,并削弱锋的强度,背风坡则加速锋的移行,并加强锋的强度。山对双冷锋的上层锋的合并有促进作用,并造成近地面锋区呈现鼻状突出;地形促使锋区垂直速度大大增大,并导致其产生跳跃式变化;地形对锋的影响限于下层锋区。  相似文献   

11.
谈哲敏  伍荣生 《气象学报》2000,58(2):137-150
文中利用一个包含地形、边界层摩擦作用的二层锋面简化模型,讨论了地形、边界层对冷锋锋面结构、环流的动力学影响作用问题.冷锋的倾斜主要与冷锋暖区的地转流分布、锋面移动速度、锋面与地形的相对位置有关.当冷锋位于迎风坡时,其坡度减小,位于背风坡时,其坡度增大.在静止冷锋存在两类不同的环流系,即位于大气低层、地面锋附近的反时针环流系和远离地面锋的顺时针环流系.静止冷锋位于背风坡,其冷域中的这支闭合环流增强,范围增大,而位于冷锋界面上的环流转向点沿锋面上移,暖域中沿锋面的暖空气运动范围变大.当静止冷锋位于迎风坡时,结果相反.冷锋移动较慢时,其冷域远离地面锋的这支顺时针环流主体可被地形完全阻塞在迎风坡.当静止冷锋移离地形时,由于地形作用可在锋面暖域、地形下游形成一个背风槽.地形对锋区的垂直运动影响主要通过地形与边界层共同作用,改变锋区流场辐合辐散的分布及地形强迫抬升两条途径实现.由于边界层摩擦的辐合作用,在地面冷锋的前缘可形成一支范围较窄、强度较大的上升运动带,当冷锋位于迎风坡时,其强度增强,当冷锋位于背风坡时,其强度减弱.当冷锋位于背风坡时,在暖区沿锋面上升的暖空气运动范围增大,可以出现沿锋面相间隔的多个上升区.  相似文献   

12.
贺兰山东麓极端暴雨的中尺度特征   总被引:1,自引:0,他引:1  
利用近10年宁夏逐时自动气象站降水、银川CD雷达、FY-2、探空和ECMWF再分析0.125°×0.125°等高分辨率多源气象资料,在中尺度系统分型基础上,对比分析贺兰山东麓6次极端暴雨的中尺度特征。结果表明:(1)低空偏(东)南急流夜间增强并配合贺兰山地形,在东坡山前触发或增强了暴雨中小尺度系统,造成地形处降水增幅,极端暴雨都是伴有短时强降水的对流性暴雨,主要集中在东坡山前,中心在山洪沟口,夜雨特征显著。(2)环境场都满足对流性暴雨的3个基本条件:700 hPa(东)南急流将暖湿水汽输向暴雨区,低层高温高湿促进了大气不稳定与动力、热力、地形抬升触发机制;深对流过程850 hPa无明显急流,水汽主要来自孟加拉湾,水汽输送受限,但大气稳定度更低,更有利于对流性暴雨发生,混合对流过程850 hPa与700 hPa急流路径重合,水汽来自孟加拉湾、南海、黄海和渤海,水汽输送更充沛,更有利于持续性暴雨产生。(3)极端暴雨主要有暖区对流降水、锋面对流降水、锋区层状云降水3种性质;暖区对流主要在山区,地形抬升是触发机制,锋面对流的触发是低层暖湿气流沿着冷垫抬(爬)升,平原和山区皆有;对流系统的移动与低层风场一致,山区和平原分别沿山体和低空急流轴传播,通常移动与传播方向平行,山区低层为偏东风时,移动与传播近似垂直,列车效应明显。(4)线型对流系统过程冷空气弱,以暖区或(和)锋面对流性降水为主,对流系统在山前沿山体传播形成组织化程度高的带状线型回波,移动与传播有平行有垂直,受地形抬升作用,对流系统在山前稳定少动、发展强盛,降水历时短、范围小、雨强大、有间歇性,3~4 h的累计雨量占过程总量的85%左右,区域平均雨量远小于暴雨量级,地形性强对流暴雨特征凸显。(5)非线型对流系统过程冷空气强,以锋面对流性降水和锋区层状云降水为主,对流系统在山前和平原沿山体和急流轴传播和移动形成非线型回波,平原地区传播与移动平行,山区两者垂直,对流系统组织化程度不高、移速快、强度弱,降水历时长、范围大、雨强小,连续降水累计雨量大,区域平均雨量接近或达到暴雨量级,混合性降水特征明显。(6)降水强度R与CAPE增幅、回波强度Z、强回波持续时间、回波顶高、液态水含量呈正相关,与TBB呈负相关,相关性在深对流过程更清晰;Z≥40 dBZ时,Z-R满足关系式:R=3.67×10-8Z5.222+4.835。  相似文献   

13.
0513号台风泰利异常强暴雨过程的综合分析   总被引:21,自引:2,他引:21  
何立富  梁生俊  毛卫星  陈涛 《气象》2006,32(4):84-90
利用地面加密观测资料和NCEP再分析资料,对0513号台风泰利进入江西减弱成低气压引发的异常强暴雨过程进行了综合分析。结果表明:移进赣西北后,台风泰利减弱的低气压北部有明显的冷空气侵入,导致行星边界层能量锋区加强;华西地区大陆高压阻挡了台风低压西移,其北侧弱环境流场的配置为台风低压长时间停滞提供了有利的背景条件;低层稳定的水汽输送、中纬度冷锋前部的东北气流与来自低纬海洋上的东南气流在台风低压附近形成明显辐合有利于强暴雨过程的发展;异常强暴雨主要分布在大别山东麓和庐山九岭山脉迎风坡上,地形的抬升对暴雨增幅有明显作用。  相似文献   

14.
Summary The development of a cold front influenced by orography and large scale forcing is examined with a two-dimensional meso-scale model. The model is based on the primitive equations and uses the hydrostatic and anelastic approximations. Gradients of the basic flow and temperature field in the third dimension are taken into account during the simulations. Low diffusive numerical schemes and radiation boundary conditions reduce the numerical errors to an acceptable minimum for a two day simulation and avoid reflections at the upper and lateral boundaries. Frontogenetical forcing is included in the simulations by specifying either a vertically sheared or horizontally convergent basic zonal flow field. Model runs with an idealized cold front were carried out over flat terrain and in the presence of a bell shaped mountain ridge.The simulations show a weakening of the cold front on the windward side of the mountain ridge and a strong reintensification on the leeward side relative to the control runs without topography. Analysis of frontogenesis terms demonstrates the importance of convergence in the ageostrophic circulation and of along-front temperature advection for the development of the cold front. The strong intensification of the cold front on the leeward side of the mountain ridge can only partly be explained by superposition with the mountain induced wave. It is mainly caused by ageostrophic deformation forcing in the strong downward flow of this wave.The results also show that the cold front passage over the mountain ridge is not a continuous process. The formation of a new frontal structure on the leeward side of the mountain ridge, well separated from the primary one, is observed while the initial cold front still exists in the upslope region. Generally nonlinear interactions between the mountain wave and the cold front are the important mechanisms to explain these phenomena.With 18 Figures  相似文献   

15.
Summary A two-dimensional nonhydrostatic numerical model was used to investigate the behaviour of a cold air gravity current, moving along complex terrain. It is found, that the model with a high horizontal and vertical resolution and with a closure scheme, using the turbulent kinetic energy, is suitable to simulate currents, which have the main features of those found in laboratory experiments.Simulations are presented for different orographic structures (mountain and valley), for varying thermal stratification of the environmental atmosphere (neutral, stable and stable with an elevated inversion) and for different heights of the cold air reservoir.The major effect of a hill on the advance of a gravity current is a reduction of the front speed upstream as well as (even stronger) downstream of the obstacle, where the amount of this decrease depends on thermal stratification. Near surface blocking of the air flow on the windward side occurs for all simulations. However, for small depths of the oncoming cold air, the current cannot surmount the hill and remains on the lee side.With 11 Figures  相似文献   

16.
Summary The Southerly Change Experiment (SOUCHEX) was conducted to examine the influence of the New Zealand Southern Alps on the structure and evolution of cold fronts, locally called southerly changes, as they travel up the east coast. The extensive data obtained by the augmented surface weather station network is used to examine in detail the mesoscale wind field associated with the events observed during the experiment. A comparison of the wind fields observed during the different events illustrates the influence of local dynamic and thermal factors. In particular, lee trough-induced northeasterlies and thermally developed diurnal wind systems are seen to interact with the wind field created by the passage of the front over the Southern Alps.It is apparent that the wind field associated with southerly changes responds to a variety of factors as the cold fronts propagate northwards. For example, there is a tendency for the flow to turn onshore producing a southeast wind during daytime over the Canterbury Plains south of Banks Peninsula probably due to diabatic heating of the mountains and plains. This onshore flow is in direct opposition to pre-frontal foehn northwesterly flow which often continues in the mountain regions and aloft after the front has moved up the coast. The interaction of these air masses over Canterbury creates difficulties for local forecasting. Also, the nocturnal passage of a southerly change is often difficult to detect in surface anemograph traces because of the decoupling of the boundary layer air from that above, producing low level drainage flow over the Canterbury Plains. The overall effect is to create a complex mesoscale wind field resulting from interaction of cold fronts with regional orographic and thermal influences.With 8 Figures  相似文献   

17.
近10年中国地区地形对降水影响研究进展   总被引:2,自引:0,他引:2  
地形是影响降水的重要因子,其复杂性为研究降水的分布、强度等增加了难度,全面透彻地理解地形对降水的影响机制,有助于预警预报水平的提高。因此,地形对降水的影响研究受到广大气象学者的关注。本文通过回顾近10年来中国地区有关地形对降水的影响研究进展,简要概述了地形动、热力效应与云微物理过程对降水的影响机制,以数值模拟研究为主线,系统分析了中国各个地区关于地形作用的研究成果,重点讨论地形对局地中小尺度降水、锋面降水以及台风降水方面的影响,最后总结了目前的研究现状并提出一些需要深入研究的问题。  相似文献   

18.
荣昕  杨军  陈婷  沈浩 《大气科学学报》2015,38(4):518-530
利用WRF中尺度模式,结合FY-2E卫星云图和常规气象资料,对台海地区一次冬季冷锋降水过程进行了数值模拟研究.结果表明:1)微物理方案对台海地区冬季冷锋降水过程的模拟具有敏感性,Milbrandt双参数微物理方案能较好地再现云系层次结构、冰相降水过程及其云系的对流发展,24 h累积降水量模拟结果优于其他微物理方案.2)锋区的降水粒子(雨水、雪晶和霰)混合比大于锋后,锋区雨带集中在地面锋线的中段,锋后雨带偏向冷区的西南段.3)锋区附近云系受低空急流及台湾岛中部高山地形抬升共同作用,在迎风坡形成强降水中心,对应空中霰含量高值区.4)低空高相当位温、强辐合、正涡度和对流性不稳定与高空强辐散和负涡度的配置是本次冷锋云系维持与发展的重要原因.  相似文献   

19.
Summary This paper examines the flow conditions associated with frontal widespread and moderate precipitation over the Lago Maggiore Target Area (LMTA) of the Mesoscale Alpine Programme, and observed during the intensive observation periods (IOPs) 4 (30 September 1999), 8 (21 October), 9 (23 October) and 15 (6 November). The flow organization that led precipitation maxima to occur away from the relief instead of being concentrated on the windward southern slopes of the Alps is investigated from three ground-based Doppler radars.Different aspects of this organization are noted. Post-frontal flow had a primary role in IOPs 4 and 15, and the intensity and vertical extension of the incoming flow modulated the precipitation intensity and duration over the LMTA. In IOPs 4 and 9, westerly-to-northwesterly downslope flow opposed the south–southeasterly moist inflow, but the larger thickness and intensity of the inflow in IOP 9 yielded longer rain duration. Also the occurrence of such downslope flow on the lee side was accompanied by foehn effects. In IOP 15, the southerly inflow was strong enough to rise over a deep and strong northerly downslope post-frontal cold flow (in connection with a deep lee cyclone) which was probably enhanced by melting and evaporation of hydrometeors, and behaved like a severe downslope wind. The IOP 8 event was a case of blocked flow and slow frontal passage, and was accompanied with persistent stratiform precipitation over the LMTA. The blocking was due to the stable character of the east–southeasterly incoming flow which favored flow deflection (barrier flow) along the southeastward-facing slopes of the Alps. It is also found that gravity waves activity during IOPs 8 and 9 modulated the precipitation distribution over the LMTA.  相似文献   

20.
Summary Numerical experiments are performed for inviscid flow past an idealized topography to investigate the formation and development of lee mesolows, mesovortices and mesocyclones. For a nonrotating, low-Froude number flow over a bell-shaped moutain, a pair of mesovortices form on the lee slope move downstream and weaken at later times. The advection speed of the lee vortices is found to be about two-thirds of the basic wind velocity, which is due to the existence of a reversed pressure gradient just upstream of the vortices. The lee vortices do not concur with the upstream stagnation point in time, but rather form at a later time. It is found that a pair of lee vortices form for a flow withFr=0.66, but take a longer time to form than in lower-Froude number flows. Since the lee vortices are formed rather progressively, their formation may be explained by the baroclinically-induced vorticity tilting as the mountain waves become more and more nonlinear.A stationary mesohigh and mesolow pressure couplet forms across the mountain and is produced in both high and low-Froude number flows. The results of the high Froude number simulations agree well with the classical results predicted by linear, hydrostatic mountain wave theory. It is found that the lee mesolow is not necessarily colocated with the lee vortices. The mesolow is formed by the downslope wind associated with the orographically forced gravity waves through adiabatic warming. The earth's rotation acts to strengthen (weaken) the cyclonic (anticyclonic) vortex and shifts the lee mesolow to the right for an observer facing downstream. The cyclonic vortex then develops into a mesocyclone with the addition of planetary vorticity at later times. For a flow over a steeper mountain, the disturbance is stronger even though the Froude number is kept the same.For a southwesterly flow past the real topography of Taiwan, there is no stagnation point or lee vortices formed because the impinging angle of the flow is small. A major mesoscale low forms to the southeast of the Central Mountain Range (CMR), while a mesohigh forms upstream. For a westerly flow past Taiwan, a stagnation point forms upstream of the mountain and a pair of vortices form on the lee and move downstream at later times. The cyclonic vortex then develops into a mesocyclone. A mesolow also forms to the southeast of Taiwan. For a northeasterly flow past Taiwan, the mesolow forms to the northwest of the mountain. Similar to flows over idealized topographies, the Taiwan mesolow is formed by the downslope wind associated with mountain waves through adiabatic warming. A conceptual model of the Taiwan southeast mesolow and mesocyclone is proposed.With 16 Figures  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号