首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate the impact of observed surface heterogeneities during the LITFASS-2003 experiment on the convective boundary layer (CBL). Large-eddy simulations (LES), driven by observed near-surface sensible and latent heat fluxes, were performed for the diurnal cycle and compare well with observations. As in former studies of idealized one- and two-dimensional heterogeneities, secondary circulations developed that are superimposed on the turbulent field and that partly take over the vertical transport of heat and moisture. The secondary circulation patterns vary between local and roll-like structures, depending on the background wind conditions. For higher background wind speeds, the flow feels an effective surface heat-flux pattern that derives from the original pattern by streamwise averaging. This effective pattern generates a roll-like secondary circulation with roll axes along the mean boundary-layer wind direction. Mainly the upstream surface conditions control the secondary circulation pattern, where the fetch increases with increasing background wind speed. Unlike the entrainment flux that appears to be slightly decreased compared to the homogeneously-heated CBL, the vertical flux of sensible heat appears not to be modified in the mixed layer, while the vertical flux of latent heat shows different responses to secondary circulations. The study illustrates that sufficient time averaging and ensemble averaging is required to separate the heterogeneity-induced signals from the raw LES turbulence data. This might be an important reason why experiments over heterogeneous terrain in the past did not give any clear evidence of heterogeneity-induced effects.  相似文献   

2.
蔡旭晖  陈家宜 《大气科学》2000,24(1):95-102
采用大涡模拟所获的数据结果,分析地面热通量沿平均风方向存在 突变的条件下对流边界层的热量平衡和平流输送作用。分析表明边界层内模拟所得结果 可以很好地满足热量平衡关系。除地面热通量项以外,平流项(包括水平平流和垂直平 流)对边界层加热率的作用可达地面热通量不均匀性差值的大小,是影响边界层内热量 平衡的最重要因子,平均速度散度项对热量平衡的作用也不可忽略,但湍流通量散度项 的作用则很小。  相似文献   

3.
We investigated the impact of aerosol heat absorption on convective atmospheric boundary-layer (CBL) dynamics. Numerical experiments using a large-eddy simulation model enabled us to study the changes in the structure of a dry and shearless CBL in depth-equilibrium for different vertical profiles of aerosol heating rates. Our results indicated that aerosol heat absorption decreased the depth of the CBL due to a combination of factors: (i) surface shadowing, reducing the sensible heat flux at the surface and, (ii) the development of a deeper inversion layer, stabilizing the upper CBL depending on the vertical aerosol distribution. Steady-state analytical solutions for CBL depth and potential temperature jump, derived using zero-order mixed-layer theory, agreed well with the large-eddy simulations. An analysis of the entrainment zone heat budget showed that, although the entrainment flux was controlled by the reduction in surface flux, the entrainment zone became deeper and less stably stratified. Therefore, the vertical profile of the aerosol heating rate promoted changes in both the structure and evolution of the CBL. More specifically, when absorbing aerosols were present only at the top of the CBL, we found that stratification at lower levels was the mechanism responsible for a reduction in the vertical velocity and a steeper decay of the turbulent kinetic energy throughout the CBL. The increase in the depth of the inversion layer also modified the potential temperature variance. When aerosols were present we observed that the potential temperature variance became significant already around $0.7z_i$ (where $z_i$ is the CBL height) but less intense at the entrainment zone due to the smoother potential temperature vertical gradient.  相似文献   

4.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer(CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting(WRF)-large eddy simulation(LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy(TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation(SC)/turbulent organized structures(TOS) is the strongest/weakest when soil water content in oases is close to saturation(e.g.,when the oases are irrigated). With the decrease of soil water content in oases(i.e., after irrigation), SC(TOS) becomes weak(strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small(large), which has a dramatic impact on point measurement of eddy covariance(EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio(i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover,we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

5.
Although large-scale topography and land use have been properly considered in weather and climate models, the effect of mesoscale and microscale heterogeneous land use on convective boundary layer (CBL) has not been fully understood yet. In this study, the influence of semi-idealized strip-like patches of oases and deserts, which resemble irrigated land use in Northwest China, on the CBL characteristics, is investigated based on the Weather Research and Forecasting (WRF)-large eddy simulation (LES) driven by observed land surface data. The influences of soil water content in oases on aloft CBL flow structure, stability, turbulent kinetic energy (TKE), and vertical fluxes are carefully examined through a group of sensitivity experiments. The results show that secondary circulation (SC)/turbulent organized structures (TOS) is the strongest/weakest when soil water content in oases is close to saturation (e.g., when the oases are irrigated). With the decrease of soil water content in oases (i.e., after irrigation), SC (TOS) becomes weak (strong) in the lower and middle CBL, the flux induced by SC and TOS becomes small (large), which has a dramatic impact on point measurement of eddy covariance (EC) fluxes. The flux induced by SC and TOS has little influence on EC sensible heat flux, but great influence on EC latent heat flux. Under this circumstance, the area averaged heat flux cannot be represented by point measurement of flux by the EC method, especially just after irrigation in oases. Comparison of imbalance ratio (i.e., contribution of SC and TOS to the total flux) reveals that increased soil moisture in oases leads to a larger imbalance ratio as well as enhanced surface heterogeneity. Moreover, we found that the soil layer configuration at different depths has a negligible impact on the CBL flux properties.  相似文献   

6.
Large-eddy simulations (LES) are performed to investigate the entrainment andthe structure of the inversion layer of the convective boundary layer (CBL) withvarying wind shears. Three CBLs are generated with the constant surface kinematicheat flux of 0.05 K m s-1 and varying geostrophic wind speeds from 5 to 15m s-1. Heat flux profiles show that the maximum entrainment heat flux as afraction of the surface heat flux increases from 0.13 to 0.30 in magnitude withincreasing wind shear. The thickness of the entrainment layer, relative to the depthof the well-mixed layer, increases substantially from 0.36 to 0.73 with increasingwind shear. The identification of vortices and extensive flow visualizations nearthe entrainment layer show that concentrated vortices perpendicular to the meanboundary-layer wind direction are identified in the capping inversion layer for thecase of strong wind shear. These vortices are found to develop along the mean winddirections over strong updrafts, which are generated by convective rolls and to appearas large-scale wavy motions similar to billows generated by the Kelvin–Helmholtzinstability. Quadrant analysis of the heat flux shows that in the case of strong windshear, large fluctuations of temperature and vertical velocity generated by largeamplitude wavy motions result in greater heat flux at each quadrant than that inthe weak wind shear case.  相似文献   

7.
The morning transition between the stable nocturnal situation and the daytime convective boundary layer (CBL) is of interest both for basic understanding and for initializing prognostic models. While the morning growth phase of the CBL has been studied in detail, relatively little has been published on the transition itself. In this paper, conventional observations of surface temperature, humidity, and turbulent fluxes,and data from a meteorological tower, are combined with measurements of the onset of convection by boundary-layer wind profilers to explore the timing and behaviour of the transition period. The transition is defined here as the period between sunrise and the time at which the depth ofconvection reaches about 200 m AGL. Diagnostic relationships based on surface heat flux, the temperature difference between 2 m and 200 m, and bulk Richardson number are explored. The transition is foundto be enabled by surface heating relaxing the surface stability, while the warming of the layerbetween 2 m and 200 m is in large part due to shear-driven entrainment.  相似文献   

8.
The influence of mesoscale circulations induced by urban-rural differential surface sensible heat flux and roughness on convective boundary-layer (CBL) flow statistics over an isolated urban area has been examined using large-eddy simulation (LES). Results are analyzed when the circulations influence the entire urban area under a zero background wind. For comparison, the CBL flow over an infinite urban area with identical urban surface characteristics under the same background meteorological conditions is generated as a control case (without circulations). The turbulent flow over the isolated urban area exhibits a mix of streaky structure and cellular pattern, while the cellular pattern dominates in the control case. The mixed-layer height varies significantly over the isolated urban area, and can be lower near the edge of the urban area than over the rural area. The vertical profiles of turbulence statistics over the isolated urban area vary horizontally and are dramatically different from the control case. The turbulent kinetic energy (TKE) sources include wind shear, convergence, and buoyancy productions, compared to only buoyancy production in the control case. The normalized vertical velocity variance is reduced compared to the control case except in the central urban area where it is little affected. The low-level flow convergence is mainly responsible for the enhanced horizontal velocity variance in the central urban area, while wind shear is responsible for the additional local maximum of the horizontal velocity variance near the middle of the CBL outside the central area. Parameterizations in the prognostic equation for TKE used in mesoscale models are evaluated against the LES results over the isolated urban area. We also discuss conditions under which the urban-induced circulations occur and when they may affect the entire urban area. Given that urban-induced circulations can influence the entire urban area within hours for an urban area of a realistic size, it is inappropriate to directly apply empirical relations of turbulence statistics derived under horizontally-homogenous flow conditions to an urban area.  相似文献   

9.
Large-eddy simulations (LESs) are employed to investigate the turbulence characteristics in the shear-free convective boundary layer (CBL) driven by heterogeneous surface heating. The patterns of surface heating are arranged as a chessboard with two different surface heat fluxes in the neighbouring patches, and the heterogeneity scale Λ in four different cases is taken as 1.2, 2.5, 5.0 and 10.0 km, respectively. The results are compared with those for the homogeneous case. The impact of the heterogeneity scale on the domain-averaged CBL characteristics, such as the profiles of the potential temperature and the heat flux, is not significant. However, different turbulence characteristics are induced by different heterogeneous surface heating. The greatest turbulent kinetic energy (TKE) is produced in the case with the largest heterogeneity scale, whilst the TKE in the other heterogeneous cases is close to that for the homogeneous case. This result indicates that the TKE is not enhanced unless the scale of the heterogeneous surface heating is large enough. The potential temperature variance is enhanced more significantly by a larger surface heterogeneity scale. But this effect diminishes with increasing CBL height, which implies that the turbulent eddy structures are changed during the CBL development. Analyses show that there are two types of organized turbulent eddies: one relates to the thermal circulations induced by the heterogeneous surface heating, whilst the other identifies with the inherent turbulent eddies (large eddies) induced by the free convection. At the early stage of the CBL development, the dominant scale of the organized turbulent eddies is controlled by the scale of the surface heterogeneity. With time increasing, the original pattern breaks up, and the vertical velocity eventually displays horizontal structures similar to those for the homogeneous heating case. It is found that after this transition, the values of λ/z i (λ is the dominant horizontal scale of the turbulent eddies, z i is the boundary-layer height) ≈1.6, which is just the aspect ratio of large eddies in the CBL.  相似文献   

10.
张璐  黄倩  张宏昇  张强  田红瑛 《气象学报》2021,79(4):659-673
利用大涡模式模拟了对流边界层结构演变以及深对流触发过程。通过改变鲍恩比的敏感性试验研究不同大气初始状况下湿润和干旱下垫面湍流特征及其对深对流触发过程的影响。结果表明:干旱下垫面的混合层干而暖,厚度较大;湿润下垫面相反。由于地表感热通量对热力湍流形成的作用更大,干旱下垫面上湍流混合和夹卷作用更强,使得水汽和相当位温在边界层内分布更均一,而在边界层顶有较大的负扰动;干旱下垫面上对流强度较湿润下垫面大,但均表现为泡状对流,水平方向上呈网状结构。不同下垫面上深对流的发生与大气初始状况有关,当初始时刻1—3 km的逆温强度较弱时(0.15 K/(100 m)),边界层内湍流迅速发展,深对流首先在干旱下垫面发生,但因对流有效位能较小,云层厚度小于湿润下垫面。当1—3 km的逆温强度增加到0.55 K/(100 m)时,云层形成时间较晚,云层厚度明显减小,仅当边界层顶的比湿较大时,有深对流发生,但仍首先发生在干旱下垫面,考虑贯穿对流在边界层顶引起的较强冷却作用,云层厚度大于湿润下垫面。   相似文献   

11.
The effect of extensive terrestrial wind farms on the spatio-temporal structure of the diurnally-evolving atmospheric boundary layer is explored. High-resolution large-eddy simulations of a realistic diurnal cycle with an embedded wind farm are performed. Simulations are forced by a constant geostrophic velocity with time-varying surface boundary conditions derived from a selected period of the CASES-99 field campaign. Through analysis of the bulk statistics of the flow as a function of height and time, it is shown that extensive wind farms shift the inertial oscillations and the associated nocturnal low-level jet vertically upwards by approximately 200 m; cause a three times stronger stratification between the surface and the rotor-disk region, and as a consequence, delay the formation and growth of the convective boundary layer (CBL) by approximately 2 h. These perturbations are shown to have a direct impact on the potential power output of an extensive wind farm with the displacement of the low-level jet causing lower power output during the night as compared to the day. The low-power regime at night is shown to persist for almost 2 h beyond the morning transition due to the reduced growth of the CBL. It is shown that the wind farm induces a deeper entrainment region with greater entrainment fluxes. Finally, it is found that the diurnally-averaged effective roughness length for wind farms is much lower than the reference value computed theoretically for neutral conditions.  相似文献   

12.
边界层对流对示踪物抬升和传输影响的大涡模拟研究   总被引:3,自引:1,他引:2  
利用"西北干旱区陆气相互作用野外观测实验"加密观测期间敦煌站的实测资料以及大涡模式, 通过一系列改变地表热通量和风切变的敏感性数值试验, 分析了地表热通量和风切变对边界层对流的强度、形式, 以及对对流边界层结构和发展的影响。模拟结果显示风切变一定, 增大地表热通量时, 由于近地层湍流运动增强, 向上输送的热量也较多, 使对流边界层变暖增厚, 而且边界层对流的强度明显增强, 对流泡发展的高度也较高。当地表热通量一定, 增大风切变时, 由于风切变使夹卷作用增强, 将逆温层中的暖空气向下卷入混合层中, 使对流边界层增暖增厚, 但是对流泡容易破碎, 对流的强度也较弱。另外通过在模式近地层释放绝对浓度为100的被动示踪物方法, 用最小二乘法定量地分析了地表热通量和风切变分别与示踪物抬升效率和传输高度的关系。分析结果表明, 风切变小于10.5×10-3 s-1时, 增大地表热通量加强了上层动量的下传, 使示踪物的抬升效率也线性增大;地表热通量小于462.5 W m-2时, 增大风切变减弱了边界层对流的强度, 从而使示踪物的抬升效率减弱。当风切变一定时, 示踪物的平均传输高度随地表热通量增加而增大, 而地表热通量一定, 只有风切变大于临界值时, 示踪物平均传输高度才随风切变的增加而增大, 而临界风速的大小由地表热通量决定。  相似文献   

13.
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average $-63\,\%$ ) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.  相似文献   

14.
A theoretical approach suggests that the surface heterogeneity on a scale of tens of kilometres can generate mesoscale motions that are not in a quasi-stationary state. The starting point of the theoretical approach is the equations of horizontal velocity and potential temperature that are low-pass filtered with a mesoscale cut-off wavelength. The transition of the generated mesoscale motions from a quasi-stationary state to a non-stationary state occurs when horizontal advection is strong enough to level out the potential temperature gradient on the surface heterogeneity scale. Large-eddy simulations (LES) suggest that the convective boundary layer (CBL) changes to a non-stationary state when forced by a surface heat-flux variation of amplitude of 100W m−2 or higher and a wavelength of the order of 10 km. Spectral analysis of the LES reveals that when the mesoscale motions are in a quasi-stationary state, the energy provided by the surface heat-flux variation remains in organized mesoscale motions on the scale of the surface variation itself. However, in a non-stationary state, the energy cascades to smaller scales, with the cascade extending down into the turbulence scale when the wavelength of the surface heat-flux variation is on a scale smaller than 100 times the CBL height. The energy transfer from the generated mesoscale motions to the CBL turbulence results in the absence of a spectral gap between the two scales. The absence of an obvious spectral gap between the generated mesoscale motions and the turbulence raises questions about the applicability of mesoscale models for studies on the effect of high-amplitude surface heterogeneity on a scale of tens of kilometres. The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
赵昭  周博闻 《气象科学》2021,41(5):631-643
日间对流边界层最显著的结构特征是在热力作用下所形成的组织化对流。与小尺度湍涡不同的是,组织化对流具有边界层尺度的垂直相干性,可实现垂直贯穿边界层的非局地物质和能量传输。本文针对对流边界层中的动量混合,探究组织化对流对动量输送的贡献。以高精度大涡模拟数据为研究资料,通过傅里叶变换、本征正交分解和经验模态分解3种滤波方法,分离组织化对流和背景湍涡,计算与两者相关的非局地和局地动量通量,发现与组织化对流相关的非局地动量通量是总通量的重要组成部分,并主导混合层中的垂直动量输送。而后,基于协谱和相位谱分析,探究组织化对流的空间结构对动量传输的影响,发现在热力主导的不稳定环境中,单体型环流结构对动量的传输效率较低。而在风切较强的近中性环境中,滚涡型组织化结构可使垂直和水平流向扰动速度的相位差减小,从而提升动量传输效率。研究结果表明,边界层方案需要包含非局地动量通量项,其参数化应考虑整体稳定度对传输效率的影响。  相似文献   

16.
Interaction between soil hydrology and boundary-layer development   总被引:14,自引:1,他引:14  
A two-layer model of soil hydrology and thermodynamics is combined with a one-dimensional model of the planetary boundary layer to study various interactions between evolution of the boundary layer and soil moisture transport. Boundary-layer moistening through surface evaporation reduces the potential and actual surface evaporation as well as the boundary-layer growth. With more advanced stages of soil drying, the restricted surface evaporation allows greater sensible heat flux which enhances boundary-layer growth and entrainment drying.Special individual cases are studied where the wind speed is strong, solar radiation is reduced, transpiration is important, the soil is thin, or the soil is covered with organic debris.  相似文献   

17.
涡旋相关法测定湍流通量偏低的研究   总被引:12,自引:3,他引:12  
针对野外实验所发现的不同观测法测定地表能通量不平衡问题,进行了均匀加热大气边界层的大涡模拟实验.用模拟的湍流风、温度和湿度涨落的时间序列证实,对流边界层低频涡普遍存在,并经常以一簇一簇热泡的形式出现.风速较小时,有限时长的取样不足以捕捉低频涡的贡献,可造成涡旋相关法测量的统计量异常偏低.仿照涡旋相关法的步骤进行数据处理发现,经去除平均或趋势计算的温度和湿度通量偏低程度在边界层下部随观测高度的增高而显著,其中尤以湿度通量为甚.其结果在一定程度上可以解释低风速条件下地表能通量测量的不闭合问题,但是尚不能完全解释诸如青藏高原实验出现的严重不闭合.文中对此作了探讨性的讨论.  相似文献   

18.
Using large-eddy simulation (LES), the effects of mesoscale local surface heterogeneity on the temporal evolution of low-level flows in the convective boundary layer driven by two-dimensional surface heat-flux variations are investigated at a height of about 100 m over flat terrain. The surface variations are prescribed with sinusoids of wavelength 32 km and varying amplitudes of 0, 50, 100, and 200 W m $^{-2}$ . The Weather Research and Forecasting numerical model is used as a mesoscale-domain LES model that has a grid spacing fine enough to explicitly resolve energy-containing turbulent eddies and a model domain large enough to include mesoscale circulations. Mesoscale circulations induced by the two-dimensional surface heterogeneity may undergo a flow transition and an associated spectral energy cascade, which has been found previously but only with one-dimensional surface heat-flux variations. Over a strongly heterogeneous surface prescribed with a two-dimensional sinusoid of amplitude 200 W m $^{-2}$ , the domain-averaged variance of the horizontal wind component initially grows rapidly, then undergoes a flow transition and subsequently rapidly decays. With a background wind, the induced mesoscale circulations are inhibited in the streamwise direction. However in the spanwise direction, somewhat stronger mesoscale circulations are induced, compared with those with no background wind. The background wind attenuates the significant reduction of the low-level temperature gradient by the fully-developed mesoscale horizontal flow. Spectral decomposition reveals that this rapid transition also exists in the mesoscale horizontal flows induced by the intermediate surface heterogeneity prescribed with a sinusoid of amplitude 100 W m $^{-2}$ . However the transition is masked by continuously growing turbulence.  相似文献   

19.
An understanding of how the convective boundary layer (CBL) is mixed under heterogeneous surface forcing is crucial for the interpretation of area-averaged turbulence measurements. To determine the height and degree to which a complex heterogeneous surface affects the CBL, large-eddy simulations (LES) for two days of the LITFASS-2003 experiment representing two different wind regimes were undertaken. Spatially-lagged correlation analysis revealed the turbulent heat fluxes to be dependent on the prescribed surface flux pattern throughout the entire CBL including the entrainment layer. These findings prompted the question of whether signals induced by surface heterogeneity can be measured by airborne systems. To examine this question, an ensemble of virtual flights was conducted using LES, according to Helipod flight measurements made during LITFASS-2003. The resulting ensemble-averaged heat fluxes indicated a clear dependence on the underlying surface up to the top of the CBL. However, a large scatter between the flux measurements in different ensemble runs was observed, which was the result of insufficient sampling of the largest turbulent eddies. The random and systematic errors based on the integral length scale did not indicate such a large scatter. For the given flight leg lengths, at least 10–15 statistically independent flight measurements were necessary to give a significant estimate of heterogeneity-induced signals in the CBL. The need for ensemble averaging suggests that the observed blending of heterogeneity-induced signals in the CBL can be partly attributed to insufficient averaging.  相似文献   

20.
The operating ranges of meteorological wind tunnels for convective boundary-layer (CBL) simulation are defined in this paper based on a review of the theoretical and practical limitations of the flow phenomena and the facilities available. Wind-tunnel operating ranges are limited by the dimensions of the simulated circulations and of the tunnel itself, the tunnel flow speed and turbulence processes, and the characteristics of the measurement instrumentation. When it is desired to simulate both the CBL and the behavior of other flows imbedded within the boundary layer, such as power-plant plume rise and dispersion, then additional constraints exist on the fluid modeling process. The capabilities of meteorological wind tunnels can also be extended through the judicious use of boundary and side wall flow controls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号