首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
平衡气候敏感度   总被引:2,自引:0,他引:2  
平衡气候敏感度(equilibrium climate sensitivity,ECS)指平衡全球平均温度对大气中CO2浓度相对于工业化前加倍的响应[1-2].一般公认工业化之前大气中CO2浓度为280×10-6,因此开始多取560×10-6为CO2加倍后的浓度,后来多采用600×10-6,约相当对1900年加倍.最初ECS的值只是专家的估计[3],包括IPCC第1次[4]、第2次[5]及第3次[6]评估报告,均采用3℃±1.5℃,或者1.5~4.5℃.大量的研究出现在第3次评估报告发表之后的21世纪.  相似文献   

2.
利用国家气候中心大气环流模式BCC_AGCM2.0,结合IPCC 第五次评估报告给出的最新有效辐射强迫的概念,模拟了自工业革命以来由于人类活动造成的甲烷浓度增加引起的有效辐射强迫及其气候效应。得出如下结论:甲烷浓度增加造成的有效辐射强迫的全球平均值为0.49 W/m2;导致全球平均地表温度上升0.31 ℃,升温主要分布在南北半球中高纬度地区;全球平均降水量增加0.02 mm/d,赤道辐合带降水中心有向北移动的趋势;地表水汽通量的变化使高纬度地区云量增加(约4%),而中低纬度地区云量减小(约-3%)。  相似文献   

3.
本文依据政府间气候变化专门委员会(IPCC)第六次评估报告(AR6)第一工作组(WGI)报告第七章的内容,详细解读了基于多源证据对气候敏感度的估算,这些证据包括:过程理解、仪器记录、古气候数据和萌现约束。得到的结论是,多源证据支持平衡态气候敏感度(ECS)的中心估计值接近3 ℃,可能区间为2.5~4.0 ℃,非常可能区间为2.0~5.0 ℃;瞬态气候响应(TCR)的最佳估值为1.8 ℃,可能区间为1.4~2.2 ℃,非常可能区间为1.2~2.4 ℃。与之前历次IPCC评估报告相比,AR6关于气候敏感度的估算最为重要的创新之处为,它没有将气候模式结果当作唯一证据,而是仅仅给出第六次国际耦合模式比较计划(CMIP6)结果并与基于多源证据的综合评估结果进行了对比。通过对比发现,CMIP6关于ECS与TCR的平均值均高于第五次国际耦合模式比较计划(CMIP5)和AR6的综合评估结果。相比CMIP6,AR6综合了多个证据线有效地缩小了ECS的不确定范围。  相似文献   

4.
周天军  陈晓龙 《气象学报》2015,73(4):624-634
气候敏感度是度量温室气体浓度升高和全球升温幅度关系的重要指标,当前气候模拟和气候预估中的很多不确定性问题,都直接和气候敏感度有关。气候敏感度的大小也决定着预估的气候变暖幅度的大小,直接影响到温室气体减排政策的制订。在简要回顾气候敏感度概念的提出和研究历史基础上,着眼于气候反馈分析,介绍了气候敏感度与辐射强迫和反馈过程的关系,总结了气候系统主要的反馈过程;根据大气层顶的能量平衡关系,利用CMIP5多模式结果介绍了平衡态气候敏感度和瞬态气候响应(包括累积碳排放的瞬态气候响应)的估算原理和方法,总结了气候敏感度不确定性的来源,并以"2℃阈值"问题为例,介绍了气候敏感度对预估结果不确定性的影响。随着观测资料的积累和气候模式的发展,继续减少气候敏感度的不确定性、估算包含碳循环的敏感度、利用地球系统模式规划最优碳排放路径是未来本领域主要的研究方向。  相似文献   

5.
李伊吟  智海  林鹏飞  刘海龙  于溢 《大气科学》2018,42(6):1263-1272
海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。  相似文献   

6.
为揭示造成火山强迫气候响应模拟不确定性的原因,第六次国际耦合模式比较计划(CMIP6)设立了火山强迫的气候响应模拟比较计划(VolMIP)。该计划由基于历史火山爆发的理想火山扰动试验组成,包括三组主要的试验:第一组关注短期(季节至年际)大气动力响应;第二组关注海气耦合系统的长期(年际至年代际)响应;第三组关注气候系统对火山群的响应。VolMIP旨在通过给定相同的辐射强迫并进行多成员集合模拟,揭示模式对外强迫响应的不确定性,通过设定不同的背景气候态,阐明内部变率和外强迫对气候响应的相对贡献。  相似文献   

7.
巴黎气候会议(COP21)达成了包括《巴黎协定》在内的重要成果,丰富和深化了应对气候变化的一揽子长期目标。1.5℃温升控制目标意味着全球管控气候风险的政治意愿得到强化,减缓温室气体排放的路径得到初步勾勒。在未来的科学评估和政治谈判中,全球各区域甚至是各个排放大国的排放空间、排放路径和减缓需求将会进一步清晰化和定量化,还会丰富和深化自上而下的国际气候合作规则,结合当前以国家自主决定贡献(INDC)为特征的、主要以自下而上方式推进全球气候治理的新模式,将对发展中国家、尤其是发展中排放大国的排放配额与发展空间产生重要影响,并进一步影响各国制定其国家贡献目标与行动的自主性。  相似文献   

8.
短寿命气候强迫因子(Short-lived Climate Forcers,SLCFs)对大气污染和气候变化具有重要影响,政府间气候变化专门委员会(IPCC,2021)第六次评估报告(AR6)首次专门设立了关于SLCFs的独立章节,除了对人为源SLCFs评估以外,报告也包含了对于自然源SLCFs及其气候反馈的评估。特别地,在未来气候变暖和人为SLCFs持续减排的背景下,加深对SLCFs的自然源排放及其气候反馈的认识将更为重要。本文从自然源SLCFs排放评估、历史和未来气候情景下的排放变化、SLCFs的气候反馈几个方面解读了AR6中有关的最新结论。未来气候变暖情形下,闪电源NOx、植被源BVOCs、生物质燃烧排放将会增加,土壤源NOx、沙尘、海盐颗粒物和二甲基硫(Dimethlysulfide,DMS)对于气候变化的敏感性难以定量。同时,气候变化驱动着SLCFs的排放量、大气含量或寿命的改变,这些过程整体上造成的负反馈参数为-0.20 W/m2/℃(-0.41~+0.01 W/m2/℃),可能从一定程度上缓解气候变暖。  相似文献   

9.
全球年平均人为热释放气候强迫的估算   总被引:6,自引:0,他引:6       下载免费PDF全文
利用能源经济领域具有权威性的英国石油公司(BP)世界能源统计资料和联合国人口统计资料,通过一些简单的数值计算,初步估算了人为热释放的全球气候强迫。结果表明:当前(2008年)全球年平均人为热释放的气候强迫还不是很大,约为0.031W/m2;但随着人口及能源消费总量的增加,未来人为热释放产生的全球年平均气候强迫将有可能达0.30W/m2。  相似文献   

10.
分析了MODIS卫星资料反演的2001年我国中东部地区气溶胶光学厚度的时空分布特征,并利用中尺度数值模式MM5对该地区硫酸盐气溶胶的直接辐射强迫及其气候效应进行了模拟。结果表明:2001年四川盆地、长江中下游地区、黄淮一带及两广等地区气溶胶光学厚度较大。各季光学厚度变化不同,全年以春季最大。地面温度响应呈现出明显的区域季节变化特征,主要表现为冬、春、秋季南方降温幅度明显,夏季北方降温幅度明显。就区域平均而言,2001年中东部地区晴空时气溶胶辐射强迫以春季最大,达-34.53 W/m2;夏季次之,达-22.76 W/m2;冬季再次,达-22.57 W/m2;秋季最小,达-20 W/m2。地面降温则以冬季最大,达-0.65℃;秋季次之,达-0.37 ℃;春季再次,达-0.34 ℃;夏季最小,达-0.09 ℃。  相似文献   

11.
郭准  周天军 《大气科学进展》2013,30(6):1758-1770
To understand the strengths and limitations of a low-resolution version of Flexible Global Ocean Atmosphere-Land-Sea-ice (FGOALS-gl) to simulate the climate of the last millennium, the energy balance, climate sensitivity and absorption feedback of the model are analyzed. Simulation of last-millennium climate was carried out by driving the model with natural (solar radiation and volcanic eruptions) and anthropogenic (greenhouse gases and aerosols) forcing agents. The model feedback factors for (model sensitivity to) different forcings were calculated. The results show that the system feedback factor is about 2.5 (W m-2) K-1 in the pre-industrial period, while 1.9 (W m-2) K-1 in the industrial era. Thus, the model's sensitivity to natural forcing is weak, which explains why it reproduces a weak Medieval Warm Period. The relatively reasonable simulation of the Little Ice Age is caused by both the specified radiative forcing and unforced linear cold drift. The model sensitivity in the industrial era is higher than that of the pre-industrial period. A negative net cloud radiative feedback operates during whole-millennial simulation and reduces the model's sensitivity to specified forcing. The negative net cloud radiative forcing feedback under natural forcing in the period prior to 1850 is due to the underestimation (overestimation) of the response of cloudiness (in-cloud water path). In the industrial era, the strong tropospheric temperature response enlarges the effective radius of ice clouds and reduces the fractional ice content within cloud, resulting in a weak negative net cloud feedback in the industrial period. The water vapor feedback in the industrial era is also stronger than that in the pre-industrial period. Both are in favor of higher model sensitivity and thus a reasonable simulation of the 20th century global warming.  相似文献   

12.
利用区域气候模式RegCM3以及考虑作物生长过程的耦合模式RegCM3_CERES对东亚区域进行20年模拟,研究作物生长对流域水文过程与区域气候的影响。结果表明:考虑作物生长过程的耦合模式模拟海河流域、松花江流域、珠江流域多年平均降水效果明显改进,在除黑河流域外的各流域模拟的温度负偏差有所减小,其中在海河流域、淮河流域的夏季改进尤为明显。各流域夏季(6、7、8月)月蒸散量最高,其中长江流域、海河流域、淮河流域、珠江流域的夏季月蒸散量基本上在100 mm左右,并且七大流域蒸散发的季节变化趋势跟总降水基本一致。多数流域考虑作物生长过程的耦合模式模拟得出蒸散发减少且进入的水汽增加,导致局地水循环率减小;黑河流域与黄河流域降水有所增加,其他流域均有不同程度的减小。针对长江流域,比较耦合模式RegCM3_CERES与模式RegCM3模拟结果显示,叶面积指数减少1.20 m2/m2,根区土壤湿度增加0.01 m3/m3,进而导致潜热通量下降1.34 W/m2(其中在四川盆地地区减少16.00 W/m2左右),感热通量增加2.04 W/m2,从而影响到降水和气温。  相似文献   

13.
文中通过长时间中国雪深序列数据集、ERA-5的反照率数据,以及CESM-CAM5的辐射数据,分析了1988—2016年中国积雪的辐射强迫,并通过DICE/RICE模型计算其大气碳当量,进而对中国年均积雪气候调节服务价值进行了核算,同时分析其时空变化,由此得到功能分区。结果表明,中国积雪对于全球的辐射强迫贡献等价于-0.22 (±0.01) W/m2,相当于减少大气碳当量17 (±1) Gt C带来的降温效应,从能源转变的替代成本角度出发,其气候调节服务价值可达到3.9 (±2.1)万亿元。同时发现,由于积雪减少趋势引起的中国积雪气候调节服务衰减,相当于碳当量以0.67亿t/a的速率减少,这相当于每年气候调节服务衰减造成的替代成本达到150 (±12)亿元,在29年间累积损失可达4100 (±328)亿元。最后基于评估结果对中国积雪气候调节服务功能进行了分区讨论。  相似文献   

14.
We diagnose climate feedback parameters and CO2 forcing including rapid adjustment in twelve atmosphere/mixed-layer-ocean (“slab”) climate models from the CMIP3/CFMIP-1 project (the AR4 ensemble) and fifteen parameter-perturbed versions of the HadSM3 slab model (the PPE). In both ensembles, differences in climate feedbacks can account for approximately twice as much of the range in climate sensitivity as differences in CO2 forcing. In the AR4 ensemble, cloud effects can explain the full range of climate sensitivities, and cloud feedback components contribute four times as much as cloud components of CO2 forcing to the range. Non-cloud feedbacks are required to fully account for the high sensitivities of some models however. The largest contribution to the high sensitivity of HadGEM1 is from a high latitude clear-sky shortwave feedback, and clear-sky longwave feedbacks contribute substantially to the highest sensitivity members of the PPE. Differences in low latitude ocean regions (30°N/S) contribute more to the range than those in mid-latitude oceans (30–55°N/S), low/mid latitude land (55°N/S) or high latitude ocean/land (55–90°N/S), but contributions from these other regions are required to account fully for the higher model sensitivities, for example from land areas in IPSL CM4. Net cloud feedback components over the low latitude oceans sorted into percentile ranges of lower tropospheric stability (LTS) show largest differences among models in stable regions, mainly due to their shortwave components, most of which are positive in spite of increasing LTS. Differences in the mid-stability range are smaller, but cover a larger area, contributing a comparable amount to the range in climate sensitivity. These are strongly anti-correlated with changes in subsidence. Cloud components of CO2 forcing also show the largest differences in stable regions, and are strongly anticorrelated with changes in estimated inversion strength (EIS). This is qualitatively consistent with what would be expected from observed relationships between EIS and low-level cloud fraction. We identify a number of cases where individual models show unusually strong forcings and feedbacks compared to other members of the ensemble. We encourage modelling groups to investigate unusual model behaviours further with sensitivity experiments. Most of the models fail to correctly reproduce the observed relationships between stability and cloud radiative effect in the subtropics, indicating that there remains considerable room for model improvements in the future.  相似文献   

15.
为减少不同气候模式评估气溶胶气候效应的差异,第六次耦合模式比较计划(Coupled Model Intercomparison Project Phase 6,CMIP6)直接给定了人为气溶胶强迫数据。因此,有必要基于此强迫数据重新评估气溶胶气候效应。本研究首先将CMIP6给出的描述人为气溶胶强迫的模块引入南京信息工程大学(Nanjing University of Information Science and Technology,NUIST)的地球系统模式(The NUIST Earth System Model,NESM)。之后,利用NESM模式评估地球辐射收支平衡对此人为气溶胶强迫的响应,并分析模式模拟结果的不确定性。评估给出的人为气溶胶有效辐射强迫为-0. 45(±0. 28) W·m~(-2)。其中,气溶胶直接辐射效应为-0. 34(±0. 01) W·m~(-2),与第二次气溶胶比较计划(The second phase of Aerosol Comparisons between Observations and M odels,Aero ComⅡ)的评估结果基本一致;气溶胶对云辐射强迫的影响(包括半直接效应和间接效应)为-0. 10(±0. 30) W·m~(-2),明显受到模式内部变率的干扰,具有较大的不确定性。  相似文献   

16.
The regional climate model (RegCM3) and a tropospheric atmosphere chemistry model (TACM) were coupled, thus a regional climate chemistry modeling system (RegCCMS) was constructed, which was applied to investigate the spatial distribution of anthropogenic nitrate aerosols, indirect radiative forcing, as well as its climatic effect over China. TACM includes the thermodynamic equilibrium model ISORROPIA and a condensed gas-phase chemistry model. Investigations show that the concentration of nitrate aerosols is relatively high over North and East China with a maximum of 29 μg m-3 in January and 8 μg m-3 in July. Due to the influence of air temperature on thermodynamic equilibrium, wet scavenging of precipitation and the monsoon climate, there are obvious seasonal differences in nitrate concentrations. The average indirect radiative forcing at the tropopause due to nitrate aerosols is -1.63 W m-2 in January and -2.65 W m-2 in July, respectively. In some areas, indirect radiative forcing reaches $-$10 W m-2. Sensitivity tests show that nitrate aerosols make the surface air temperature drop and the precipitation reduce on the national level. The mean changes in surface air temperature and precipitation are -0.13 K and -0.01 mm d-1 in January and -0.09 K and -0.11 mm d-1 in July, respectively, showing significant differences in different regions.  相似文献   

17.
本文首先对中国PM2.5和近地面臭氧浓度的观测进行了简要的综述;并利用2010-2013年全球对流层臭氧的卫星观测数据给出了对流层臭氧浓度在全球和中国地区的分布特征,其平均值分别为29.78 DU和33.97 DU。然后,利用一个气溶胶大气化学-全球气候双向耦合模式模拟了中国地区PM2.5的浓度分布和季节变化,其年平均值为0.51×10-8 kg/m3。在此基础上又分析了5种典型气溶胶对PM2.5总浓度在不同季节的贡献。结合IPCC第五次评估报告(AR5),讨论了气溶胶和温室气体及其前体物的排放与辐射强迫的联系,以及减排大气臭氧前体物和气溶胶颗粒物质(PM)对气候变化的可能影响。指出减排臭氧前体物对气候的影响还不完全清楚,对短寿命的温室气体和黑碳气溶胶的减排是一种短期(未来50年)的辅助措施;为了保证全球平均温度增长不超过2℃,减少二氧化碳的排放仍是我们需要坚持的长期战略。短期和长期的减排战略对于保护环境和减缓气候变化都是至关重要的。  相似文献   

18.
IPCC AR6报告中控温1.5℃和2℃的低排放情景需要在21世纪中叶以后实现净负CO2排放,这需要在很大程度上依赖CO2移除措施。AR6对CO2移除的主要评估结论如下:CO2移除有潜力从大气中去除CO2(高信度);如果CO2移除量超过CO2排放量,将实现净负CO2排放,降低大气CO2浓度,减缓海洋酸化(高信度);通过CO2移除方法从大气中去除的CO2会部分被海洋和陆地释放的CO2抵消(非常高信度);如果净负CO2排放可以实现并且持续,CO2引起的全球升温趋势将会逐渐扭转,但是气候系统的其他变化(例如海平面升高)仍会在未来的几十年到千年尺度上持续(高信度);不同CO2移除方法会对生物化学循环和气候产生广泛的影响,这些影响会加强或减弱CO2移除的降温潜力,并且影响水资源、食物生产和生物多样性(高信度)。  相似文献   

19.
使用维多利亚大学的地球系统模式进行模拟,选取1800-2500年间较高的CO2浓度情景(RCP8.5),分析由于CO2增加引起的气候变化对海洋碳循环的影响。当气候敏感度为3.0 K时,相对于无气候变化,到2100年,由于大气CO2增加造成的气候变化导致海表面温度升高2.7 K,北大西洋深水流量减少4.5 Sv,海洋对人为碳的年吸收减少0.8 Pg C;比较人为溶解无机碳在海洋中的垂直累积分布,发现气候变化对海洋吸收大气CO2的影响在北大西洋区域最明显。1800-2500年,相对于不考虑气候变化的情景,模式模拟的气候变化导致整个海洋对人为碳的累积吸收总量减少23.1%,其中北大西洋减少32.0%。此外,比较不同气候敏感度(0~4.5 K,间隔为0.5 K)的模拟结果发现,气候敏感度越高,气候变化对海洋吸收CO2能力的抑制作用越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号