首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
The impacts of year-to-year and decade-to-decade climatic variations on some of the Pacific Northwest's key natural resources can be quantified to estimate sensitivity to regional climatic changes expected as part of anthropogenic global climatic change. Warmer, drier years, often associated with El Niño events and/or the warm phase of the Pacific Decadal Oscillation, tend to be associated with below-average snowpack, streamflow, and flood risk, below-average salmon survival, below-average forest growth, and above-average risk of forest fire. During the 20th century, the region experienced a warming of 0.8 °C. Using output from eight climate models, we project a further warming of 0.5–2.5 °C (central estimate 1.5 °C) by the 2020s, 1.5–3.2°C (2.3 °C) by the 2040s, and an increase in precipitation except in summer. The foremost impact of a warming climate will be the reduction of regional snowpack, which presently supplies water for ecosystems and human uses during the dry summers. Our understanding of past climate also illustrates the responses of human management systems to climatic stresses, and suggests that a warming of the rate projected would pose significant challenges to the management of natural resources. Resource managers and planners currently have few plans for adapting to or mitigating the ecological and economic effects of climatic change.  相似文献   

2.
Global climate change portends shifts in water demand and availability which may damage or cause intersectoral water reallocation in water short regions. This study investigates effects of climatic change on regional water demand and supply as well as the economy in the San Antonio Texas Edwards Aquifer region. This is done using a regional model which portrays both hydrological and economic activities. The overall results indicate that changes in climatic conditions reduce water resource availability and increase water demand. Specifically, a regional welfare loss of $2.2–$6.8million per year may occur as a result of climatic change. Additionally, if springflows are to be maintained at the currently desired level to protect endangered species, pumping must be reduced by 9–20% at an additional costof $0.5 to $2 million per year.  相似文献   

3.
Streamflows have a direct dependence on precipitation and these are directly linked to the climate. Then, in this paper the temporal climatic variability in the Río de la Plata Basin is analysed through the changes in the river's discharges. These are the reflection of the climatic inputs areally integrated, and in consequence, contain more information on climate variability than that provided by the scarce punctual records of precipitation and temperature. The time series of streamflows correspond to monthly and annual means in stations selected in the basin for the period 1931–1992. However, in the present paper, the period 1901–1992 was considered in all cases whenever possible. The following changes and tendencies in the flow series were detected: 1. An important change of tendency between 1970 and 1972, and another not so significant before that date were detected in 1917–1918 and 1943–1944. 2. The jumps in the means in several sub-periods were detected using different methods. They showed jumps mainly in the period 1970–1972 in the annual streamflows series. The jumps in the annual streamflow series consist of an abrupt change in climatic variables affecting temporarily the averages of such variables during a certain period of time (years). The results are consistent with the conclusions obtained by other authors for the same region, both in precipitation and in the general circulation of the atmosphere. Keeping in mind this analysis of the series of streamflows, indicators of normal variability of tendencies relative to natural regional causes were detected, although the local causes were not anthropogenically analysed, and so no other manifestations of randomless in the zone of the Basin under study because of the lacking of data.  相似文献   

4.
Summary Rescaled range analysis of the annual mean surface air temperatures at 7 meteorological stations in Hungary for the period of 1901–1991 indicates that the considered temperatures are fractals with a mean fractal dimension of 1.23 ± 0.01. This value compares favourably with the fractal dimensions of other climatic records, both on small time scale of 10–100 years and for time spans 103–106 years. Possibly such fractal dimensions are characteristic of climate change over the whole spectral range of 10 to 106 years. If this assumption becomes confirmed through analysis of a wider set of climatic records, long-range climatic prediction (in statistical sense) on different time scales will appear feasible.With 4 Figures  相似文献   

5.
Two contrasting 18 yr periods (1950–1967 and 1968–1985) were compared to illustrate the hydrologic and water resources effects of a change to a wetter climatic regime over Illinois. For the nine State Climate Divisions, precipitation increases and fluctuations in wetness measured by Palmer Drought Indices revealed a marked shift between the periods. The seasonal variability and spatial coherence of this precipitation climate fluctuation and its impacts are examined in detail and quantitative relationships are derived between Drought Indices and measured soil moisture and streamflow at several sites. Riverflow and well level changes are consistent with this climate change on the 20–40 yr time-scale which has had some significance for water management in the area.  相似文献   

6.
Human activity increases the atmospheric water vapour content in an indirect way through climate feedbacks. We conclude here that human activity also has a direct influence on the water vapour concentration through irrigation. In idealised simulations we estimate a global mean radiative forcing in the range of 0.03 to +0.1 Wm–2 due to the increase in water vapour from irrigation. However, because the water cycle is embodied in the climate system, irrigation has a more complex influence on climate. We also simulate a change in the temperature vertical profile and a large surface cooling of up to 0.8 K over irrigated land areas. This is of opposite sign than expected from the radiative forcing alone, and this questions the applicability of the radiative forcing concept for such a climatic perturbation. Further, this study shows stronger links than previously recognised between climate change and freshwater scarcity which are environmental issues of paramount importance for the twenty first century.  相似文献   

7.
Climatic Change, Wars and Dynastic Cycles in China Over the Last Millennium   总被引:1,自引:0,他引:1  
In recent years, the phenomenon of global warming and its implications for the future of the human race have been intensively studied. In contrast, few quantitative studies have been attempted on the notable effects of past climatic changes upon human societies. This study explored the relationship between climatic change and war in China by comparing high-resolution paleo-climatic reconstructions with known war incidences in China in the last millennium. War frequencies showed a cyclic pattern that closely followed the global paleo-temperature changes. Strong and significant correlations were found between climatic change, war occurrence, harvest level, population size and dynastic transition. During cold phases, China suffered more often from frequent wars, population decline and dynastic changes. The quantitative analyses suggested that the reduction of thermal energy input during a cold phase would lower the land carrying capacity in the traditional agrarian society, and the population size, with significant accretions accrued in the previous warm phase, could not be sustained by the shrinking resource base. The stressed human-nature relationship generated a ‘push force’, leading to more frequent wars between states, regions and tribes, which could lead to the collapse of dynasties and collapses of human population size. War frequencies varied according to geographical locations (North, Central and South China) due to spatial variations in the physical environment and hence differential response to climatic change. Moreover, war occurrences demonstrated an obvious time lag after an episode of temperature fall, and the three geographical regions experienced different length of time lags. This research also shows that human population increases and collapses were correlated with the climatic phases and the social instabilities that were induced by climate changes during the last millennium. The findings proposed a new interpretation of human-nature relationship in the past, with implications for the impacts of anomalous global warming on future human conflicts.  相似文献   

8.
Potential effects of climate change on a semi-permanent prairie wetland   总被引:4,自引:0,他引:4  
We assessed the potential effects of a greenhouse gas-induced global climate change on the hydrology and vegetation of a semi-permanent prairie wetland using a spatially-defined, rule-based simulation model. An 11-yr simulation was run using current versus enhanced greenhouse gas climates. Projections of climatic change were from the Goddard Institute for Space Studies (GISS) general circulation model. Simulations were also run using a range of temperature (+2 and +4 °C) and precipitation change values (–20, –10, 0, +10, +20%) to determine the responsiveness of wetland vegetation and hydrology to a variety of climate scenarios.Maximum water depths were significantly less under the enhanced greenhouse gas scenario than under the current climate. The wetland dried in most years with increased temperature and changes in precipitation. Simulations also revealed a significant change in the vegetation, from a nearly balanced emergent cover to open water ratio to a completely closed basin with no open water areas. Simulations over a range of climate change scenarios showed that precipitation changes (particularly increases) had a greater impact on water levels and cover ratios when the temperature increase was moderate (+2 °C).These potential changes in wetland hydrology and vegetation could result in a dramatic decline in the quality of habitat for breeding birds, particularly waterfowl. Continued research on climate and wetland modeling is needed.  相似文献   

9.
Annual precipitation for the last 2,500 years was reconstructed for northeastern Qinghai from living and archaeological juniper trees. A dominant feature of the precipitation of this area is a high degree of variability in mean rainfall at annual, decadal, and centennial scales, with many wet and dry periods that are corroborated by other paleoclimatic indicators. Reconstructed values of annual precipitation vary mostly from 100 to 300 mm and thus are no different from the modern instrumental record in Dulan. However, relatively dry years with below-average precipitation occurred more frequently in the past than in the present. Periods of relatively dry years occurred during 74–25 BC, AD 51–375, 426–500, 526–575, 626–700, 1100–1225, 1251–1325, 1451–1525, 1651–1750 and 1801–1825. Periods with a relatively wet climate occurred during AD 376–425, 576–625, 951–1050, 1351–1375, 1551–1600 and the present. This variability is probably related to latitudinal positions of winter frontal storms. Another key feature of precipitation in this area is an apparently direct relationship between interannual variability in rainfall with temperature, whereby increased warming in the future might lead to increased flooding and droughts. Such increased climatic variability might then impact human societies of the area, much as the climate has done for the past 2,500 years.  相似文献   

10.
Summary Climatic scenario models forecast an increase of the air temperature in the next century of 1.5–3.5 °C, because of the anthropogenic enhancement of the concentration greenhouse gases in the atmosphere. The analysis of the trend of long-lasting data series of climatic parameters seems to support such a prediction: indeed due to the increase of greenhouse gases in the atmosphere, a climate modification could be already ongoing. Several papers have been published dealing with the global scale climate, this paper, however, deals with an investigation on the regional scale, referring specifically to the Central-Western Mediterranean basin. We are concerned with the parameters which are more affected by climate changes, such as pressure, temperature and precipitation. The analysis carried out indicates that in the Central-Western Mediterranean basin the climate is evolving in a consistent way; we have found: i) an increase of air pressure at the surface and at the upper levels; ii) a reduction in cloudiness and precipitation amount; iii) an increase by about 1 °C in surface air temperature during the period 1860–1995 and in more recent years a rise of the freezing level and of the tropopause; iv) a reduction of strong cyclogenetic events and an increase of heat waves. These results, although compatible with the scenarios predicted, do not allow a final conclusion to be drawn concerning a man-made influence on climate change in the basin.With 13 Figures  相似文献   

11.
Among other foci, recent research on adaptation to climatic variability and change has sought to evaluate the merit of adaptation generally, as well as the suitability of particular adaptations. Additionally, there is a need to better understand the likely uptake of adaptations. For example, diversification is one adaptation that has been identified as a potential farm-level response to climatic variability and change, but its adoption by farmers for this reason is not well understood. This paper serves two purposes. The first is to document the adoption of crop diversification in Canadian prairie agriculture for the period 1994–2002, reflect upon its strengths and limitations for managing a variety of risks, including climatic ones, and gauge its likely adoption by producers in response to anticipated climate change. The second purpose is to draw on this case to refine our current understanding of climate change adaptation more generally. Based upon data from over 15 000 operations, it was determined that individual farms have become more specialized in their cropping patterns since 1994, and this trend is unlikely to change in the immediate future, notwithstanding anticipated climate change and the known risk-reducing benefits of crop diversification. More broadly, the analysis suggests that suitable and even possible climate change adaptations need to be more rigorously assessed in order to understand their wider strengths and limitations.  相似文献   

12.
以河南省24个站点1961 2005年近50 a气象资料为基础,利用人体舒适度气候指数评价模型,计算获得各点舒适度气候指数。在此基础上,分析了河南省人体舒适度的年变化特征和各季节空间分布规律、不同季节人体舒适度年际变化与温度变化的相关性、人体舒适度指数距平值的年际变化,以及不同地区体感"舒适"天数的年际变化。  相似文献   

13.
There is an ongoing important debate about the role of water vapour in climate change. Predictions of future climate change depend strongly on the magnitude of the water vapour feedback and until now models have almost exclusively been relied upon to quantify this feedback. In this work we employ observations of water vapour changes, together with detailed radiative calculations to estimate the water vapour feedback for the case of the Mt. Pinatubo eruption. We then compare our observed estimate with that calculated from a relatively large ensemble of simulations from a complex coupled climate model. We calculate an observed water vapour feedback parameter of –1.6 Wm–2 K–1, with uncertainty placing the feedback parameter between –0.9 to –2.5 Wm–2 K–1. The uncertain is principally from natural climate variations that contaminate the volcanic cooling. The observed estimates are consistent with that found in the climate model, with the ensemble average model feedback parameter being –2.0 Wm–2 K–1, with a 5–95% range of –0.4 to –3.6 Wm–2 K–1 (as in the case of the observations, the spread is due to an inability to separate the forced response from natural variability). However, in both the upper troposphere and Southern Hemisphere the observed model water vapour response differs markedly from the observations. The observed range represents a 40%–400% increase in the magnitude of surface temperature change when compared to a fixed water vapour response and is in good agreement with values found in other studies. Variability, both in the observed value and in the climate models feedback parameter, between different ensemble members, suggests that the long-term water vapour feedback associated with global climate change could still be a factor of 2 or 3 different than the mean observed value found here and the model water vapour feedback could be quite different from this value; although a small water vapour feedback appears unlikely. We also discuss where in the atmosphere water vapour changes have their largest effect on surface climate.  相似文献   

14.
A physical model was developed for describing the thermal environment of ponded shallow water as a model for rice fields in relation to climatic conditions. The model was used to assess probable effects of CO2-induced warming on the thermal conditions of ponded shallow water. It was assumed that an altered equilibrium climate was produced by atmospheric CO2 which was twice that of present levels. The 1951–80 climatic means of Japan were used as baseline data. Water temperature and energy balance characteristics predicted from the model were compared between both climates. The most notable results were that water temperature under CO2 doubling rose 2 to 4 °C. These increases in temperature would induce a remarkable northward shift of the 15 °C isotherm which characterizes the isochrone of safe transplanting dates for rice seedlings. CO2-warming would have a considerable influence on the energy balance characteristics, intensifying the evaporation rate from the water surface. Changes in thermal conditions of rice fields due to CO2-induced climatic warming are, therefore, expected to bring about significant effects on aquatic environments and the life forms they support.  相似文献   

15.
Summary The crop model CERES-Wheat in combination with the stochastic weather generator were used to quantify the effect of uncertainties in selected climate change scenarios on the yields of winter wheat, which is the most important European cereal crop. Seven experimental sites with the high quality experimental data were selected in order to evaluate the crop model and to carry out the climate change impact analysis. The analysis was based on the multi-year crop model simulations run with the daily weather series prepared by the stochastic weather generator. Seven global circulation models (GCMs) were used to derive the climate change scenarios. In addition, seven GCM-based scenarios were averaged in order to derive the average scenario (AVG). The scenarios were constructed for three time periods (2025, 2050 and 2100) and two SRES emission scenarios (A2 and B1). The simulated results showed that: (1) Wheat yields tend to increase (40 out of 42 applied scenarios) in most locations in the range of 7.5–25.3% in all three time periods. In case of the CCSR scenario that predicts the most severe increase of air temperature, the yields would be reduced by 9.6% in 2050 and by 25.8% in 2100 if the A2 emission scenario would become reality. Differences between individual scenarios are large and statistically significant. Particularly for the time periods 2050 and 2100 there are doubts about the trend of the yield shifts. (2) The site effect was caused by the site-specific soil and climatic conditions. Importance of the site influence increases with increasing severity of imposed climatic changes and culminates for the emission scenario A2 and the time period 2100. The sustained tendency benefiting two warmest sites has been found as well as more positive response to the changed climatic conditions of the sites with deeper soil profiles. (3) Temperature variability proved to be an important factor and influenced both mean and standard deviation of the yields. Change of temperature variability by more than 25% leads to statistically significant changes in yield distribution. The effect of temperature variability decreases with increased values of mean temperature. (4) The study proved that the application of the AVG scenarios – despite possible objections of physical inconsistency – might be justifiable and convenient in some cases. It might bring results comparable to those derived from averaging outputs based on number of scenarios and provide more robust estimate than the application of only one selected GCM scenario.  相似文献   

16.
In the last decade pan evaporation measured at the Southern Dead Sea has significantly increased. Wind, temperature and humidity measurements at the Dead Sea starting in the 1930s as well as 3-D model simulations all seem to indicate a statistically significant change in the local climate of the Dead Sea region. The potential contribution to this climatic change through the weakening of the local land-sea breeze circulation caused by the reduction in the Dead Sea surface area in 1979–1981, is examined. It is suggested that since the breeze tempers the Dead Sea climate, its weakening has caused the air temperature to increase, the relative humidity to decrease and thus increased the pan evaporation. The climatic changes as implied by the MM4 Mesoscale PSU/NCAR model simulations, seem to fit the observed changes and to suggest a local tendency to the more arid climate that now prevails to the south of the study region.  相似文献   

17.
Climate change raises many questions with strong moral and ethical dimensions that are important to address in climate-policy formation and international negotiations. Particularly in the United States, the public discussion of these dimensions is strongly influenced by religious groups and leaders. Over the past few years, many religious groups have taken positions on climate change, highlighting its ethical dimensions. This paper aims to explore these ethical dimensions in the US public debate in relation to public support for climate policies. It analyzes in particular the Christian voices in the US public debate on climate change by typifying the various discourses. Three narratives emerge from this analysis: ‘conservational stewardship’ (conserving the ‘garden of God’ as it was created), ‘developmental stewardship’ (turning the wilderness into a garden as it should become) and ‘developmental preservation’ (God's creation is good and changing; progress and preservation should be combined). The different narratives address fundamental ethical questions, dealing with stewardship and social justice, and they provide proxies for public perception of climate change in the US. Policy strategies that pay careful attention to the effects of climate change and climate policy on the poor – in developing nations and the US itself – may find support among the US population. Religious framings of climate change resonate with the electorates of both progressive and conservative politicians and could serve as bridging devices for bipartisan climate-policy initiatives.  相似文献   

18.
This study reports the first assessment of the compounding effects of land-use change and greenhouse gas warming effects on our understanding of projections of future climate. An AGCM simulation of the potential impacts of tropical deforestation and greenhouse warming on climate, employing a version of NCAR Community Climate Model (CCM1-Oz), is presented. The joint impacts of tropical deforestation and greenhouse warming are assessed by an experiment in which removal of tropical rainforests is imposed into a greenhouse-warmed climate. Results show that the joint climate changes over tropical rainforest regions comprise large reductions in surface evapotranspiration (by about –180 mm yr–1) andprecipitation (by about –312 mm yr–1) over the Amazon Basin, along with anincrease of surface temperature by +3.0 K. Over Southeast Asia, similar but weaker changes are found in this study. Precipitation is decreased by –172 mmyr–1, together with the surface warming of 2.1 K. Over tropical Africa, changes in regional climate is much weaker and with some different features, such as the increase of precipitation by 25 mm yr–1. Energy budgetanalyses demonstrates that the large increase of surface temperature in the joint experiment is not solely produced by the increase of CO2concentration, but is a joint effect of the reduction of surface evaporation (due to deforestation) and the increase of downward atmospheric longwave radiation (due to the doubling of CO2 concentration). Furthermore, impactsof tropical deforestation on the greenhouse-warmed climate are estimated by comparing a pair of tropical deforestation simulations. It is found that in CCM1-Oz, deforestation has very similar impacts on greenhouse-warmed regional climates as on current climates over tropical rainforest regions. The extra-tropical climatic response to tropical deforestation is identified in both sets of tropical deforestation experiments. Statistically significant responses are seen in the large-scale atmospheric circulation such as changes in the velocity potential and vertically integrated kinetic and potential energy fields. Wave propagation patterns are identified in the large-scale circulation anomalies, which provides a mechanism for interpreting the model responses in the extra-tropics. In addition, this study suggests that land-use change such as tropical deforestation may affect projections of future climate.  相似文献   

19.
Olive flowering as an indicator of local climatic changes   总被引:3,自引:0,他引:3  
Summary In recent years many studies on climate change and its impacts have been published. In this investigation the flowering of the olive tree (Olea europaea L.) in central Italy was related to climate and its usefulness as a bio-indicator for climatic change has been studied.An aerobiological method was used to determine the flowering periods in each of 22 study years (1982–2003), and five yearly target dates in correspondence to different flowering phases were selected.Climatic trends were studied through heat summations (daily maximum, minimum and average temperatures) from 1 January to the annual day of full flowering; moreover Growing Degree Days (GDD) and Chilling Units (CU) were carried out since 1 January to 25 conventional dates in the pre-flowering period.Statistical analyses were carried out to study the relationships among climatic trends (expressed by GDD and CU) and the flowering phases. The principal result may be represented by the close relationship between climate and reproductive phenology to consider olive flowering as a good indicator of climatic changes.  相似文献   

20.
Adaptation in Canadian Agriculture to Climatic Variability and Change   总被引:3,自引:0,他引:3  
The effects of climatic variability and change on Canadian agriculture have become an important research field since the early 1980s. In this paper, we seek to synthesize this research, focusing on agricultural adaptation, a purposeful proactive or reactive response to changes associated with climate, and influenced by many factors. A distinctive feature of methods used in research on adaptation in Canadian agriculture is the focus on the important role of human agency. Many individual farmers perceive they are well adapted to climate, because of their extensive 'technological' tool-kit, giving them confidence in dealing with climatic change. In many regions, little concern is expressed over climatic change, except where there are particular types of climatic vulnerability. Farmers respond to biophysical factors, including climate, as they interact with a complex of human factors. Several of these, notably institutional and political ones, have tended to diminish the farm-level risks stemming from climatic variability and change, but may well increase the long term vulnerability of Canadian agriculture. Notwithstanding the technological and management adaptation measures available to producers, Canadian agriculture remains vulnerable to climatic variability and to climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号