首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
用连续子波变换提取城市冠层大气湍流的相干结构   总被引:4,自引:2,他引:4       下载免费PDF全文
陈炯  郑永光  胡非 《大气科学》2003,27(2):182-190
切变湍流的相干结构是湍流研究中的重大发现,它表明湍流在表面上看来不规则运动中具有可检测的有序运动,这种相干结构在切变湍流的脉动生成和发展中起着主宰作用.因此识别和提取相干结构对于认识和研究湍流是非常重要的.用数字滤波法将包含相干结构的大尺度信号提取出来以后,再用子波分析,根据子波能量极大值的判别方法,分别确定出大气湍流三个方向上的速度脉动信号相干结构的频率或时间尺度,然后由确定尺度上的连续子波反演公式,提取出大气湍流三个方向上的速度脉动信号相干结构所对应的波形.  相似文献   

2.
Statistical analysis of turbulent and gusty characteristics in the atmospheric boundary layer under weak wind period has been carried out.The data used in the analysis were from the multilevel ultrasonic anemometer-thermometers at 47 m,120 m,and 280 m levels on Beijing 325 m meteorological tower.The time series of 3D atmospheric velocity were analyzed by using conventional Fourier spectral analysis and decompose into three parts:basic mean flow(period 10 min),gusty disturbances(1 min period 10 min)and turbulence fluctuations(period 1 min).The results show that under weak mean wind condition:1)the gusty disturbances are the most strong fluctuations,contribute about 60% kinetic energy of eddy kinetic energy and 80% downward flux of momentum,although both the eddy kinetic energy and momentum transport are small in comparison with those in strong mean wind condition;2)the gusty wind disturbances are anisotropic;3)the gusty wind disturbances have obviously coherent structure,and their horizontal and vertical component are negatively correlated and make downward transport of momentum more effectively;4)the friction velocities related to turbulence and gusty wind are approximately constant with height in the surface layer.  相似文献   

3.
A second-order closure model for flow through vegetation   总被引:2,自引:0,他引:2  
By splitting the turbulent kinetic energy into two wavebands and adopting as the turbulence timescale the ratio k/ of the kinetic energy in the low-frequency band to its turnover-rate, the second-order closure scheme of Launder et al. (1975) has been adapted for flow through vegetation. Predictions of the model compare satisfactorily with observations of the mean windspeed and (somewhat less satisfactorily) with the turbulent velocity variances in two very different canopies.  相似文献   

4.
Landscape discontinuities such as forest edges play an important role in determining the characteristics of the atmospheric flow by generating increased turbulence and triggering the formation of coherent tree-scale structures. In a fragmented landscape, consisting of surfaces of different heights and roughness, the multiplicity of edges may lead to complex patterns of flow and turbulence that are potentially difficult to predict. Here, we investigate the effects of different levels of forest fragmentation on the airflow. Five gap spacings (of length approximately 5h, 10h, 15h, 20h, 30h, where h is the canopy height) between forest blocks of length 8.7h, as well as a reference case consisting of a continuous forest after a single edge, were investigated in a wind tunnel. The results reveal a consistent pattern downstream from the first edge of each simulated case, with the streamwise velocity component at tree top increasing and turbulent kinetic energy decreasing as gap size increases, but with overshoots in shear stress and turbulent kinetic energy observed at the forest edges. As the gap spacing increases, the flow appears to change monotonically from a flow over a single edge to a flow over isolated forest blocks. The apparent roughness of the different fragmented configurations also decreases with increasing gap size. No overall enhancement of turbulence is observed at any particular level of fragmentation.  相似文献   

5.
This study examines the vorticity budgets, turbulent extended exergy and kinetic energy evolution equations to investigate the major dynamical and energy conversion processes contributing to the initiation and intensification of the cold vortex over Northeast China that occurred during June 19–22, 2009. The results show that the cyclonic vorticity was initiated in the lower troposphere due to the intense convergence of horizontal winds. The growth of cyclonic vorticity in the middle troposphere is mainly due to the vertical transportation of the vorticity, yet the increase of cyclonic vorticity in the upper troposphere primarily results from the horizontal advection of vorticity. Of special interest in this study is the evaluation of the role of thermal advections in the baroclinic development of the cold vortex. The results indicate that the rising of the air over relatively warm areas and the sinking of the air in relatively cold regions are favorable for releasing turbulent extended exergy $ \left( {e_{\text{t}} } \right) $ , which is later converted to turbulent kinetic energy $ \left( {k_{\text{t}} } \right) $ , and this process occurs during the initiation and intensification of the cold vortex. In addition, barotropic energy conversion is another important process that contributes to the growth of k t, and it strengthens gradually after the initiation of the cold vortex. Other than frictional consumption, the flux of k t in the vertical direction also depletes some of k t. The fluxes of e t, baroclinic energy conversions and diabatic generations are favorable factors for the growth of e t, whereas it decreases with time as a result of a large amount of e t that is released. Most of the energy conversion processes, including the baroclinic and the barotropic energy transformations and the energy conversions from e t to k t, as well as the fluxes of e t, are stronger in the lower troposphere than the other areas during the formation of the cold vortex. This accounts for the initiation of the cyclonic vorticity in the lower troposphere. Finally, the fact that the turbulent extended exergy releases primarily in the middle troposphere through the vertical thermal circulation is consistent with our understanding based on the vorticity budget analyses.  相似文献   

6.
Large-eddy simulations of the neutrally-stratified flow over an extended homogeneous forest were used to calibrate a canopy model for the Reynolds-averaged Navier–Stokes (RaNS) method with the $k-\varepsilon $ k - ε turbulence model. It was found that, when modelling the forest as a porous medium, the canopy drag dissipates the turbulent kinetic energy (acts as a sink term). The proposed model was then tested in more complex flows: a finite length forest and a forested hill. In the finite length forest, the destruction of the turbulent kinetic energy by the canopy was overestimated near the edge, for a length approximately twice the tree height. In the forested hill, the model was less accurate inside the recirculation zone and overestimated the turbulent kinetic energy, due to an incorrect prediction of the production term. Nevertheless, the canopy model presented here provided consistent results in both a priori and a posteriori tests and improved the accuracy of RaNS simulations with the $k-\varepsilon $ k - ε model.  相似文献   

7.
大气边界层湍流相干结构的识别   总被引:5,自引:0,他引:5  
首先利用数字滤波方法对淮河流域试验的大气边界层湍流观测资料进行三项分解,将大气边界层湍流的风速信号分解为近似各项同性的小尺度涡和各向异性的大尺度涡。然后再将大尺度涡信号进行离散正交小波分解,寻求相干结构的主要特征尺度。对于大气边界层湍流垂直脉动风速来说,其相干结构的主要特征尺度为16s;对径向与纬向脉动来说,其相干结构的主要特征尺度为32-64s。在此基础上,利用小波的反变换提取出相干结构的信号与非相干结构的信号,并计算两间的相关系数,最大仅有0.02。此外,对原始大气湍流观测信号不进行数字滤波,直接利用本中子波分析法提取湍流相干结构所得结果作比较研究;并探讨了采用对称或似对称离散正交小波对此研究的影响。  相似文献   

8.
In this paper a simple mixing length formulation for the eddy-diffusivityparameterization of dry convection is suggested. The new formulation relates the mixinglength to the square root of the turbulent kinetic energy (e) and a time scale ( ):l = e. To close the parameterization the time scale is calculated as a functionof the boundary-layer height (h) and the convective velocity scale (w*), h/w*. Thesimpler approach of a constant time scale is also studied. The simulation of a case of dry atmosphericconvection with a one-dimensional boundary-layer model shows that the model with the new formulationreproduces quite well the main properties of the convective boundary layer. In particular,the entrainment is realistically represented by the new mixing length, which has the advantage of naturallydecreasing with the turbulent kinetic energy. Sensitivity studies to the surface flux and the lapserate, in the context of a simplified situation, show the robustness of the new formulation.  相似文献   

9.
The effects of an air-temperature inversion in the atmosphere and a seawater density jump in the ocean on the structure of the atmospheric and oceanic boundary layers are studied by use of a coupled model. The numerical model consists of a closed system of equations for velocities, turbulent kinetic energy, turbulent exchange coefficient, local turbulent length scale, and stratification expressions for both air and sea boundary layers. The effects of the temperature inversion and the density jump are incorporated into the equations of turbulent kinetic energy of the atmosphere and ocean by a parameterization. A series of numerical experiments was conducted to determine the effects of various strengths of the inversion layer and surface heat fluxes in the atmosphere and of the density-jump layer in the ocean on the structure of the interacting boundary layers.The numerical results show that the temperature inversion in the atmosphere and density jump in the ocean have strong influences on turbulent structure [especially on the turbulent exchange coefficient (TEC) and turbulent kinetic energy (TKE)] and on air-sea interaction characteristics. Maxima of TKE and TEC strongly decrease with increasing strength of the inversion layer, and they disappear for strong inversions in the atmosphere. Certain strengths (density differences between the upper and the lower layers) of the density-jump layer in the ocean (2 0.1 g/cm3) produce double maxima in TEC-profiles and TKE-profiles in the ocean. The magnitudes of air-sea interaction characteristics such as geostrophic drag coefficient, and surface drift current increase with increasing strength of the density-jump layer in the ocean. The density-jump layer plays the role of a barrier that limits vertical mixing in the ocean. The numerical results agree well with available observed data and accepted quantitive understanding of the influences of a temperature inversion layer and a density-jump layer on the interacting atmospheric and oceanic boundary layers.  相似文献   

10.
大气边界层阵风相干结构的产生条件   总被引:1,自引:0,他引:1  
壁湍流相干结构的发现是近代湍流研究的重大进展之一,从20世纪50年代开始,在大气边界层湍流中也发现了相干结构——对流云街,并进行了系统的研究。近些年来,人们发现在近地层湍流中也存在相干结构。利用北京325 m气象塔对城市下垫面中大风和小风天气的风速分析,发现较有规律的周期3~6 min的阵风,且有明显的相干结构,而对不同下垫面的阵风研究,均发现存在这种相干结构,这种阵风相干结构对通量输送有不可忽视的作用。本文利用2012年4月甘肃省民勤县巴丹吉林沙漠观测塔的超声风速和平均场风速、温度观测资料,对阵风相干结构的产生条件进行了分析。采用傅立叶变换,将三维超声风速按频率分成基流(周期10分钟以上)、阵风扰动(周期1到10分钟)、湍流脉动(周期小于1分钟)三部分,结合平均场的资料分析发现:阵风相干结构出现在静力中性、不稳定甚至略微稳定的条件下,或者说机械作用主导的大气边界层,阵风区就会出现相干结构,热力作用对其有抑制和干扰的作用。从而,阵风的相干结构和壁面相干结构都出现在中性条件下,是机械湍流的现象,都主导着动量能量的输运。阵风区的相干结构并不等同于对流云街,他们出现在不同的大气稳定度条件下且尺度不同。  相似文献   

11.
Modification of a turbulent flow due to a change from a smooth to a rough surface has been studied by means of a stream function-vorticity model. Results of four models of eddy viscosity (or turbulent exchange coefficient) K mhave been compared. The models are: (1) K m = l2S, where l is the mixing length and S is the deformation of mean flow; (2) K m E/S, which is based on the assumption that turbulent momentum flux is proportional to turbulent kinetic energy E; (3) K m lE1/2, the so called Prandtl-Kolmogoroff approach; and (4) K m E2/, the E — closure, where is the dissipation of turbulent kinetic energy.It is found that net-production, i.e., the difference of production and dissipation of turbulent kinetic energy counteracts the influence of mean shear on turbulent shear stress and diminishes turbulent shear stress. The reduction of mixing-length, being predicted by Model 4 only, adds to this attenuation. As a consequence, in Models 2 and 4, loss of horizontal mean momentum is concentrated close to the ground, which results in an inflexion point in the logarithmic, vertical profile of horizontal mean velocity. By contrast, in Models 1 and 3, modification of turbulent shear stress reaches larger heights causing deeper internal boundary layers. Concerning the existence of an inflexion point in U(lnz), the depth of the internal boundary layer for mean velocity, and the modification of bottom shear stress, Model 4 comes closest to experimental data.A remarkable difference of Models 1, 2, 3 and Model 4 is that only Model 4 predicts a very slow relaxation of eddy viscosity which can be attributed to the reduction of mixing-length.  相似文献   

12.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

13.
In this work, three turbulence closure models, Mellor andYamada level 2.5, E - l and E - implemented in a circulation model, are compared in neutral condition over complex terrain. They are firstly applied to a one-dimensional case on flat terrain and then to a schematic two-dimensional valley. The simulation results, in terms of wind field and turbulent kinetic energy, are tested against measurements from a wind-tunnel experiment. The empirical constants defining the characteristic length scales of the closures are modified based on turbulence parameters estimated in the experiment. The formulation of the diffusion coefficients is analysed to explain the differences among the various closures in the simulation results. Regarding the mean flow, both on flat and complex terrain, all the closures yield satisfactory results. Concerning the turbulent kinetic energy, the best results are obtained by E - l and E - closures.  相似文献   

14.
Coherent Turbulent Structures Across a Vegetation Discontinuity   总被引:3,自引:2,他引:1  
The study of turbulent flow across a vegetation discontinuity is of significant interest as such landscape features are common, and as there is no available theory to describe this regime adequately. We have simulated the three-dimensional dynamics of the airflow across a discontinuity between a forest (with a leaf area index of 4) and a clearing surface using large-eddy simulation. The properties of the bulk flow, as well as the large-scale coherent turbulent structures across the forest-to-clearing transition and the clearing-to-forest transition, are systematically explored. The vertical transport of the bulk flow upstream of the leading edge gives rise to the enhanced gust zone around the canopy top, while the transport downstream of the trailing edge leads to the formation of a recirculation zone above the clearing surface. The large-scale coherent structures across the two transitions exhibit both similarities with and differences from those upstream of the corresponding transition. For example, the ejection motion is dominant over the sweep motion in most of the region 1?<?z/h < 2 (h is the canopy height) immediately downstream of the trailing edge, much as in the forested area upstream. Also, the streamwise vortex pair, which has previously been observed within the canopy sublayer and the atmospheric boundary layer, is consistently found across both transitions. However, the inflection observed both in the mean streamwise velocity, as well as in the vertical profiles of the coherent structures in the forested area, disappears gradually across the forest-to-clearing transition. The coherence of the turbulence, quantified by the percentage of the total turbulence kinetic energy that the coherent structures capture from the flow, decreases sharply immediately downstream of the trailing edge of the forest and increases downstream of the leading edge of the forest. The effects of the ratio of the forest/clearing lengths under a given streamwise periodicity on flow statistics and coherent turbulent structures are presented as well.  相似文献   

15.
Ramp features in the turbulent scalar field are associated with turbulent coherent structures, which dominate energy and mass fluxes in the atmospheric surface layer. Although finer scale ramp-like shapes embedded within larger scale ramp-like shapes can readily be perceived in turbulent scalar traces, their presence has largely been overlooked in the literature. We demonstrate the signature of more than one ramp scale in structure functions of the turbulent scalar field measured from above bare ground and two types of short plant canopies, using structure-function time lags ranging in scale from isotropic to larger than the characteristic coherent structures. Spectral analysis of structure functions was used to characterize different scales of turbulent structures. By expanding structure function analysis to include two ramp scales, we characterized the intermittency, duration, and surface renewal flux contribution of the smallest (i.e., Scale One) and the dominant (i.e., Scale Two) coherent structure scales. The frequencies of the coherent structure scales increase with mean wind shear, implying that both Scale One and Scale Two are shear-driven. The embedded Scale One turbulent structure scale is ineffectual in the surface-layer energy and mass transport process. The new method reported here for obtaining surface renewal-based scalar exchange works well over bare ground and short canopies under unstable conditions, effectively eliminating the α calibration for these conditions and forming the foundation for analysis over taller and more complex surfaces.  相似文献   

16.
本文基于海陆风环流的形成机制,在研究分析海陆风环流形成的物理模型基础上,建立了海陆风环流的数学模型。根据此基础,以大连地区海陆风环流为计算实例,模拟了海陆风形成的压力场、速度场、温度场和湍流动能场的日变化及太阳辐射日变化的过程地面的能量变化及导致的湍流动能的变化,预测出海陆风环流的水平湍流扩散系数和动量、温度和湍流动能的垂直湍流扩散系数,为求解海陆风中的污染物扩散浓度以进行环境污染损失评价提供参考。应用此模型,对大连地区的海陆风环流进行了数值模拟,定性与定量地给出了海陆风场中的速度、压力、温度及湍流动能分布情况和主要参数值。结果表明,海陆风环流的大气压力场局地日变化较小,温度场变化较明显。在中午前后,动量、温度和湍流动能的垂直扩散系数达到了最大值。模拟结果与其他文献模拟结果的对比表明,本文建立的模型模拟与实验的结果相符,但预测精度仍需要进一步检验。  相似文献   

17.
The presence of coherent structures in turbulent shear flows suggests order in apparently random flows. These coherent structures play an important dynamical role in momentum and scalar transport. To develop dynamical models describing the evolution of such motion, it is necessary to detect and isolate the coherent structures from the background fluctuations. In this paper, we decomposed atmospheric turbulence time series into large-scale eddies, which include coherent structures and small eddies, which are stochastic by using Fourier digital filtering. The wavelet energy computed for the three components of the velocity fluctuations in the large-scale eddies appears to have local maximum values at certain time scales, which correspond to the scales or frequencies of coherent structures. We extract coherent signals from large-scale vortices at this scale by inverse wavelet transform formulae. This method provides an objective technique for examining the turbulence signal associated with coherent structures in the atmospheric boundary layer. The average duration of coherent structures in three directions based on Mexican hat wavelets are 33 s, 34 s and 25 s respectively. Symmetric andanti-symmetric wavelet basis functions give almost the same results. The main features of the structures during the day and night have little difference. The dimensionless durations for u, v and w have linear correlations with each other. These relationships are insensitive to the wavelet basis.  相似文献   

18.
The ECLATS experiment was conducted in order to investigate the influence of radiative processes on the dynamics of the atmospheric boundary layer during its diurnal evolution. This experiment was carried out over Niger, near Niamey, by measuring continuously the energy balance at ground level and by using an instrumented aircraft for turbulence, radiative fluxes and aerosol measurements in the boundary layer during dusty conditions (brumes sèches). This paper is restricted to an analysis of the turbulent structure in the homogeneous and stationary convective boundary layer. The turbulence moments for kinetic energy and the spectral characteristics of the vertical velocity are discussed. These results are compared with a set of data obtained for clear convective boundary layers. The differences observed are quite important and seem, at least in part, due to radiative processes (infrared radiative divergence in the surface layer and absorption of solar radiation in the boundary layer).  相似文献   

19.
Given incident logarithmic profiles of wind and pollutant concentration above a rough, absorbing surface, the three-dimensional distribution of pollutant concentration over a hill of gentle slope is determined from a linearized model. The model is applied in neutrally stratified flow, without chemistry, and is integrated using spectral methods in the horizontal and a finite-difference scheme in the vertical. This approach allows for flexibility in choosing a closure scheme and a variety of surface boundary conditions. This was not possible in the analytic approach of Padro (1987) who added pollutant concentration and flux to the MS3DJH/1 model of Walmsley et al. (1980). The present model requires as input the turbulent kinetic energy, E, dissipation, , and the perturbation vertical velocity, w, from the three-dimensional boundary-layer flow model of Beljaars et al. (1987), hereinafter referred to as MSFD, The latter model also supplies wind velocity perturbations at the upper boundary, as input to upper boundary conditions on the pollutant flux perturbations.The present study describes applications of the model to idealized terrain features: isolated two- and three-dimensional hills and ridges and an infinite series of ridges. (Application to real terrain, however, presents no difficulties.) Comparisons were made with different (though uniform) surface roughnesses. Tests were performed to examine the effect of upstream terrain features in the periodic domain and to illustrate the importance of the vertical resolution of the output for interpreting results from the sinusoidal terrain case.  相似文献   

20.
From measured one-dimensional spectra of velocity and temperature variance, the universal functions of the Monin-Obukhov similarity theory are calculated for the range –2 z/L + 2. The calculations show good agreement with observations with the exception of a range –1 z/L 0 in which the function m , i.e., the nondimensional mean shear, is overestimated. This overestimation is shown to be caused by neglecting the spectral divergence of a vertical transport of turbulent kinetic energy. The integral of the spectral divergence over the entire wave number space is suggested to be negligibly small in comparison with production and dissipation of turbulent kinetic energy.Notation a,b,c contants (see Equations (–4)) - Ci constants i=u, v, w, (see Equation (5) - kme,kmT peak wave numbers of 3-d moel spectra of turbulent kinetic energy and of temperature variance, respectively - kmi peak wave numbers of 1-d spectra of velocity components i=u, v, w and of temperature fluctuations i= - ksb, kc characteristics wave numbers of energy-feeding by mechanical effects being modified by mean buoyancy, and of convective energy feeding, respectively - L Monin-Obukhov length - % MathType!MTEF!2!1!+-% feaafeart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXafv3ySLgzGmvETj2BSbqefm0B1jxALjhiov2D% aebbfv3ySLgzGueE0jxyaibaiiYdd9qrFfea0dXdf9vqai-hEir8Ve% ea0de9qq-hbrpepeea0db9q8as0-LqLs-Jirpepeea0-as0Fb9pgea% 0lrP0xe9Fve9Fve9qapdbaqaaeGacaGaaiaabeqaamaabaabcaGcba% Gabeivayaaraaaaa!3C5B!\[{\rm{\bar T}}\] difference of mean temperature and mean potential temperature - T* Monin-Obukhov temperature scale - velocity of mean flow in positive x-direction - u* friction velocity - u, v, w components of velocity fluctuations - z height above ground - von Kármanán constant - temperature fluctuation - m nondimensional mean shear - H nondimensional mean temperature gradient - nondimensional rate of lolecular dissipation of turbulent kinetic energy - D nondimensional divergence of vertical transports of turbulent linetic energy  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号