首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Xin Wang  Chunzai Wang 《Climate Dynamics》2014,42(3-4):991-1005
Our early work (Wang and Wang in J Clim 26:1322–1338, 2013) separates El Niño Modoki events into El Niño Modoki I and II because they show different impacts on rainfall in southern China and typhoon landfall activity. The warm SST anomalies originate in the equatorial central Pacific and subtropical northeastern Pacific for El Niño Modoki I and II, respectively. El Niño Modoki I features a symmetric SST anomaly distribution about the equator with the maximum warming in the equatorial central Pacific, whereas El Niño Modoki II shows an asymmetric distribution with the warm SST anomalies extending from the northeastern Pacific to the equatorial central Pacific. The present paper investigates the influence of the various groups of El Niño events on the Indian Ocean Dipole (IOD). Similar to canonical El Niño, El Niño Modoki I is associated with a weakening of the Walker circulation in the Indo-Pacific region which decreases precipitation in the eastern tropical Indian Ocean and maritime continent and thus results in the surface easterly wind anomalies off Java-Sumatra. Under the Bjerknes feedback, the easterly wind anomalies induce cold SST anomalies off Java- Sumatra, and thus a positive IOD tends to occur in the Indian Ocean during canonical El Niño and El Niño Modoki I. However, El Niño Modoki II has an opposite impact on the Walker circulation, resulting in more precipitation and surface westerly wind anomalies off Java-Sumatra. Thus, El Niño Modoki II is favorable for the onset and development of a negative IOD on the frame of the Bjerknes feedback.  相似文献   

2.
By comparing correlation of sea surface temperature (SST) and vertical circulation with canonical El Niño and El Niño Modoki, we find that El Niño Modoki has an effect on the Indian Ocean different from traditional El Niño. There exists obvious Indian Ocean basin mode (IOBM) after canonical El Niño, while insignificant SST anomalies exist in the Indian Ocean after El Niño Modoki. Anomalous downdraft and updraft appear over the eastern and western Indian Ocean, respectively, during canonical El Niño, while anomalous updraft is weak over the Indian Ocean during El Niño Modoki. Besides, the strength of El Niño Modoki is slightly weaker than that of canonical El Niño. According to previous studies, two mechanisms can explain IOBM after canonical El Niño: tropospheric temperature (TT) mechanism and ocean dynamics. However, both of them do not exist during El Niño Modoki. Comparing with the complicated oceanic processes, it is convenient to verify the observed TT anomalies and test the possible mechanism using the simple model. Therefore, we pay more attention on the question why TT mechanism does not work during El Niño Modoki. Using a linear barocinic model (LBM), we demonstrate that the strength of SST anomalies and cold SST anomalies in the eastern Pacific have an influence on TT anomalies. Especially, cold SST anomalies in the eastern Pacific cancel the effects of warm SST anomalies in the central Pacific on TT anomalies. It suggests that the SST anomalies in the eastern Pacific are important for the TT mechanism in two types of El Niño.  相似文献   

3.
Present work uses 1979–2005 monthly observational data to study the impacts of El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. The El Niño Modoki phenomenon is characterized by the anomalously warm central equatorial Pacific flanked by anomalously cool regions in both west and east. Such zonal SST gradients result in anomalous two-cell Walker Circulation over the tropical Pacific, with a wet region in the central Pacific. There are two mid-tropospheric wave trains passing over the extratropical and subtropical North Pacific. They contain a positive phase of a Pacific-Japan pattern in the northwestern Pacific, and a positive phase of a summertime Pacific-North American pattern in the northeastern Pacific/North America region. The western North Pacific summer monsoon is enhanced, while the East Asian summer monsoon is weakened. In the South Pacific, there is a basin-wide low in the mid-latitude with enhanced Australian high and the eastern South Pacific subtropical high. Such an atmospheric circulation pattern favors a dry rim surrounding the wet central tropical Pacific. The El Niño Modoki and its climate impacts are very different from those of El Niño. Possible geographical regions for dry/wet conditions influenced by El Niño Modoki and El Niño are compared. The two phenomena also have very different temporal features. El Niño Modoki has a large decadal background while El Niño is predominated by interannual variability. Mixing-up the two different phenomena may increase the difficulty in understanding their mechanisms, climate impacts, and uncertainty in their predictions.  相似文献   

4.
In the summers of 1998 and 2010, severe floods occurred in the middle and lower reaches of the Yangtze River. Although an El Niño event took place preceding each of the summer floods, significant differences between the two summer floods and the two El Niño events were identified. The 1997/98 El Niño is a conventional one with strongest warming in the central-eastern Pacific, whereas the 2009/10 event is an El Niño Modoki with strongest warming in the central Pacific. In this study, summer rainfall anomalies (SRA) in the two years were first compared based on the rainfall data at 160 stations in mainland China, and a significant difference in SRA was found. To understand the underlying mechanism for the difference, the atmospheric circulation systems, particularly the western North Pacific anticyclone (WNPAC), the western Pacific subtropical high (WPSH), and the low-level air flows, were compared in the two years by using the NCEP/NCAR reanalysis data. The results display that the WNPAC was stronger in 2010 than in 1998, along with a northwestward shift, causing weakened southwesterly from the Bay of Bengal to the South China Sea but intensified southerly in eastern China. This resulted in less water vapor transport from the tropical Indian Ocean and the South China Sea but more from the subtropical western Pacific to East Asia. Subsequently, the rainband in 2010 shifted northward. The difference in the WNPAC was caused by the anomalous ascending motion associated with the warming location in the two El Niño events. Furthermore, the role of tropical sea surface temperature (SST) in modulating these differences was investigated by conducting sensitivity experiments using GFDL AM2.1 (Geophysical Fluid Dynamics Laboratory Atmospheric Model). Two experiments were performed, one with the observed monthly SST and the other with June SST persisting through the whole summer. The results suggest that the model well reproduced the primary differences in the atmospheric circulation systems in the two years. It is found that the difference in El Niño events has shaped the rainfall patterns in the two years of 1998 and 2010. At last, the case of 2010 was compared with the composite of historical El Niño Modoki events, and the results indicate that the impact of El Niño Modoki varies from case to case and is more complicated than previously revealed.  相似文献   

5.
The effects of E1Nifio Modoki events on global ozone concentrations are investigated from 1980 to 2010 E1 Nifio Modoki events cause a stronger Brewer-Dobson (BD) circulation which can transports more ozone-poor air from the troposphere to stratosphere, leading to a decrease of ozone inthe lower-middle stratosphere from 90~S to 90~N. These changes in ozone concentrations reduce stratospheric column ozone. The reduction in stratospheric column ozone during E1 Nifio Modoki events is more pronounced over the tropical eastern Pacific than over other tropical areas because transport of ozone-poor air from middle-high latitudes in both hemispheres to low latitudes is the strongest between 60°W and 120°W. Because of the decrease in stratospheric column ozone during E1 Nifio Modoki events more UV radiation reaches the tropical troposphere leading to significant increases in tropospheric column ozone An empirical orthogonal function (EOF) analysis of the time series from 1980 to 2010 of stratospheric and tropospheric ozone monthly anomalies reveals that: E1 Nifio Modoki events are associated with the primary EOF modes of both time series. We also found that E1 Nifio Modoki events can affect global ozone more significantly than canonical E1 Nifio events. These results imply that E1 Nifio Modoki is a key contributor to variations in global ozone from 1980 to 2010.  相似文献   

6.
使用1951年以来66 a的观测和再分析资料,通过合成分析的方法对比分析了厄尔尼诺/拉尼娜(El Niño /La Niña)伴随正/负印度洋偶极子(positive/negative Indian Ocean Dipole,pIOD/nIOD)发生年或独立发生年山东夏、秋季气温和降水的年际变化特征,结果表明,伴随IOD型和独立型El Niño/La Niña对山东夏、秋季气温和降水的影响在强度、范围、正负位相、空间型态上存在很大的差异。在气温方面,El Niño在pIOD的调制作用下对山东南部地区夏季气温年际变化的影响加强;El Niño与pIOD伴随发生时,山东秋季气温较常年偏高,而独立发生时气温则偏低,呈反位相变化;La Niña与nIOD伴随发生年夏季鲁西北气温较常年偏低,La Niña独立发生年夏季半岛东部气温较常年偏高,气温异常呈反位相变化;nIOD对La Niña的调制促进作用有利于山东秋季气温较常年异常偏高;850 hPa气温异常与山东表面气温异常有很强的正相关关系。在降水方面,El Niño在pIOD的调制作用下容易引起山东北部地区夏季降水偏少,但会削弱其对山东中部地区秋季降水负异常的影响;La Niña在nIOD的调制作用下山东境内降水都较常年偏多,但降水异常地域分布非常不均,鲁西北降水较常年显著偏多;独立型La Niña更易引起鲁西北西部、鲁中、鲁南大部分地区夏季降水偏少。850 hPa环流异常配合温度场异常对山东夏、秋季降水异常分布有一定的影响。  相似文献   

7.
The year 2019 experienced an excess monsoon season over the Indian region, with the seasonal rainfall being 110 % of the long period average (LPA). Several zones across the country suffered multiple extreme rainfall events and flood situations resulting in a massive loss of life and property. The first half of 2019 experienced a moderate El Niño Modoki event that lasted till mid-summer. Another important feature of 2019 was the strongest recorded positive Indian Ocean Dipole (IOD) that lasted approximately seven months from May to November. This study has examined the reasons for the intra-seasonal variability of rainfall over India during the 2019 monsoon using available remote sensing and reanalysis data. Our analysis has shown that the presence of El Niño and the formation of a very severe cyclonic storm (VSCS) in the Arabian Sea were unfavorable for the monsoon onset and its northward advancement during June. However, the Walker circulation associated with El Niño helped strengthen the IOD developed early in the Indian Ocean, much before the monsoon onset. The anomalously strong IOD strengthened the monsoon circulation during July-September and resulted in excess rainfall over India.  相似文献   

8.
Present work compares impacts of El Niño Modoki and El Niño on anomalous climate in the Pacific rim during boreal winters of 1979–2005. El Niño Modoki (El Niño) is associated with tripole (dipole) patterns in anomalies of sea-surface temperature, precipitation, and upper-level divergent wind in the tropical Pacific, which are related to multiple “boomerangs” of ocean-atmosphere conditions in the Pacific. Zonal and meridional extents of those “boomerangs” reflect their independent influences, which are seen from lower latitudes in the west to higher latitudes in the east. In the central Pacific, more moisture is transported from the tropics to higher latitudes during El Niño Modoki owing to displacement of the wet “boomerang” arms more poleward toward east. Discontinuities at outer “boomerang” arms manifest intense interactions between tropical and subtropical/extratropical systems. The Pacific/North American pattern and related climate anomalies in North America found in earlier studies are modified in very different ways by the two phenomena. The seesaw with the dry north and the wet south in the western USA is more likely to occur during El Niño Modoki, while much of the western USA is wet during El Niño. The moisture to the southwestern USA is transported from the northward shifted ITCZ during El Niño Modoki, while it is carried by the storms traveling along the southerly shifted polar front jet during El Niño. The East Asian winter monsoon related anticyclone is over the South China Sea during El Niño Modoki as compared to its position over the Philippine Sea during El Niño, causing opposite precipitation anomalies in the southern East Asia between the two phenomena.  相似文献   

9.
This study investigates the El Niño Southern Oscillation (ENSO) teleconnections to tropical Indian Ocean (TIO) and their relationship with the Indian summer monsoon in the coupled general circulation model climate forecast system (CFS). The model shows good skill in simulating the impact of El Niño over the Indian Oceanic rim during its decay phase (the summer following peak phase of El Niño). Summer surface circulation patterns during the developing phase of El Niño are more influenced by local Sea Surface Temperature (SST) anomalies in the model unlike in observations. Eastern TIO cooling similar to that of Indian Ocean Dipole (IOD) is a dominant model feature in summer. This anomalous SST pattern therefore is attributed to the tendency of the model to simulate more frequent IOD events. On the other hand, in the model baroclinic response to the diabatic heating anomalies induced by the El Niño related warm SSTs is weak, resulting in reduced zonal extension of the Rossby wave response. This is mostly due to weak eastern Pacific summer time SST anomalies in the model during the developing phase of El Niño as compared to observations. Both eastern TIO cooling and weak SST warming in El Niño region combined together undermine the ENSO teleconnections to the TIO and south Asia regions. The model is able to capture the spatial patterns of SST, circulation and precipitation well during the decay phase of El Niño over the Indo-western Pacific including the typical spring asymmetric mode and summer basin-wide warming in TIO. The model simulated El Niño decay one or two seasons later, resulting long persistent warm SST and circulation anomalies mainly over the southwest TIO. In response to the late decay of El Niño, Ekman pumping shows two maxima over the southern TIO. In conjunction with this unrealistic Ekman pumping, westward propagating Rossby waves display two peaks, which play key role in the long-persistence of the TIO warming in the model (for more than a season after summer). This study strongly supports the need of simulating the correct onset and decay phases of El Niño/La Niña for capturing the realistic ENSO teleconnections. These results have strong implications for the forecasting of Indian summer monsoon as this model is currently being adopted as an operational model in India.  相似文献   

10.
The tropical Indian Ocean climate variability is investigated using an artificial neural network analysis called self-organizing map (SOM) for both observational data and coupled model outputs. The SOM successfully captures the dipole sea surface temperature anomaly (SSTA) pattern associated with the Indian Ocean Dipole (IOD) and basin-wide warming/cooling associated with ENSO. The dipole SSTA pattern appears only in boreal summer and fall, whereas the basin-wide warming/cooling appears mostly in boreal winter and spring owing to the phase-locking nature of these phenomena. Their occurrence also undergoes significant decadal variation. Composite diagrams constructed for nodes in the SOM array based on the simulated SSTA reveal interesting features. For the nodes with the basin-wide warming, a strong positive SSTA in the eastern equatorial Pacific, a negative Southern Oscillation, and a negative precipitation anomaly in East Africa are found. The nodes with the positive IOD are associated with a weak positive SSTA in the central equatorial Pacific or positive SSTA in the eastern equatorial Pacific, a positive (negative) sea level pressure anomaly in the eastern (western) tropical Indian Ocean, and a positive precipitation anomaly over East Africa. The warming in the central equatorial Pacific appears to correspond to El Niño Modoki discussed recently. These results suggest usefulness of SOM in studying large-scale ocean–atmosphere coupled phenomena.  相似文献   

11.
Drought patterns across monsoon and temperate Asia over the period 1877–2005 are linked to Indo-Pacific climate variability associated with the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD). Using the Monsoon Asia Drought Atlas (MADA) composed of a high-resolution network of hydroclimatically sensitive tree-ring records with a focus on the June–August months, spatial drought patterns during El Niño and IOD events are assessed as to their agreement with an instrumental drought index and consistency in the drought response amongst ENSO/IOD events. Spatial characteristics in drought patterns are related to regional climate anomalies over the Indo-Pacific basin, using reanalysis products, including changes in the Asian monsoon systems, zonal Walker circulation, moisture fluxes, and precipitation. A weakening of the monsoon circulation over the Indian subcontinent and Southeast Asia during El Niño events, along with anomalous subsidence over monsoon Asia and reduced moisture flux, is reflected in anomalous drought conditions over India, Southeast Asia and Indonesia. When an IOD event co-occurs with an El Niño, severe drought conditions identified in the MADA for Southeast Asia, Indonesia, eastern China and central Asia are associated with a weakened South Asian monsoon, reduced moisture flux over China, and anomalous divergent flow and subsidence over Indonesia. Insights into the relative influences of Pacific and Indian Ocean variability for Asian monsoon climate on interannual to decadal and longer timescales, as recorded in the MADA, provide a useful tool for assessing long-term changes in the characteristics of Asian monsoon droughts in the context of Indo-Pacific climate variability.  相似文献   

12.
Extremely-low discharge events of the Paranaíba River basin during the austral summer season (December–February, DJF), are found to be associated with the Pacific sea surface temperature anomalies resembling the recently identified El Niño Modoki phenomenon. Extreme discharge events are identified based on their persistent flow for 7 days and more after taking retention time into consideration. Ninety percent of the extremely low discharge events during peak streamflow seasons of DJF, are found to occur during the El Niño Modoki years. A diagnostics study of atmospheric anomalies has shown a clear connection between the modified Walker circulation, associated with the El Niño Modoki, and the precipitation anomalies over the Paranaíba River basin. The climate variations have direct relationship with the rainfall. Streamflow variations are considered as the surrogates to rainfalls. Thus, El Niño Modoki phase is important component to understand and predict the streamflow variations in the Paranaíba River basin.  相似文献   

13.
The present study reveals cross-season connections of rainfall variability in the South China Sea (SCS) region between winter and summer. Rainfall anomalies over northern South China Sea in boreal summer tend to be preceded by the same sign rainfall anomalies over southern South China Sea in boreal winter (denoted as in-phase relation) and succeeded by opposite sign rainfall anomalies over southern South China Sea in the following winter (denoted as out-of-phase relation). Analysis shows that the in-phase relation from winter to summer occurs more often in El Niño/La Niña decaying years and the out-of-phase relation from summer to winter appears more frequently in El Niño/La Niña developing years. In the summer during the El Niño/La Niña decaying years, cold/warm and warm/cold sea surface temperature (SST) anomalies develop in tropical central North Pacific and the North Indian Ocean, respectively, forming an east–west contrast pattern. The in-phase relation is associated with the influence of anomalous heating/cooling over the equatorial central Pacific during the mature phase of El Niño/La Niña events that suppresses/enhances precipitation over southern South China Sea and the impact of the above east–west SST anomaly pattern that reduces/increases precipitation over northern South China Sea during the following summer. The impact of the east–west contrast SST anomaly pattern is confirmed by numerical experiments with specified SST anomalies. In the El Niño/La Niña developing years, regional air-sea interactions induce cold/warm SST anomalies in the equatorial western North Pacific. The out-of-phase relation is associated with a Rossby wave type response to anomalous heating/cooling over the equatorial central Pacific during summer and the combined effect of warm/cold SST anomalies in the equatorial central Pacific and cold/warm SST anomalies in the western North Pacific during the mature phase of El Niño/La Niña events.  相似文献   

14.
This study investigated the distinct responses of western North Pacific (WNP) tropical cyclone (TC) activity during different decaying El Niño summers. The El Niño events were classified into two types according to the periodicity of the ENSO cycle, with positive SST anomalies in the equatorial central-eastern Pacific maintaining positive values into the following summer as the slow decaying (SD) cases, but transforming to negative values in the following summer as the rapid decaying (RD) cases. Compared with that in SD El Niño summers, the TC occurrence frequency over the WNP is significantly lower in RD El Niño summers, led by a much weaker WNP monsoon trough with more unfavorable environmental factors for TC genesis and development. Further examination showed that the apparent warming over the tropical Indian Ocean basin and cooling over the equatorial central-eastern Pacific contribute together to an enhanced lower-tropospheric anticyclone through modulation of the descending branch of the large-scale Walker circulation over the WNP, which may play a crucial role in suppressing the TC activity during the decaying summer of RD El Niño cases. In contrast, the warming equatorial central-eastern Pacific and remote western Indian Ocean induce a weakening WNP anticyclone and less suppressed deep convection during the decaying summer of SD El Niño cases. Thus, the different evolution of SST anomalies associated with different paces of El Niño decay results in the linkage between the preceding winter El Niño and the decreased WNP TC frequency in summer being more (less) robust for RD (SD) El Niño cases.摘要本文分析了El Niño事件衰减速度的差异对衰退年夏季西北太平洋热带气旋 (tropical cyclone, TC) 频数的不同影响. 按照El Niño事件衰减速度不同, 将其划分为迅速衰减 (rapid decaying, RD) 和缓慢衰减 (slow decaying, SD) 的El Niño事件. SD (RD) El Niño事件的衰退年夏季, 赤道中东太平洋海温仍维持正异常 (衰减为负异常) . 与SD El Niño事件相比, RD El Niño事件衰退年夏季西北太平洋TC频数显著减少. 进一步的分析揭示了导致TC频数差异的大尺度环境要素, 指出热带印度洋-太平洋海温异常密切相关的西北太平洋低层反气旋异常在其中起到了关键作用.  相似文献   

15.
Mechanisms determining the tropospheric temperature gradient that is related to the intensity of the Asian summer monsoon are examined in an intermediate atmospheric model coupled with a mixed-layer ocean and a simple land surface model with an idealized Afro–Eurasian continent and no physical topography. These include processes involving in the influence of the Eurasian continent, thermal effects of the Tibetan Plateau and effects of sea surface temperature. The mechanical effect on the large-scale flow induced by the Plateau is not included in this study. The idealized land–sea geometry without topography induces a positive meridional tropospheric temperature gradient thus a weak Asian summer monsoon circulation. Higher prescribed heating and weaker surface albedo over Eurasia and the Tibetan Plateau, which mimic effects of different land surface processes and the thermal effect of the uplift of the Tibetan Plateau, strengthens the meridional temperature gradient, and so as cold tropical SST anomalies. The strengthened meridional temperature gradient enhances the Asian summer monsoon circulation and favors the strong convection. The corresponding monsoon rainbelt extends northward and northeastward and creates variations of the monsoon rainfall anomalies in different subregions. The surface albedo over the Tibetan Plateau has a relatively weak inverse relation with the intensity of the Asian summer monsoon. The longitudinal gradient of ENSO-like SST anomalies induces a more complicated pattern of the tropospheric temperature anomalies. First, the positive (negative) longitudinal gradient induced by the El Niño (La Niña)-like SST anomalies weakens (strengthens) the Walker circulation and the circulation between South Asia and northern Africa and therefore the intensity of the Asian summer monsoon, while the corresponding monsoon rainbelt extends northward (southward). The El Niño (La Niña)-like SST anomalies also induces colder (warmer) tropospheric temperature over Eurasia and warmer (colder) tropospheric temperature over the Indian Ocean. The associated negative (positive) meridional gradient of the tropospheric temperature anomalies is consistent with the existence of the weak (strong) Asian summer monsoon.  相似文献   

16.
Lim  Eun-Pa  Hendon  Harry H.  Shi  Li  de Burgh-Day  Catherine  Hudson  Debra  King  Andrew  Trewin  Blair  Griffiths  Morwenna  Marshall  Andrew 《Climate Dynamics》2021,56(11):3625-3641

We explore the causes and predictability of extreme low minimum temperatures (Tmin) that occurred across northern and eastern Australia in September 2019. Historically, reduced Tmin is related to the occurrence of a positive Indian Ocean Dipole (IOD) and central Pacific El Niño. Positive IOD events tend to locate an anomalous anticyclone over the Great Australian Bight, therefore inducing cold advection across eastern Australia. Positive IOD and central Pacific El Niño also reduce cloud cover over northern and eastern Australia, thus enhancing radiative cooling at night-time. During September 2019, the IOD and central Pacific El Niño were strongly positive, and so the observed Tmin anomalies are well reconstructed based on their historical relationships with the IOD and central Pacific El Niño. This implies that September 2019 Tmin anomalies should have been predictable at least 1–2 months in advance. However, even at zero lead time the Bureau of Metereorolgy ACCESS-S1 seasonal prediction model failed to predict the anomalous anticyclone in the Bight and the cold anomalies in the east. Analysis of hindcasts for 1990–2012 indicates that the model's teleconnections from the IOD are systematically weaker than the observed, which likely stems from mean state biases in sea surface temperature and rainfall in the tropical Indian and western Pacific Oceans. Together with this weak IOD teleconnection, forecasts for earlier-than-observed onset of the negative Southern Annular Mode following the strong polar stratospheric warming that occurred in late August 2019 may have contributed to the Tmin forecast bust over Australia for September 2019.

  相似文献   

17.
利用1951—2017年NOAA月平均海面温度、NCEP/NCAR的再分析资料以及中国160站月降水观测资料,通过分类合成分析方法研究了东部型(eastern Pacific,EP)和中部型(central Pacific,CP)厄尔尼诺(El Niño)事件当年及次年对山东夏季降水年际变化的影响。结果表明,两类El Niño发生年,山东夏季降水均较常年显著偏少,但EP El Niño对山东夏季降水的影响强度和范围略弱于CP El Niño:EP El Niño发生年夏季,仅鲁西北部分地区以及胶州湾附近降水较常年显著偏少,而CP El Niño当年夏季山东全区降水较常年显著偏少。EP El Niño和CP El Niño次年对山东夏季降水异常的影响呈反位相,且影响大值区空间位置也完全相反:EP El Niño次年夏季山东东部尤其是半岛地区降水较常年异常偏少(青岛地区最为突出),而CP El Niño次年夏季山东中部和北部尤其是西北部地区降水较常年异常偏多。EP El Niño当年和次年夏季、CP El Niño当年夏季500 hPa高度场异常分布形势不利于西北太平洋副热带高压的北上,850 hPa风场为偏北风和偏东风异常,山东水汽输送条件差,水汽无明显辐合,造成大部分地区降水偏少。CP El Niño次年夏季西北太平洋副热带高压偏强,位置偏西偏北,850 hPa显著西南风场异常,山东中西部水汽辐合明显,这些是降水偏多的重要原因。  相似文献   

18.
The relationships between the tropical Indian Ocean basin(IOB)/dipole(IOD) mode of SST anomalies(SSTAs) and ENSO phase transition during the following year are examined and compared in observations for the period 1958–2008.Both partial correlation analysis and composite analysis show that both the positive(negative) phase of the IOB and IOD(independent of each other) in the tropical Indian Ocean are possible contributors to the El Nio(La Nia) decay and phase transition to La Nia(El Nio) about one year later. However, the influence on ENSO transition induced by the IOB is stronger than that by the IOD. The SSTAs in the equatorial central-eastern Pacific in the coming year originate from subsurface temperature anomalies in the equatorial eastern Indian and western Pacific Ocean, induced by the IOB and IOD through eastward and upward propagation to meet the surface. During this process, however the contribution of the oceanic channel process between the tropical Indian and Pacific oceans is totally different for the IOB and IOD. For the IOD, the influence of the Indonesian Throughflow transport anomalies could propagate to the eastern Pacific to induce the ENSO transition. For the IOB, the impact of the oceanic channel stays and disappears in the western Pacific without propagation to the eastern Pacific.  相似文献   

19.
The composite analysis of the structure of anomalies of vertical motions revealed disturbances in the Walker and Hadley circulations in the whole tropical zone associated with the two types of El Niño. The Eastern Pacific El Niño is characterized by the suppressed convection over the Maritime Continent and by the intensification of ascending motions in the central and eastern Pacific. The Central Pacific El Niño is characterized by the double Walker circulation cell with ascending motions in the central Pacific and descending motions in the western and eastern Pacific. Significant differences in the pattern of vertical circulation anomalies outside the Pacific region are also found in the north and west of the Indian Ocean and in the area of South America and the Caribbean.  相似文献   

20.
The relative impacts of Indian and Pacific Ocean processes on Tanzanian rainfall was evaluated using composite and correlation analyses. It was found that the seasonal responses of rainfall to positive Indian Ocean Dipole (pIOD) and El Niño events are substantial from September–October–November (SON) to December–January–February (DJF), whereas the Indian Ocean Dipole (IOD) exerts more control than El Niño–Southern Oscillation (ENSO) in both seasons. The associated relationship with the sea surface temperature (SST) and large-scale atmospheric circulations revealed distinct features. For the pure pIOD years, there is above-normal rainfall over the entire country. A strong rainfall condition is evident over the Lake Victoria basin and coastal and northeastern highland parts of the country during SON, while areas of the central and southern highlands exhibit substantial rains during DJF. For the pure El-Niño events, Tanzania has suffered from insignificant, weak, and non-coherent rainfall conditions during SON. However, a contrasting insignificant rainfall signature is found between the northern and southern parts of the country during the subsequent DJF season. For the co-occurrence of pIOD and El Niño, significant, excessive rainfall conditions are restricted to over the northern coast and northeastern areas of the country during SON, consistent with the rainfall pattern for pIOD. A weak, positive rainfall condition is observed over the entire country in the following season of DJF. Generally, in terms of Tanzanian rainfall, the IOD/ENSO variability and the associated impacts can be explained by the anomalous SST and circulation anomalies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号