首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This article contributes to the controversial debate over the effect of spatial organization on CO2 emissions by investigating the potential of infrastructure measures that favour lower mobility in achieving the transition to a low-carbon economy. The energy–economy–environment (E3) IMACLIM-R model is used to provide a detailed representation of passenger and freight transportation. Unlike many of the E3 models used to simulate mitigation options, IMACLIM-R represents both the technological and behavioural determinants of mobility. By comparing business-as-usual, carbon price only, and carbon price combined with transport policy scenarios, it is demonstrated that the measures that foster a modal shift towards low-carbon modes and a decoupling of mobility needs from economic activity significantly modify the sectoral distribution of mitigation efforts and reduce the level of carbon tax necessary to reach a given climate target relative to a ‘carbon price only’ policy.

Policy relevance

Curbing carbon emissions from transport activities is necessary in order to reach mitigation targets, but it poses a challenge for policy makers. The transport sector has two peculiarities: a weak ability to react to standard pricing measures (which encourages richer policy interventions) and a dependence on long-lived infrastructure (which imposes a delay between policy interventions and effective action). To address these problems, a framework is proposed for analysing the role of transport-specific measures adopted complementarily to carbon pricing in the context of international climate policies. Consideration is given to alternative approaches such as infrastructure measures designed to control mobility through less mobility-intensive denser agglomerations, investment reorientation towards public mode, and logistics reorganization towards less mobility-dependent production processes. Such measures can significantly reduce transport emissions in the long term and hence would moderate an increase in the carbon price and reduce its more important detrimental impacts on the economy.  相似文献   

2.
《Climate Policy》2013,13(3):309-326
Abstract

Carbon dioxide emissions from UK energy use have fallen by more than 20% over the last 30 years, and carbon intensity—carbon emissions per unit of GDP—has halved. These reductions have been achieved by a combination of decarbonisation of the energy system and substantial improvements in energy efficiency. Use of natural gas in power generation has been a big factor in recent years, but energy efficiency improvements in households and particularly industry have been more important over a longer period. Government policies designed primarily to address climate change have not been important contributors, until recently.

Future reductions in emissions will require more proactive policies. However, they are possible without any economic difficulties, notably by adopting cost-effective energy efficiency measures, using new renewable energy sources and reducing dependence on private cars. These policies will improve economic efficiency. The new UK Climate Change Programme includes policies that combine regulation, investment, fiscal measures and other economic instruments. By working with the grain of other social, environmental and economic policies, they can achieve far more than a carbon tax alone, set at any politically acceptable level. Modelling the costs of emission reductions using a carbon tax as the only instrument would not only massively over-estimate costs, it would bear little resemblance to real world politics.

The paper demonstrates that a more diverse set of policy instruments is likely to be an effective and politically acceptable approach in a mature industrial economy. It is concluded that the UK's Kyoto target of a 12.5% reduction in greenhouse gas emissions is not challenging. The UK Government's target of reducing carbon dioxide emissions by 20% between 1990 and 2010 is also achievable. By 2010 per capita emissions from the UK will be well below 2.5 tC per year. Claims that some countries, notably the USA, could not reduce per capita emissions below 6 tC per year seem inconsistent with this experience.  相似文献   

3.
To clarify the link between existing infrastructure legacy and the 2°C target, we extend the work of Davis et al. (Science 329:1330–1333, 2010) by introducing non-CO2 greenhouse gases and the inertia in transportation-needs drivers. We conclude that climate policies able to maintain climate change below 2°C cannot disregard existing infrastructure.  相似文献   

4.
The social cost of carbon – i.e., the marginal present-value cost imposed by greenhouse gas emissions – is determined by a complex interaction between factual assumptions, modeling methods, and value judgments. Among the most crucial factors is society's willingness to tolerate potentially catastrophic environmental risks. To explore this issue, the present analysis employs a stochastic climate–economy model that accounts for uncertainties in baseline economic growth, baseline emissions, greenhouse gas mitigation costs, carbon cycling, climate sensitivity, and climate change damages. In this model, preferences are specified to reflect the high degree of risk aversion revealed by private investment decisions, signaled by the large observed gap between the average rates of return paid by safe and risky financial instruments. In contrast, most climate–economy models assume much lower risk aversion. Given high risk aversion, the analysis finds that investment in climate stabilization yields especially large net benefits by forestalling low-probability threats to long-run human well-being. Accordingly, the social cost of carbon attains the markedly high value of $25,700 per metric ton of carbon dioxide in a baseline scenario in which emissions are unregulated. This value falls to just $4 per ton as the stringency of control measures is successively increased. These results cast doubt on the idea that the social cost of carbon takes on a uniquely defined, objective value that is independent of policy decisions. This does not, however, rule out the use of carbon prices to achieve the benefits of climate stabilization using least-cost mitigation measures.  相似文献   

5.
《Climate Policy》2001,1(3):309-326
Carbon dioxide emissions from UK energy use have fallen by more than 20% over the last 30 years, and carbon intensity — carbon emissions per unit of GDP — has halved. These reductions have been achieved by a combination of decarbonisation of the energy system and substantial improvements in energy efficiency. Use of natural gas in power generation has been a big factor in recent years, but energy efficiency improvements in households and particularly industry have been more important over a longer period. Government policies designed primarily to address climate change have not been important contributors, until recently.Future reductions in emissions will require more proactive policies. However, they are possible without any economic difficulties, notably by adopting cost-effective energy efficiency measures, using new renewable energy sources and reducing dependence on private cars. These policies will improve economic efficiency. The new UK Climate Change Programme includes policies that combine regulation, investment, fiscal measures and other economic instruments. By working with the grain of other social, environmental and economic policies, they can achieve far more than a carbon tax alone, set at any politically acceptable level. Modelling the costs of emission reductions using a carbon tax as the only instrument would not only massively over-estimate costs, it would bear little resemblance to real world politics.The paper demonstrates that a more diverse set of policy instruments is likely to be an effective and politically acceptable approach in a mature industrial economy. It is concluded that the UK’s Kyoto target of a 12.5% reduction in greenhouse gas emissions is not challenging. The UK Government’s target of reducing carbon dioxide emissions by 20% between 1990 and 2010 is also achievable. By 2010 per capita emissions from the UK will be well below 2.5 tC per year. Claims that some countries, notably the USA, could not reduce per capita emissions below 6 tC per year seem inconsistent with this experience.  相似文献   

6.
A practitioner's guide to a low-carbon economy: lessons from the UK   总被引:1,自引:0,他引:1  
Drawing primarily on the UK experience, five practical lessons are identified for policy makers who seek to decarbonize their economies. First, decarbonization needs a solid legal basis to give it credibility and overcome time inconsistency problems. Second, putting a price on carbon is essential, but low-carbon policies also have to address wider market, investment, and behavioural failures. This in turn raises issues of policy complexity and coordination. Third, the low-carbon economy is likely to be highly electrified. Clean electricity could be a cost-effective way of decarbonizing many parts of the economy, including transport, heating, and parts of industry. Decarbonization therefore starts in the power sector. Fourth, the low-carbon transition is primarily a revolution of production and not consumption. Both supply-side innovation and demand-side adjustments in lifestyle and behaviour are needed, though the former should dominate. Fifth, the transition to a low-carbon economy is economically and technologically feasible. Achieving it is a question of policy competence and having the political will to drive economic and social change.

Policy relevance

Practically all major GHG emitters now have climate change legislation on their statute books. Given what is at stake, and the complexity of the task at hand, it is important that policy makers learn from each other and establish a code of good low-carbon practice. The main lessons from the UK are distilled and presented. Carbon policy is considered for key sectors, such as electricity, buildings, and transport, and possible decarbonization paths are also outlined. It is shown that the transition to a low-carbon economy is economically and technologically feasible. Achieving it is primarily a question of policy competence and political will. This in turn means that climate change action needs a strong legislative basis to give the reforms statutory legitimacy. Low-carbon policies will have to address a wide range of market, investment and behavioural failures. Putting a price on carbon is an essential starting point, but only one of many policy reforms.  相似文献   

7.
This paper studies the interplay between climate, health, and the economy in a stylized world with eleven heterogeneous regions, with special emphasis on USA, Europe, China, India, and Africa. We introduce health impacts into a simple economic integrated assessment model where both the local cooling effect of SO 2 and the global warming effect of CO 2 are endogenous, and investigate how these factors affect the equilibrium path. Regions do not respond in the same way to climate change. In particular, emission abatement rates and health costs depend on the economic and geographical characteristics of each region. Two policy scenarios are considered, Nash and Optimal, for which we present both global and regional results. Results for Africa and China are highlighted.  相似文献   

8.
Meeting Report     
Top-down economic approaches theoretically show that placing a price on carbon can reduce emissions. Responses by firms to these policies, however, are less well understood and are critical for understanding the effectiveness of price-based carbon policy. This article provides an analysis of firm-level responses to the carbon tax in British Columbia (BC) through empirical research of grey literature, industry participation, and interviews with executives of major emitting firms in BC. The article highlights the empirical responses to the tax by firms, who experience difficulty in making low-carbon changes in response to fluctuating commodity prices, the low certainty of climate policy over temporal and spatial scales, and the political economy of implementing regional climate policy. It also highlights the importance of understanding firm-level responses as a complementary approach to macro-economic policy making on carbon pricing. The article shows the importance of engaging decision makers in corporations to understand how carbon is governed in light of emerging climate policy.

Policy relevance

This article is relevant to policy makers implementing carbon-pricing initiatives by illustrating the need to complement macroeconomic models with firm-level response analysis. It also demonstrates the key concerns of executives in a resource extractive economy and the ability of a carbon price, and the need for complementary technology funds and policy, to affect change in industrial emissions.  相似文献   

9.
Brazil's nationally determined contribution (NDC) pledged under the Paris Agreement has marked a new stage in its climate policy towards strengthening low-carbon economic development beyond the recent drastic cuts in emissions from deforestation. Brazil especially means to limit oil consumption driven by future economic growth and to increase energy efficiency and biofuel use in the transport sector. On the other hand, Brazil still aspires to become a major petroleum province given its huge reserves of ‘pre-salt’ oil. This article aims to clarify under what conditions low-carbon economic development and oil exploration can possibly be combined in Brazil and what would be the energy system, environmental and macroeconomic implications of enabling policies for doing so. To address these questions, an energy–economy computable general equilibrium (CGE) model of the Brazilian economy is used to simulate alternative scenarios up to 2030. The results first show that implementing the most recent energy plans, which take into account the new economic reality in Brazil, should lead to over 20% lower domestic CO2 emissions in 2030 than the indicative NDC target, and to the export of the bulk of newfound crude oil. Second, with the same level of oil production, deeper domestic decarbonization, triggered by additional carbon pricing and sustainable efficiency measures, appears achievable with very small gross domestic product (GDP) loss and maximum oil exports, while being aligned with a 2°C emission pathway. However, (i) extra oil exports may induce net additional emissions outside Brazil and be seen as a perverse incentive and (ii) the economic growth strategy based on high oil exports may hinder the necessary diversification of the Brazilian economy.

Key policy insights

  • Low-carbon development goals will strongly interact with oil policy in Brazil.

  • The 2030 NDC target should be easy to achieve considering the new economic reality in Brazil.

  • Deeper domestic decarbonization is achievable with very limited GDP loss and significant oil exports, while being aligned with a 2°C emission pathway.

  • A broad strategic vision is needed to reconcile climate policy, energy policy and other economic development objectives.

  相似文献   

10.
In many countries around the world impacts of climate change are assessed and adaptation options identified. We describe an approach for a qualitative and quantitative assessment of adaptation options to respond to climate change in the Netherlands. The study introduces an inventory and ranking of adaptation options based on stakeholder analysis and expert judgement, and presents some estimates of incremental costs and benefits. The qualitative assessment focuses on ranking and prioritisation of adaptation options. Options are selected and identified and discussed by stakeholders on the basis of a sectoral approach, and assessed with respect to their importance, urgency and other characteristics by experts. The preliminary quantitative assessment identifies incremental costs and benefits of adaptation options. Priority ranking based on a weighted sum of criteria reveals that in the Netherlands integrated nature and water management and risk based policies rank high, followed by policies aiming at ‘climate proof’ housing and infrastructure.  相似文献   

11.
A large portion of foreign assistance for climate change mitigation in developing countries is directed to clean energy facilities. To support international mitigation goals, however, donors must make investments that have effects beyond individual facilities. They must reduce barriers to private-sector investment by generating information for developers, improving relevant infrastructure, or changing policies. We examine whether donor agencies target financing for commercial-scale wind and solar facilities to countries where private investment in clean energy is limited and whether donor investments lead to more private investments. On average, we find no positive evidence for these patterns of targeting and impact. Coupled with model results that show feed-in tariffs increase private investment, we argue that donor agencies should reallocate resources to improve policies that promote private investment in developing countries, rather than finance individual clean energy facilities.

Policy relevance

We suggest that international negotiations could usefully shift the focus of climate change finance towards adaptation in exchange for mitigation-improving policy reforms in developing countries. There is little evidence that mitigation-related financing is having broader effects on energy production, so new financial arrangements should be the focus of future negotiations. Additionally, international donors should focus efforts on reforming policies to attract private investment.  相似文献   

12.
Various aspects of the role of uncertainty in greenhouse gas emission reduction policy are analyzed with the integrated assessment model FUND. FUND couples simple models of economy, climate, climate impacts, and emission abatement. Probability distribution functions are assumed for all major parameters in the model. Monte Carlo analyses are used to study the effects of parametric uncertainties. Uncertainties are found to be large and grow over time. Uncertainties about climate change impacts are more serious than uncertainties about emission reduction costs, so that welfare-maximizing policies are stricter under uncertainty than under certainty. This is more pronounced without than with international cooperation. Whether or not countries cooperate with one another is more important than whether or not uncertainty is considered. Meeting exogenously defined emission targets may be more or less difficult under uncertainty than under certainty, depending on the asymmetry in the uncertainty and the central estimate of interest. The major uncertainty in meeting emissions targets in each of a range of possible future is the timing of starting (serious) reduction policies. In a scenario aiming at a stable CO2 concentration of 550 ppm, the start date varies 20 years for Annex I countries, and much longer for non-Annex countries. Atmospheric stabilization at 550 ppm does not avoid serious risks with regard to climate change impacts. At the long term, it is possible to avoid such risks but only through very strict emission control at high economic costs.  相似文献   

13.
This article outlines a critical gap in the assessment methodology used to estimate the macroeconomic costs and benefits of climate and energy policy, which could lead to misleading information being used for policy-making. We show that the Computable General Equilibrium (CGE) models that are typically used for assessing climate policy use assumptions about the financial system that sit at odds with the observed reality. These assumptions lead to ‘crowding out’ of capital and, because of the way the models are constructed, negative economic impacts (in terms of gross domestic product (GDP) and welfare) from climate policy in virtually all cases.

In contrast, macro-econometric models, which follow non-equilibrium economic theory and adopt a more empirical approach, apply a treatment of the financial system that is more consistent with reality. Although these models also have major limitations, they show that green investment need not crowd out investment in other parts of the economy – and may therefore offer an economic stimulus. Our conclusion is that improvements in both modelling approaches should be sought with some urgency – both to provide a better assessment of potential climate and energy policy and to improve understanding of the dynamics of the global financial system more generally.

POLICY RELEVANCE

This article discusses the treatment of the financial system in the macroeconomic models that are used in assessments of climate and energy policy. It shows major limitations in approach that could result in misleading information being provided to policy-makers.  相似文献   


14.
《Climate Policy》2013,13(1):31-43
Abstract

Germany is one of the two OECD countries having achieved substantial greenhouse gas reductions in the last decade. While a part was large reductions in industry after the economic crash in East Germany, a relevant share is due to the huge public infrastructure investments in East Germany. The real success of German climate policy in the past decade is the strong reduction of methane and nitrous oxide which has been almost unnoticed.

German climate policy is a good example of how lobbying of interest groups leads to a complex maze of hundreds of measures whose effects are difficult to evaluate. Paradoxically, policies have focused on expensive measures and Germany clearly is a pioneer in the most expensive forms of renewable energy. Concerning cost-effective measures and market instruments, Germany is a laggard. Only slowly, policymakers start to notice this distortion and first, shaky steps towards a more cost-efficient policy are made. Several challenges such as nuclear phase-out and trends in household energy consumption will put pressure on government to embrace the Kyoto Mechanisms and to refocus domestic instruments well before the first commitment period.  相似文献   

15.
We analyze the dynamics of global fossil resource markets under different assumptions for the supply of fossil fuel resources, development pathways for energy demand, and climate policy settings. Resource markets, in particular the oil market, are characterized by a large discrepancy between costs of resource extraction and commodity prices on international markets. We explain this observation in terms of (a) the intertemporal scarcity rent, (b) regional price differentials arising from trade and transport costs, (c) heterogeneity and inertia in the extraction sector. These effects are captured by the REMIND model. We use the model to explore economic effects of changes in coal, oil and gas markets induced by climate-change mitigation policies. A large share of fossil fuel reserves and resources will be used in the absence of climate policy leading to atmospheric GHG concentrations well beyond a level of 550 ppm CO2-eq. This result holds independently of different assumptions about energy demand and fossil fuel availability. Achieving ambitious climate targets will drastically reduce fossil fuel consumption, in particular the consumption of coal. Conventional oil and gas as well as non-conventional oil reserves are still exhausted. We find the net present value of fossil fuel rent until 2100 at 30tril.US$ with a large share of oil and a small share of coal. This is reduced by 9 and 12tril.US$ to achieve climate stabilization at 550 and 450 ppm CO2-eq, respectively. This loss is, however, overcompensated by revenues from carbon pricing that are 21 and 32tril.US$, respectively. The overcompensation also holds under variations of energy demand and fossil fuel supply.  相似文献   

16.
Carbon dioxide (CO2) sequestration has been proposed as a key component in technological portfolios for managing anthropogenic climate change, since it may provide a faster and cheaper route to significant reductions in atmospheric CO2 concentrations than abating CO2 production. However, CO2 sequestration is not a perfect substitute for CO2 abatement because CO2 may leak back into the atmosphere (thus imposing future climate change impacts) and because CO2 sequestration requires energy (thus producing more CO2 and depleting fossil fuel resources earlier). Here we use analytical and numerical models to assess the economic efficiency of CO2 sequestration and analyze the optimal timing and extent of CO2 sequestration. The economic efficiency factor of CO2 sequestration can be expressed as the ratio of the marginal net benefits of sequestering CO2 and avoiding CO2 emissions. We derive an analytical solution for this efficiency factor for a simplified case in which we account for CO2 leakage, discounting, the additional fossil fuel requirement of CO2 sequestration, and the growth rate of carbon taxes. In this analytical model, the economic efficiency of CO2 sequestration decreases as the CO2 tax growth rate, leakage rates and energy requirements for CO2 sequestration increase. Increasing discount rates increases the economic efficiency factor. In this simple model, short-term sequestration methods, such as afforestation, can even have negative economic efficiencies. We use a more realistic integrated-assessment model to additionally account for potentially important effects such as learning-by-doing and socio-economic inertia on optimal strategies. We measure the economic efficiency of CO2 sequestration by the ratio of the marginal costs of CO2 sequestration and CO2 abatement along optimal trajectories. We show that the positive impacts of investments in CO2 sequestration through the reduction of future marginal CO2 sequestration costs and the alleviation of future inertia constraints can initially exceed the marginal sequestration costs. As a result, the economic efficiencies of CO2 sequestration can exceed 100% and an optimal strategy will subsidize CO2 sequestration that is initially more expensive than CO2 abatement. The potential economic value of a feasible and acceptable CO2 sequestration technology is equivalent – in the adopted utilitarian model – to a one-time investment of several percent of present gross world product. It is optimal in the chosen economic framework to sequester substantial CO2 quantities into reservoirs with small or zero leakage, given published estimates of marginal costs and climate change impacts. The optimal CO2 trajectories in the case of sequestration from air can approach the pre-industrial level, constituting geoengineering. Our analysis is silent on important questions (e.g., the effects of model and parametric uncertainty, the potential learning about these uncertainties, or ethical dimension of such geoengineering strategies), which need to be addressed before our findings can be translated into policy-relevant recommendations.  相似文献   

17.
《Climate Policy》2013,13(6):607-612
The Low-Carbon Society (LCS) research project (Strachan et al., 2008a) is examined for its insights about the scale, nature and timing of the deployment of low-carbon technologies. In addition to ‘carbon price only’ policies, other incentives and demand-side efforts are needed in order to embed climate policies into broader development approaches. The question of what constitutes transition pathways is considered. Fundamental institutional, individual and social changes are needed to accompany economic and technological change as energy is embedded in overall development patterns. The cost assessment of decarbonization policies may be too optimistic if it is only considered as the final outcome of a LCS, and if the inevitable hindrances and setbacks along the transition pathway are disregarded. The significance of transition costs is highlighted, together with their causes: social and short- and medium-term economic costs and adjustments in macroeconomic dynamics. Although the overall welfare costs of LCS are likely to be smaller than the benefits (including the co-benefits), a clear and realistic understanding of potential transition difficulties is necessary in order to define the robust policy mix needed to underpin it.  相似文献   

18.
Legislation to decarbonise energy systems within overall greenhouse gas reduction targets represents an immense and unprecedented energy policy challenge. However there is a dichotomy between this level of policy ambition and prior modelling studies that find such targets economically, technologically and socially feasible under idealised ?Dfirst-best policies. This paper makes a significant contribution to current analytical efforts to account for realistic ?Dsecond-best climate mitigation policy implementation. This is achieved via a technical classification of secondbest common mode issues at a detailed national level: both internal (behavioural change, infrastructure implementation) and external (new technologies, resource availability). Under a combinatory second-best scenario, meeting targets greater than a 70% reduction in CO2 by 2050 entail costs above a subjective barrier of 1% of GDP, while extreme mitigation scenarios (>90% CO2 reduction) are infeasible. These high costs are equally due to disappointing progress in behavioural and technological mitigation efforts. Expensive second-best mitigation scenarios can still rely on extreme assumptions including the full deployment of the UK??s offshore wind resource or the complete diffusion of energy efficiency measures in end-use sectors. By demonstrating the fragilities of a low carbon energy system pathway, policy makers can explore protective and proactive strategies to ensure targets can actually be met. Additionally, systematic analysis of failure in stringent long term decarbonisation scenarios teaches energy analysts about the trade-offs in model efficacy vs. confidence.  相似文献   

19.
We take issue with the claim by Tavoni and Tol (Clim Chang 100:769–778, 2010) that reviews of the macroeconomic costs of achieving the 2 °C climate target have been affected by selection bias and have underestimated the costs. Although many more cost estimates are available in the literature, they have restricted their survey to the data in the EMF22 study, with a limited set of model solutions for the 2 °C target. They have applied the methodology of observational meta-analysis inappropriately to policy meta-analysis, where the number of results is often very small and the basis for imputing a statistical distribution does not usually exist. They have mixed direct costs with net costs in terms of %GDP. Their method of “correcting” for missing data with (high) costs of stringent mitigation could equally be applied to correcting the data for omission of mitigation options such as biomass energy with carbon capture so reducing the cost estimates. And finally they implicitly assume that the same policy combinations and mitigation options are applied for all climate scenarios, when more stringent scenarios may require more stringent policies and options, such as regulation or BECCS. The conclusion from the literature is more appropriately that the costs are highly uncertain, that they can equally be positive or negative (gains) and that models which fail to solve for stringent mitigations are not fit for purpose.  相似文献   

20.
Abstract

New Labour came to power in 1997 pledging to put environment concerns at the heart of policy-making. Shortly after being elected, the Labour Government signed the Kyoto Protocol and adopted a voluntary domestic target of a 20% cut in carbon dioxide emissions by 2010. This article looks at the development of UK climate policy since 1997 and the political drivers that have led to development of the climate policy mix. It assesses the Climate Change Programme adopted in 2000 and its delivery, and it also looks at the 5-year Climate Change Programme Review published in March 2006. It conducts a quantitative assessment of the UK's performance by looking at emissions data, and it also provides a qualitative analysis, by looking at the UK policies and measures within their political and institutional context. The article concludes that Labour has been actively promoting climate policy since coming to power and has played a strong leadership role internationally. The UK is on track to meet and surpass its Kyoto target, meeting its international commitments. Between 24.1 and 29.1 million tonnes of carbon savings per year are expected by 2010. Policies and measures in the industrial sector are delivering real emissions reductions, in addition to the reductions made through fuel switching. The Government has found it more difficult to make some of the tough choices necessary to deliver emissions reductions in the transport and the household sectors. The article seeks to explain why the Labour Government has found it uncomfortable, politically, to implement stronger measures in these parts of the economy. The article highlights the changing dynamics within UK politics and concludes that there are two possible avenues for taking more stringent measures in the future. The first involves the development of a cross-party consensus on climate change. The second is to change the way that climate change is framed, so that it is no longer seen as an ‘environment’ issue but one with which voters and decision-makers can immediately connect. Only then will it be possible to implement the necessary policies and measures across the whole economy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号