首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
利用黄石市气象台1954年1月1日至2013年12月31日共60a的地面观测资料,选取逐日的平均气温、最高气温和最低气温做为研究对象,采用气候趋势分析、相关分析、Mann-Kendall突变检验分析和小波分析等方法对黄石市极值气温变化特征进行分析,结果表明:(1)1954-2013黄石市年平均气温、平均最高气温和平均最低气温呈波动上升的趋势,其中年平均气温和平均最低气温上升趋势显著,对于近60a黄石市年平均气温的升高,年平均最低气温的贡献是主要的;(2)近60a黄石市极端最高气温和极端最低气温均呈波动上升的趋势,其中极端最低气温上升趋势显著,1984-2013年极端最低气温的升高是造成近60年极端最低气温显著升高的主要原因;(3)近60a黄石市年最大日较差呈波动下降的趋势,但不显著,平均最低气温的上升速度明显大于平均最高气温的上升速度,极端最低气温的上升速度明显大于极端最高气温的上升速度,这造成了气温日较差的不断减小;(4)近60a黄石市气温(年平均气温、年最高\最低气温、极端最高\最低气温)的显著升高,与最高气温出现在20℃以上的天数增加和出现在20℃以下的天数减少有关,与最低气温出现在10℃以上的天数增加和出现在10℃以下的天数减少有关,其中T0℃的高温日数和低温日数的显著减少以及20≤T30℃的低温日数的显著增加贡献最大。  相似文献   

2.
中国北极村气候变暖特征   总被引:2,自引:1,他引:1  
利用我国最北部的北极村气象站1963~2005年气温资料,通过计算气候倾向率和气候趋势系数,对该地区气候变化特点进行了分析。结果表明,43年来北极村气温有明显并稳定的上升趋势,年平均气温以每10年0.46℃幅度升高。各季及逐月平均气温都存在不同程度的变暖趋势,但是冬季升温最为剧烈,达每10年0.69℃,其中2月升温幅度为每10年1.02℃,为全年最大。秋季升温最弱,仅为每10年0.21℃。年平均最低气温(每10年0.59℃)和年极端最低气温(每10年0.74℃)比年平均最高气温(每10年0.37℃)和年极端最高气温(每10年0.27℃)升温幅度明显偏大。最低气温比最高气温对平均气温的年代际升温趋势贡献更为明显。  相似文献   

3.
选用1958—2009年聊城市3个国家气象站逐月极端最高气温和极端最低气温资料,采用累积距平、趋势系数方法,分析了聊城地区极端最高、最低气温变化的特征,得出:52a来聊城年极端最高气温变化趋势分为一个升温阶段和一个降温阶段,总体呈下降趋势,趋势系数为-0.3383。年极端最低气温变化趋势分为3个降温阶段和2个升温阶段,总体呈上升趋势,趋势系数为0.1849。极值年较差在减小;各季极端最高、极端最低气温呈非对称性变化。秋季各地极端最高气温增温幅度超过极端最低气温。春、夏、冬季极端最低气温增温而极端最高气温降温,且该特点在夏季表现得更突出;月极端气温变化范围在减小,极端温度变化趋于缓和,特别是进入21世纪,月极端最低和最高气温较20世纪90年代平均分别上升了1.6℃,1.1℃。  相似文献   

4.
利用商丘市8站1961-2006年逐日最高、最低气温资料,计算并分析了商丘市年、季及月气温日较差的线性变化趋势,结果表明:年最低气温呈明显上升趋势,最高气温上升趋势不显著,气温日较差呈显著减小趋势;春、夏、冬季季平均气温日较差均呈减小趋势,其中春季和冬季的减小趋势显著,秋季呈弱的增加趋势;全年有10个月的气温日较差呈减小趋势,其中1、3、5、8月气温日较差显著减小,1月减小幅度最大.城市化发展对气温日较差变化有一定影响,距城区较近的台站平均气温日较差显著减小,而距城区较远的台站气温日较差减小趋势不显著.  相似文献   

5.
利用商洛市7个国家气象站1961—2020年近60 a的日平均气温、月平均气温、月最高气温、月最低气温等资料,选取10种极端气温指数,采用线性趋势分析、Mann-Kendall非参数检验、累积距平法,对商洛平均气温、最高气温、最低气温的年际、年代际、季节变化特征,异常性及极端性进行了分析。结果表明:近60 a来商洛年平均气温、平均最高气温、平均最低气温的年际变化呈上升趋势,其中平均最高气温的线性倾向率最大;除平均最低气温冬季线性倾向率呈下降趋势外,平均最低气温的春季、夏季、秋季和年平均气温、平均最高气温四季变化均呈上升趋势,年平均气温、平均最高气温春季线性倾向率最大,平均最低气温夏季线性倾向率最大;季节气温的年代际变化特点为20世纪60—90年代为相对偏冷期,21世纪为相对偏暖期;通过M-K突变检验和累积距平法得出商洛年平均气温发生了由低温到高温的突变,突变时间在1987—1988年;分析平均气温异常性得出偏暖年份多出现在21世纪之后,偏冷年份多出现在20世纪90年代以前,尤其集中在60年代中期左右,秋季偏暖年份最多,春季偏冷年份最多;近60 a极端最高气温有显著的年际变化,暖夜日数呈增多趋势,冷夜日数呈减少趋势,暖昼日数较冷昼日数增多明显,昼指数变化较夜指数变化明显,热指数呈上升趋势,冷指数呈下降趋势,进一步说明商洛呈增温趋势。  相似文献   

6.
利用华中区域(河南、湖北、湖南3省)42站1960~2005年逐月平均最高、最低气温资料,计算并详细分析了该区域年(季、月)平均最高、最低气温和气温日较差的线性变化趋势、突变性及周期性特征。结果发现:1)华中区域年平均最高、最低气温均呈现上升趋势,年平均气温日较差呈减小趋势,其中年平均最低气温变化最显著。2)平均最高气温在春、秋、冬均呈上升趋势;平均最低气温四季均呈上升趋势,其中春、冬季变化显著;平均气温日较差在夏、冬季下降趋势较为明显,其中以冬季降幅最大。3)全年有4个月平均最高气温呈下降趋势,其中8月最为显著;平均最低气温在冬、春季为明显上升趋势,其他月变化趋势不显著;平均气温日较差在冬、夏季呈明显下降趋势,其中1月最为显著。4)年平均最高、最低气温在20世纪90年代经历了一次由冷变暖的明显突变;四季中,平均最高气温春、冬季突变显著,平均最低气温春、夏季突变显著。5)年平均最高、最低气温存在显著的2~4a周期变化。  相似文献   

7.
利用1951—2009年南京日平均气温、日最高气温以及日最低气温等资料,分析了南京日最高气温和最低气温的长期演变趋势及其与平均温度的关系。结果表明:近60 a来,南京年平均气温、年平均最高气温、年平均最低气温均呈变暖趋势,20世纪90年代增温尤为明显;日最高气温,除夏季表现为降温趋势外,其他季节均为升温趋势;而四季平均气温和平均最低气温均为增温趋势;夏季气温日较差下降趋势明显,导致夏季昼夜温差减小;极端高温、低温的发生日数均呈下降趋势。极端气温与平均气温之间存在明显的相关性,且极端低温对平均气温影响更为明显。  相似文献   

8.
兰州最高最低气温的非对称变化   总被引:1,自引:1,他引:1  
林纾  吴红 《气象科技》2004,32(6):444-449
分析了兰州1932~2002年年平均气温、年平均最高和最低气温及年平均气温日较差的气候变化特征。分析表明:1932年以来,4个气温要素的线性增温率依次为每10年0.14℃、0.06℃、0.38℃、-0.32℃。兰州20世纪40年代最高气温对增暖的贡献大,80年代最低气温对增暖的贡献大,而90年代的异常偏暖表现为最高和最低气温的同时上升。另外,在40年代各季平均最高和最低气温均呈相反的趋势,表现为最高气温的上升和最低气温的下降;在1950~1970年间最高和最低气温的变化趋势和幅度非常接近,但维持时间各季略有不同;80年代以来,最低和最高气温均在上升,但最低气温的增温率明显高于最高气温的增温率。  相似文献   

9.
西安市65年气温的变化分析   总被引:8,自引:0,他引:8  
根据西安市1932~1996年的年、夏季(6~8)月、冬季(12~2月)平均气温资料以及1月和7月的历年逐日最高、最低气温资料,研究其总的气温变化趋势、冷暖阶段以及最高、最低气温的非对称变化和年际变化.结果表明:自本世纪30年代开始,西安气温呈上升趋势,至40年代前期达到最高,此后下降,50年代前期降至最低,80年代开始回升,1932~1949年为偏暖阶段,1950~1996年为偏冷阶段;1月的最低气温线性增长率为0.0471℃/a;7月的最高气温以-0.0219℃/a的递减率线性降低,增长率与递减率均低于全国水平,其结果导致西安冬季相对偏冷,夏季相对炎热,日较差呈明显下降趋势。  相似文献   

10.
王淼 《陕西气象》2019,(2):19-21
采用宜君气象站1968—2017年地面观测资料,分析宜君县近50 a年平均气温、季平均气温、月平均气温及年极端最高气温、极端最低气温的气候变化特征。结果表明:宜君县近50 a年平均气温总体呈上升趋势,其线性变化趋势率为0.362℃/10 a,20世纪90年代末(1997年)之前为偏冷期,之后为偏暖期;冬季和春季气温变化显著,夏、秋季变化不明显;年平均最高气温和平均最低气温变化趋势与年平均气温变化趋势一致。  相似文献   

11.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

12.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

13.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

14.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
正AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography.  相似文献   

17.
《大气和海洋科学快报》2014,7(6):F0003-F0003
AIMS AND SCOPE
Atmospheric and Oceanic Science Letters (AOSL) publishes short research letters on all disciplines of the atmosphere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

18.
《大气和海洋科学快报》2014,(5):F0003-F0003
AIMS AND SCOPE Atmospheric and Oceanic Science Letters (AOSL) pub- lishes short research letters on all disciplines of the atmos- phere sciences and physical oceanography. Contributions from all over the world are welcome.  相似文献   

19.
20.
正Aims Scope Advances in Atmospheric Sciences(AAS)is an international journal on the dynamics,physics,and chemistry of the atmosphere and ocean with papers across the full range of the atmospheric sciences,co-published bimonthly by Science Press and Springer.The journal includes Articles,Note and Correspondence,and Letters.Contributions from all over the world are welcome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号