首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
全新世北大西洋冷事件   总被引:1,自引:0,他引:1  
对北大西洋冷事件的研究至今不过10a左右,这个问题之所以令人关注,主要是因为它一,能反映了北大西洋经向翻转环流(MOC)的强度变化。MOC足全球热盐环流(THC)的重要组成部分。发生冷事件时,北大西洋表层为融冰淡水所控制,这抑制了北大西洋深水(NADW)的形成,使得MOC减弱,向北输送的热量大为减少,给欧洲带来冷干气候。近年来对北大西洋冷事件有了比较详细的了解,得到了较为一致的年表。  相似文献   

2.
全球海气耦合模式中热盐环流对大气强迫的响应   总被引:16,自引:4,他引:16  
周天军 《气象学报》2003,61(2):164-179
大气环流与热盐环流 (THC)变化之间的因果关系 ,是海气相互作用研究领域的一个悬而未决的问题。作者利用一个全球海气耦合模式 -挪威卑尔根气候模式 (BCM)的 3 0 0a积分结果 ,讨论了冬季北大西洋涛动 (NAO)对海洋的强迫与热盐环流的年际调整之间的关系。结果发现 ,在NAO活动的正位相 ,伴随着中纬度西风带的加强 ,北大西洋拉布拉多海热通量损失剧增 ,同时海表盐度出现正距平 ,二者的共同作用 ,令表层海水变沉、密度增大 ,海洋层结出现不稳定 ,导致深对流发生。在NAO活动达到最强劲状态之后 3个月 ,拉布拉多海对流也达到最深。北大西洋热盐环流强度变化对拉布拉多海对流活动的响应 ,要滞后 3a左右。而在年际尺度上 ,大西洋的极向热输送变化和热盐环流的变化则基本是同步的。对流活动对大气存在明显的反馈作用。在对流活动深度达到最大之后 1~4个月 ,对流热释放令拉布拉多海表层气温明显升高  相似文献   

3.
李伊吟  智海  林鹏飞  刘海龙  于溢 《大气科学》2018,42(6):1263-1272
海洋在气候变暖过程中的重要性通常用海洋热吸收来衡量,热吸收的大小影响全球变暖的幅度。本文利用FGOALS-g2、FGOALS-s2(以下分别缩写为g2、s2)两个耦合模式的CO2浓度以每年1%速率增长(1pctCO2)试验,评估和分析海洋热吸收与气候敏感度的关系。结果表明:进入海洋净热通量(s2模式大于g2模式)会使得s2模式的海洋热吸收总体比g2模式大;更为重要的是,由于s2模式中的海洋热吸收主要集中在上层,使得耦合模式s2中的瞬态气候响应(TCR,或称气候敏感度)比g2大。当CO2浓度加倍时,在两个耦合模式中,海洋热吸收的空间分布呈现显著性的差异,s2模式中上层热吸收明显比深层大,上层热吸收主要位于太平洋和印度洋,而g2模式中上层和深层热吸收差别较小,深层主要位于大西洋和北冰洋。进一步研究表明,海洋热吸收分布特征与两个耦合模式海洋环流变化有关。在g2模式中北大西洋经圈翻转环流(AMOC)强度强且深度大,在CO2浓度加倍时,AMOC减弱小,这样AMOC可将热量带到海洋的深层,增加海洋深层热吸收。而在s2模式中,平均AMOC弱且浅,在CO2浓度加倍时,AMOC减弱明显,热量不易到达深层,主要集中在海洋上层,对气候敏感度影响更快且更强。海洋环流导致热吸收及其空间差异同时影响到气候敏感度的差异。因此,探讨海洋热吸收与气候敏感度之间的关系,利于明确气候敏感度不确定性的来源。  相似文献   

4.
大气中CO2等温室气体的增加,使全球气候有可能变暖。未来气候将如何变化?对人类会有什么影响?我们应该采取什么对策?科学工作者对这些问题从不同的角度进行了广泛的探讨。现代的气候研究手段──大气环流模拟试验表明,大气中CO2浓度增加,全球表面平均温度可能升高,南北极冰原的大量融化会导致海平面上升,海岸和河口会发生变化,对生态、农业、水资源、甚至整个社会经济产生广泛的影响。卫气候变暖及其对海洋的影响随着气温的升高,高山冰川和极地冰架消融,海水体积膨胀,导致海平面上升。在过去100年间,全球表面平均温度上升0.…  相似文献   

5.
极端天气与气候事件受到全球变暖影响吗?   总被引:2,自引:0,他引:2  
<正>极端天气与气候事件对社会与经济和公众生活与生命的影响很大,因此受到公众和政策制定者的极犬关注。近些年的热点问题是:在全球变暖的背景下,极端天气与气候事件是否会受到影响?要回答这个问题,首先需要了解近些年使用的耦合模式比较计划第五阶段(CMIP5)气候模式对极端天气与气候事件的模拟效果,其次是利用CMIP5气候模式评估观洲到的极端天气与气候事件的变化是否是由全球变暖造成的,最后是利用CMIP5气候模式考  相似文献   

6.
气候变化的归因与预估模拟研究   总被引:14,自引:2,他引:12  
本文总结了近五年来中国科学院大气物理研究所在气候变暖的归因模拟与预估研究上的主要进展。研究表明,利用海温、太阳辐射和温室气体等实际强迫因子驱动大气环流模式,能够较为合理地模拟全球平均地表气温在20世纪的演变,但是难以模拟出包括北大西洋涛动/北极涛动和南极涛动在内的高纬度环流的长期变化趋势。利用温室气体和硫酸盐气溶胶等“历史资料”驱动气候系统模式,能够较好地模拟出20世纪后期的全球增暖,但如果要再现20世纪前期(1940年代)的变暖,还需同时考虑太阳辐射等自然外强迫因子。20世纪中国气温演变的耦合模式模拟技巧,较之全球平均情况要低;中国气候在1920年代的变暖机理目前尚不清楚。对于近50年中国东部地区“南冷北暖”、“南涝北旱”的气候变化,基于大气环流模式特别是区域气候模式的数值试验表明,夏季硫酸盐气溶胶的负辐射效应超过了温室气体的增暖效应,从而对变冷产生贡献。但现有的数值模拟证据,不足以说明气溶胶增加对“南涝北旱”型降水异常有贡献。20世纪中期以来,青藏高原主体存在明显增温趋势,温室气体浓度的增加对这种增暖有显著贡献。多模式集合预估的未来气候变化表明,21世纪全球平均温度将继续增暖,增温幅度因不同排放情景而异;中国大陆年均表面气温的增暖与全球同步,但增幅在东北、西部和华中地区较大,冬季升温幅度高于夏季、日最低温度升幅要强于日最高温度;全球增暖有可能对我国中东部植被的地理分布产生影响。伴随温室气体增加所导致的夏季平均温度升高,极端温度事件增多;在更暖的气候背景下,中国大部分地区总降水将增多,极端降水强度加大且更频繁发生,极端降水占总降水的比例也将增大。全球增暖有可能令大洋热盐环流减弱,但是减弱的幅度因模式而异。全球增暖可能不是导致北太平洋副热带-热带经圈环流自20世纪70年代以来变弱的原因。文章同时指出了模式预估结果中存在的不确定性。  相似文献   

7.
NCAR的Andrew Monaghan等的研究认为,以前的全球气候模拟都过高估计了南极的变暖。该发现有助于改进气候模式,搞清楚南极大陆在本世纪是否会显著变暖这一有关全球海平面上升的热点问题。该文发表在2008年4月5日的Geophysical Research Letters杂志上。他们首次将过去50~100年的南极气候记录与模拟结果进行比较,发现在过去的100年中,南极大部分地区并未经历足以影响全球的变暖,并通过探测数据验证了气候模式对其他6个大陆气候的模拟。  相似文献   

8.
正城市化不是引起高温的唯一原因,大气环流和全球气候变暖也可能是引起高温的主要原因,深入对比研究大气环流和城市化对高温的影响将是未来研究的重点。改革开放以来,中国的城市化进程加快,极端高温天气发生越来越频繁,呈现出强度大、频次高、范围广等特点,极端高温事件往往与特重干旱相伴而来,严重威胁人们的生命及能源、水资源和粮食安全等。高温热浪在夏季严重影响人体健康,甚至会造成死亡。高温还使用水量、用电量急剧上升,从而给人  相似文献   

9.
盐度是海洋的一个基本状态变量,在海洋环流中起着重要的作用。少量的盐通量扰动都会改变海洋的经向翻转环流和海表温盐场。因此,本文使用了海洋环流模式LICOM2.0研究了不同盐度边界条件对全球总盐量、海表盐度和大西洋经圈翻转环流模拟的影响。结果表明:洋面上的弱恢复项对合理地模拟海表盐度起着重要的作用,且对全球总盐量起着递增的作用;在虚盐通量中使用模拟的海表盐度而非定常的参考盐度能够更合理地模拟大西洋经圈翻转环流;除此之外,含有实盐通量的盐度边界条件能够更好地维持全球总盐量的守恒。  相似文献   

10.
《气候变化研究进展》2007,3(6):I0001-I0006
*总目录左端数字为期号-页码研究论文1-1大西洋热盐环流与气候突变王召民1-8海洋对全球变暖的响应及南海观测证据刘长建杜岩张庆荣等2-63气候变化科学的最新认知秦大河陈振林罗勇等3-125气候变化影响的最新认知林而达吴绍洪戴晓苏等3-132天山乌鲁木齐河源1号冰川消融对气候变化的响应李忠勤沈永平王飞腾等4-187减缓气候变化的最新科学认知潘家华孙翠华邹骥等6-311气候变化科学的最新进展:IPCC第四次评估综合报告解析秦大河罗勇陈振林等6-315青藏铁路适应气候变化的筑路工程技术3-144极端降水事件变化的观测研究翟盘茂王萃萃李威3-1492006…  相似文献   

11.
The occurrence of past and future abrupt climate change, such as could occur under thermohaline circulation (THC) weakening, is increasingly evident in the paleoclimate record and model experiments. We examine potential responses of ecosystem structure and function to abrupt climate change using temperature and precipitation patterns generated by HadCM3 in response to forced THC weakening. The large changes in potential ecosystem structure and function that occur are not focused in the North Atlantic region where temperature sensitivity to THC is highest but occur throughout the world in response to climate system teleconnections. Thus, THC weakening, which is often viewed as a European problem, has globally distributed ecosystem implications. Although temperature changes associated with THC weakening affect the extent of several high latitude biomes, the distribution of ecosystem change results primarily from changes in the hydrological cycle. Currently there remains large uncertainty in climate model projections of the hydrological cycle. Therefore, the predictions of the magnitude andlocation of ecosystem perturbations will also be characterized by large uncertainty, making impact assessment, and thus adaptation, more difficult. Finally, these results illustrate the importance of scale and disaggregation in assessing ecosystem responses. Small globally aggregated ecosystem responses to THC weakening, approximately five percent for NPP and biomass, mask large local and regional changes.  相似文献   

12.
《Climate Policy》2001,1(4):433-449
One of the most controversial conclusions to emerge from many of the first generation of integrated assessment models (IAMs) of climate policy was the perceived economic optimality of negligible near-term abatement of greenhouse gases. Typically, such studies were conducted using smoothly varying climate change scenarios or impact responses. Abrupt changes observed in the climatic record and documented in current models could substantially alter the stringency of economically optimal IAM policies. Such abrupt climatic changes — or consequent impacts — would be less foreseeable and provide less time to adapt, and thus would have far greater economic or environmental impacts than gradual warming. We extend conventional, smooth IAM analysis by coupling a climate model capable of one type of abrupt change to a well-established energy–economy model (DICE). We compare the DICE optimal policy using the standard climate sub-model to our version that allows for abrupt change — and consequent enhanced climate damage — through changes in the strength (and possible collapse) of the North Atlantic thermohaline circulation (THC). We confirm the potential significance of abrupt climate change to economically optimal IAM policies, thus calling into question all previous work neglecting such possibilities — at the least for the wide ranges of relevant social and climate system parameters we consider. In addition, we obtain an emergent property of our coupled social–natural system model: “optimal policies” that do consider abrupt changes may, under relatively low discount rates, calculate emission control levels sufficient to avoid significant abrupt change, whereas “optimal policies” disregarding abrupt change would not prevent this non-linear event. However, there is a threshold in discount rate above which the present value of future damages is so low that even very large enhanced damages in the 22nd century, when a significant abrupt change such as a THC collapse would be most likely to occur, do not increase optimal control levels sufficiently to prevent such a collapse. Thus, any models not accounting for potential abrupt non-linear behavior and its interaction with the discounting formulation are likely to miss an important set of possibilities relevant to the climate policy debate.  相似文献   

13.
This paper is a review of the recent development of researches on the stability of the Atlantic meridional overturning circulation (AMOC). In particular, we will review recent studies that attempt to best assess the stability of the AMOC in the past, present, and future by using a stability indicator related to the freshwater transport by the AMOC. These studies further illustrate a potentially systematic bias in the state-of-the-art atmosphere-ocean generM circulation models (AOCCMs), in which the AMOCs seem to be over-stabilized relative to that in the real world. This common model bias in the AMOC stability is contributed, partly, to a common tropical bias associated with the double intertropical convergence zone (ITCZ) in most state-of-the- art AOGCMs, casting doubts on future projection of abrupt climate changes in these climate models.  相似文献   

14.
Precipitation: A Parameter Changing Climate and Modified by Climate Change   总被引:2,自引:0,他引:2  
This paper discusses two aspects of climate modeling, the deep water formation in the North Atlantic and precipitation changes due to climate change caused by anthropogenic emissions of greenhouse gases. The deep water formation is strongly influenced by the precipitation, and the precipitation is affected by the concentration of the greenhouse gases in the atmosphere and by the atmospheric and oceanic circulation. The experiments discussed here have been performed independently to test the stability of the thermohaline circulation of the North Atlantic and to investigate changes in precipitation due to anthropogenic greenhouse gas emissions. The precipitation changes in a climate change environment are sufficient in some simulations to decrease the thermohaline circulation noticeably. However, it appears that the amount of freshwater needed to bring the circulation to a collapse is magnitudes larger than the anticipated change in precipitation due to anthropogenic activities within the next 100 years. The precipitation changes, on the other hand, might change regionally quite drastically towards more extreme situations, thereby putting additional stress on vegetation and enhancing soil erosion.  相似文献   

15.
Mediterranean Outflow Water (MOW) is thought to be a key contributor to the strength and stability of Atlantic Meridional Overturning Circulation (AMOC), but the future of Mediterranean-Atlantic water exchange is uncertain. It is chiefly dependent on the difference between Mediterranean and Atlantic temperature and salinity characteristics, and as a semi-enclosed basin, the Mediterranean is particularly vulnerable to future changes in climate and water usage. Certainly, there is strong geologic evidence that the Mediterranean underwent dramatic salinity and sea-level fluctuations in the past. Here, we use a fully coupled atmosphere–ocean General Circulation Model to examine the impact of changes in Mediterranean-Atlantic exchange on global ocean circulation and climate. Our results suggest that MOW strengthens and possibly stabilises the AMOC not through any contribution towards NADW formation, but by delivering relatively warm, saline water to southbound Atlantic currents below 800 m. However, we find almost no climate signal associated with changes in Mediterranean-Atlantic flow strength. Mediterranean salinity, on the other hand, controls MOW buoyancy in the Atlantic and therefore affects its interaction with the shallow-intermediate circulation patterns that govern surface climate. Changing Mediterranean salinity by a factor of two reorganises shallow North Atlantic circulation, resulting in regional climate anomalies in the North Atlantic, Labrador and Greenland-Iceland-Norwegian Seas of ±4 °C or more. Although such major variations in salinity are believed to have occurred in the past, they are unlikely to occur in the near future. However, our work does suggest that changes in the Mediterranean’s hydrological balance can impact global-scale climate.  相似文献   

16.
The dynamics of the North Atlantic subpolar gyre (SPG) are assessed under present and glacial boundary conditions by investigating the SPG sensitivity to surface wind-stress changes in a coupled climate model. To this end, the gyre transport is decomposed in Ekman, thermohaline, and bottom transports. Surface wind-stress variations are found to play an important indirect role in SPG dynamics through their effect on water-mass densities. Our results suggest the existence of two dynamically distinct regimes of the SPG, depending on the absence or presence of deep water formation (DWF) in the Nordic Seas and a vigorous Greenland?CScotland ridge (GSR) overflow. In the first regime, the GSR overflow is weak and the SPG strength increases with wind-stress as a result of enhanced outcropping of isopycnals in the centre of the SPG. As soon as a vigorous GSR overflow is established, its associated positive density anomalies on the southern GSR slope reduce the SPG strength. This has implications for past glacial abrupt climate changes, insofar as these can be explained through latitudinal shifts in North Atlantic DWF sites and strengthening of the North Atlantic current. Regardless of the ultimate trigger, an abrupt shift of DWF into the Nordic Seas could result both in a drastic reduction of the SPG strength and a sudden reversal in its sensitivity to wind-stress variations. Our results could provide insight into changes in the horizontal ocean circulation during abrupt glacial climate changes, which have been largely neglected up to now in model studies.  相似文献   

17.
Most state-of-the art global coupled models simulate a weakening of the Atlantic meridional overturning circulation (MOC) in climate change scenarios but the mechanisms leading to this weakening are still being debated. The third version of the CNRM (Centre National de Recherches Météorologiques) global atmosphere-ocean-sea ice coupled model (CNRM-CM3) was used to conduct climate change experiments for the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4). The analysis of the A1B scenario experiment shows that global warming leads to a slowdown of North Atlantic deep ocean convection and thermohaline circulation south of Iceland. This slowdown is triggered by a freshening of the Arctic Ocean and an increase in freshwater outflow through Fram Strait. Sea ice melting in the Barents Sea induces a local amplification of the surface warming, which enhances the cyclonic atmospheric circulation around Spitzberg. This anti-clockwise circulation forces an increase in Fram Strait outflow and a simultaneous increase in ocean transport of warm waters toward the Barents Sea, favouring further sea ice melting and surface warming in the Barents Sea. Additionally, the retreat of sea ice allows more deep water formation north of Iceland and the thermohaline circulation strengthens there. The transport of warm and saline waters toward the Barents Sea is further enhanced, which constitutes a second positive feedback.  相似文献   

18.
中国、北半球和全球的气温突变分析及其趋势预测研究   总被引:37,自引:0,他引:37  
魏凤英  曹鸿兴 《大气科学》1995,19(2):40-148
本文采用均值差异假设检验研究了中国、北半球和全球气温历史序列的突变现象。分析表明,中国气温从本世纪以来,在40年代末扣年代初曾出现一次由暖到冷的突变。北半球和全球均曾在19世纪末和本世纪20年代发生了突变现象。功率谱分析表明,气温的突变指数曲线具有明显的周期性。一系列比较研究证明,按照分析出的突变点将气温序列分段建模,无论数值误差还是变化趋势,效果均优于整段序列的模型。所以,对未来气温变化趋势作预测,应首先搞清楚未来会处在怎样的气候阶段中,会不会出现突变。研究表明,本文叙述的均生函数累加延拓的时序建模方案,对气温序列有很好的拟合和预测效果。  相似文献   

19.
The adaptation of agriculture and forestry to the climate of the twenty-first century supposes that research projects will be conducted cooperatively between meteorologists, agronomists, soil scientists, hydrologists, and modellers. To prepare for it, it is appropriate first of all to study the variations in the climate of the past using extensive, homogenised series of meteorological or phenological data. General circulation models constitute the basic tool in order to predict future changes in climate. They will be improved, and the regionalisation techniques used for downscaling climate predictions will also be made more efficient. Crop simulation models using input data from the general circulation models applied at the regional level ought to be the favoured tools to allow the extrapolation of the major trends on yield, consumption of water, fertilisers, pesticides, the environment and rural development. For this, they have to be validated according to the available agronomical data, particularly the available phenological series on cultivated crops. In addition, climate change would have impact on crop diseases and parasites, as well as on weeds. Very few studies have been carried out in this field. It is also necessary to quantify in a more accurate way the stocks and fluxes of carbon in large forest ecosystems, simulate their future, and assess the vulnerability of the various forest species to a change in climate. This is all the more important in that some propagate species choices must be made in the course of the next ten years in plantations which will experience changed climate. More broadly speaking, we shall have not only to try hard to research new agricultural and forestry practices which will reduce greenhouse gas emissions or promote the storage of carbon, but it will also be indispensable to prepare the adaptation of numerous rural communities for the climate change (with special reference to least developed countries in tropical areas, where malnutrition is a common threat). This can be accomplished with a series of new environmental management practices suited to the new climatic order.  相似文献   

20.
The hydrological cycle can influence climate through a great variety of processes. A good representation of the hydrological cycle in climate models is therefore crucial. Attempts to analyse the global hydrological cycle are hampered by a deficiency of suitable observations, particularly over the oceans. Fully coupled general circulation models are potentially powerful tools in interpreting the limited observational data in the context of large-scale freshwater exchanges. We have looked at large-scale aspects of the global freshwater budget in a simulation, of over 1000 years, by the Hadley Centre coupled climate model (HadCM3). Many aspects of the global hydrological cycle are well represented, but the model hydrological cycle appears to be too strong, with overly large precipitation and evaporation components in comparison with the observational datasets we have used. We show that the ocean basin-scale meridional transports of freshwater come into near balance with the surface freshwater fluxes on a time scale of about 400 years, with the major change being a relative increase of freshwater transport from the Southern Ocean into the Atlantic Ocean. Comparison with observations, supported by sensitivity tests, suggests that the major cause of a drift to more saline condition in the model Atlantic is an overestimate of evaporation, although other freshwater budget components may also play a role. The increase in ocean freshwater transport into the Atlantic during the simulation, primarily coming from the overturning circulation component, which changes from divergent to convergent, acts to balance this freshwater budget deficit. The stability of the thermohaline circulation in HadCM3 may be affected by these freshwater transport changes and this question is examined in the context of an existing conceptual model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号