首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike’s track, resulting in better forecasts.  相似文献   

2.
A Study on Retrieving Atmospheric Profiles from EOS/AIRS Observations   总被引:5,自引:0,他引:5  
1. IntroductionThe development of global climate and weathermodels requires accurate monitoring of atmospherictemperature and moisture profiles, as well as the con-tents of trace gases and aerosols. It is quite difficultto monitor continuously these parameters on a globalscale.Until recently. AIRS (Atmospheric InfraredSounder) offers a new opportunity to improve globalmonitoring of temperature, moisture, and ozone distri-butions and changes therein. The high spectral resolu-tion (v/Δv ? 12…  相似文献   

3.
利用AIRS卫星资料反演大气廓线Ⅰ.特征向量统计反演法   总被引:2,自引:0,他引:2  
引进美国威斯康星大学的IMAPP(International MODIS/AIRS Preprocessing Package)软件包,介绍了利用高光谱分辨率大气红外探测器AIRS(Atmospheric Infrared Sounder)观测辐射值,用特征向量统计法反演大气温度、湿度等垂直廓线的算法,采用亮度温度分类和扫描角分类回归后,减小了反演误差。并将其应用到中国地区,通过与无线电探空值及欧洲中期天气预报中心ECMWF(European Center of Medium-range Weather Forecasts)客观分析场的比较,结果表明:该方法所获得的温度、水汽反演结果与探空观测及ECMWF大气廓线分布一致,且AIRS因其高光谱分辨率(即高垂直空间分辨率)显示了精细的大气结构。  相似文献   

4.
The global model analysis has significant impact on the mesoscale model forecast as global model provides initial condition (IC) and lateral boundary conditions (LBC) for the mesoscale model. With this objective, four operational global model analyses prepared from the European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS), NCEP Global Forecasting System (GFS), and National Centre for Medium Range Weather Forecasting (NCMRWF) are used daily to generate IC and LBC of the mesoscale model during 13th December 2012 to 13th January 2013. The Weather Research and Forecasting (WRF) model version 3.4, broadly used for short-range weather forecast, is adopted in this study as mesoscale model. After initial comparison of global model analyses with Atmospheric Infrared Sounder (AIRS) retrieved temperature and moisture profiles, daily WRF model forecasts initialized from global model analyses are compared with in situ observations and AIRS profiles. Results demonstrated that forecasts initialized from the ECMWF analysis are closer to AIRS-retrieved profiles and in situ observations compared to other global model analyses. No major differences are occurred in the WRF model forecasts when initialized from the NCEP GDAS and GFS analyses, whereas these two analyses have different spatial resolutions and observations used for assimilation. Maximum RMSD is seen in the NCMRWF analysis-based experiments when compared with AIRS-retrieved profiles. The rainfall prediction is also improved when WRF model is initialized from the ECMWF analysis compared to the NCEP and NCMRWF analyses.  相似文献   

5.
利用经济省时的降维投影四维变分同化方法(DRP-4DVar),在2009年7月22~23日江淮流域的一次大暴雨过程中同化晴空条件下高光谱大气红外探测仪(AIRS)反演温度、湿度廓线,改进此次强降水过程的模拟。试验结果分析显示,同化AIRS反演的温度及湿度场后,基于四维变分同化系统的模式约束,能够改进湿度场、高度场、高低层散度场。从累积降水量偏差图及同化试验增量图可以看到,正降水量偏差对应于正湿度增量、负位势高度增量及低层负散度高层正散度增量,负降水量偏差则与之相反。同化试验较参照试验可更好地模拟出暴雨的天气形势、对暴雨的落区及强度有更好的反映。此外,从单次同化与连续同化的试验对比结果看出,连续同化试验结果较单次同化结果有进一步的改进,说明不断加入新的观测资料可以更好地模拟强降水过程。  相似文献   

6.
In this paper we investigate the impact of the Atmospheric Infra-Red Sounder (AIRS) temperature retrievals on data assimilation and the resulting forecasts using the four-dimensional Local Ensemble Transform Kalman Filter (LETKF) data assimilation scheme and a reduced resolution version of the NCEP Global Forecast System (GFS). Our results indicate that the AIRS temperature retrievals have a significant and consistent positive impact in the Southern Hemispheric extratropics on both analyses and forecasts, which is found not only in the temperature field but also in other variables. In tropics and the Northern Hemispheric extratropics these impacts are smaller, but are still generally positive or neutral.  相似文献   

7.
The physical retrieval algorithm of atmospheric temperature and moisture distribution from the Atmospheric InfraRed Sounder (AIRS) radiances is presented. The retrieval algorithm is applied to AIRS clear-sky radiance measurements. The algorithm employs a statistical retrieval followed by a subsequent nonlinear physical retrieval. The regression coefficients for the statistical retrieval are derived from a dataset of global radiosonde observations (RAOBs) comprising atmospheric temperature, moisture, and ozone profiles. Evaluation of the retrieved profiles is performed by a comparison with RAOBs from the Atmospheric Radiation Measurement (ARM) Program Cloud And Radiation Testbed (CART) in Oklahoma, U. S. A.. Comparisons show that the physically-based AIRS retrievals agree with the RAOBs from the ARM CART site with a Root Mean Square Error (RMSE) of 1K on average for temperature profiles above 850 hPa, and approximately 10% on average for relative humidity profiles. With its improved spectral resolution, AIRS depicts more detailed structure than the current Geostationary Operational Environmental Satellite (GOES) sounder when comparing AIRS sounding retrievals with the operational GOES sounding products.  相似文献   

8.
Extending an earlier study, the best track minimum sea level pressure (MSLP) data are assimilated for landfalling Hurricane Ike (2008) using an ensemble Kalman filter (EnKF), in addition to data from two coastal ground-based Doppler radars, at a 4-km grid spacing. Treated as a sea level pressure observation, the MSLP assimilation by the EnKF enhances the hurricane warm core structure and results in a stronger and deeper analyzed vortex than that in the GFS (Global Forecast System) analysis; it also improves the subsequent 18-h hurricane intensity and track forecasts. With a 2-h total assimilation window length, the assimilation of MSLP data interpolated to 10-min intervals results in more balanced analyses with smaller subsequent forecast error growth and better intensity and track forecasts than when the data are assimilated every 60 minutes. Radar data are always assimilated at 10-min intervals. For both intensity and track forecasts, assimilating MSLP only outperforms assimilating radar reflectivity (Z) only. For intensity forecast, assimilating MSLP at 10-min intervals outperforms radar radial wind (Vr) data (assimilated at 10-min intervals), but assimilating MSLP at 60-min intervals fails to beat Vr data. For track forecast, MSLP assimilation has a slightly (noticeably) larger positive impact than Vr(Z) data. When Vr or Z is combined with MSLP, both intensity and track forecasts are improved more than the assimilation of individual observation type. When the total assimilation window length is reduced to 1h or less, the assimilation of MSLP alone even at 10-min intervals produces poorer 18-h intensity forecasts than assimilating Vr only, indicating that many assimilation cycles are needed to establish balanced analyses when MSLP data alone are assimilated; this is due to the very limited pieces of information that MSLP data provide.  相似文献   

9.
The Atmospheric Infrared Sounder(AIRS) provides twice-daily global observations of brightness temperature, which can be used to retrieve the total column ozone with high spatial and temporal resolution.In order to apply the AIRS ozone data to numerical prediction of tropical cyclones, a four-dimensional variational(4DVAR) assimilation scheme on selected model levels is adopted and implemented in the mesoscale non-hydrostatic model MM5. Based on the correlation between total column ozone and potential vorticity(PV), the observation operator of each level is established and five levels with highest correlation coefficients are selected for the 4DVAR assimilation of the AIRS total column ozone observations. The results from the numerical experiments using the proposed assimilation scheme for Hurricane Earl show that the ozone data assimilation affects the PV distributions with more mesoscale information at high levels first and then influences those at middle and low levels through the so-called asymmetric penetration of PV anomalies.With the AIRS ozone data being assimilated, the warm core of Hurricane Earl is intensified, resulting in the improvement of other fields near the hurricane center. The track prediction is improved mainly due to adjustment of the steering flows in the assimilation experiment.  相似文献   

10.
AIRS资料质量控制对飓风路径模拟的影响试验   总被引:1,自引:2,他引:1       下载免费PDF全文
对WRFDA模式中AIRS亮温资料质量控制方案进行了检验,并以美国Earl飓风为例进行数值试验,研究了质量控制方案对飓风路径模拟的影响。试验结果表明:WRFDA模式中11条质量控制原则对红外高光谱AIRS亮温资料的同化效果影响很大,不论是加入逐条质量控制原则,还是缺席某条质量控制原则,飓风路径的模拟情况都比不上控制试验;而在所有质量控制原则都加入之后,在大部分模拟时段内同化试验中模拟的飓风路径偏差都要小于控制试验,而且同化试验中最大路径偏差也小于控制试验。不同的质量控制原则对观测资料的过滤能力也不一样,其中地表发射率Jacobian分量检测、临边检测、云检测和SST检测等4个质量控制原则剔除卫星资料数量相对较多。本文中AIRS亮温资料质量控制方案的对比试验,可以为中国发展红外高光谱卫星系统提供非常有益的借鉴和参考。  相似文献   

11.
为评价静止卫星大气温度廓线产品资料同化对飓风预报的影响,以2018年飓风“迈克尔”为例,选用GOES-16温度廓线产品,开展静止卫星资料同化及其对飓风预报影响的研究。首先,通过评估温度廓线产品精度,选取质量较好的高度层并以统计的各层均方根误差作为观测误差用于同化试验;然后,利用WRF-3DVar系统进行不同稀疏化及不同同化频次的循环同化敏感性试验;最后,利用WRF模式开展24 h数值预报。试验结果表明,在飓风“迈克尔”期间温度廓线在200~1 000 hPa之间的误差在2 K以内,将水平分辨率稀疏化为模式分辨率的6倍且循环同化频次为6 h时同化该资料对模式的初始场有最为合理的改进,从大尺度环境场上看使模式具备更合理的环流形势,能够有效提高对飓风的路径及强度的预报效果,更准确地模拟降水落区及美国佛罗里达州等降水关键区域的雨强。   相似文献   

12.
臧欣  官莉 《大气科学学报》2015,38(4):510-517
利用2009年不同季节COSMIC湿反演的大气温度和相对湿度廓线数据,分别与时、空相匹配的ECMWF(European Centre for Medium-Range Weather Forecasts,欧洲中尺度天气预报中心)、NCEP(National Centers for Environmental Prediction,美国环境预报中心)模式客观分析场和无线电探空观测数据,进行全球范围的比较分析.初步研究表明,无论夏季还是冬季,各种资料源之间相互比较的偏差和标准差分布相似,与季节无关.就温度而言,三种资料源的温度水平、垂直分布都很接近,ECMWF模式数据比NCEP不论是温度廓线还是湿度廓线都更接近COSMIC反演值.模式的水汽客观分析场在对流层基本上都比无线电探空观测值偏湿,对流层中高层在大部分海洋地区也比COSMIC反演场偏湿.COSMIC反演的相对湿度相对于无线电探空整层偏大,具有明显正偏差,在300 hPa偏差达最大值(约30%).  相似文献   

13.
Satellite hyperspectral infrared sounder measurements have better horizontal resolution than other sounding techniques as it boasts the stratospheric gravity wave (GW) analysis. To accurately and efficiently derive the three- dimensional structure of the stratospheric GWs from the single-field-of-view (SFOV) Atmospheric InfraRed Sounder (AIRS) observations, this paper firstly focuses on the retrieval of the atmospheric temperature profiles in the altitude range of 20-60 km with an artificial neural network approach (ANN). The simulation experiments show that the retrieval bias is less than 0.5 K, and the root mean square error (RMSE) ranges from 1.8 to 4 K. Moreover, the retrieval results from 20 granules of the AIRS observations with the trained neural network (AIRS_SFOV) and the corresponding operational AIRS products (AIRS_L2) as well as the dual-regression results from the Cooperative Institute for Meteorological Satellite Studies (CIMSS) (AIRS_DR) are compared respectively with ECMWF T799 data. The comparison indicates that the standard deviation of the ANN retrieval errors is significantly less than that of the AIRS_DR. Furthermore, the analysis of the typical GW events induced by the mountain Andes and the typhoon "Soulik" using different data indicates that the AIRS_SFOV results capture more details of the stratospheric gravity waves in the perturbation amplitude and pattern than the operational AIRS products do.  相似文献   

14.
Li Jun 《大气科学进展》1995,12(2):255-258
TheCapabilityofAtmosphericProfileRetrievalfromSatelliteHighResolutionInfraredSounderRadiancesLiJun(李俊)(Cooperativeinstitutefo...  相似文献   

15.
Intensity forecasting is one of the most challenging aspects of tropical cyclone (TC) forecasting. This work examines the impact of assimilating high-resolution all-sky infrared radiance observations from geostationary satellite GOES-13 on the convection-permitting initialization and prediction of Hurricane Joaquin (2015) with an ensemble Kalman filter (EnKF) based on the Weather Research and Forecasting (WRF) model. Given that almost all operational global and regional models struggled to capture Hurricane Joaquin (2015)’s intensity, this study examines the potential in improving Joaquin’s prediction when assimilating all-sky infrared radiances from GOES-13’s water vapor channel. It is demonstrated that, after a few 3-hour cycles assimilating all-sky radiance, the WRF model was able to forecast reasonably well Joaquin’s intensity, including its rapid intensification (RI). The improvement was largely due to a more realistic initial hurricane structure with a stronger, warmer, and more compact inner-core. Ensemble forecasts were used to further explore the important physical mechanisms driving the hurricane’s RI. Results showed that the RI forecasts were greatly impacted by the initial inner-core vortex structure.  相似文献   

16.
This study investigates the use of dynamic a priori error information according to atmospheric moistness and the use of quality controls in temperature and water vapor profile retrievals from hyperspectral infrared (IR) sounders. Temperature and water vapor profiles are retrieved from Atmospheric InfraRed Sounder (AIRS) radiance measurements by applying a physical iterative method using regression retrieval as the first guess. Based on the dependency of first-guess errors on the degree of atmospheric moistness, the a priori first-guess errors classified by total precipitable water (TPW) are applied in the AIRS physical retrieval procedure. Compared to the retrieval results from a fixed a priori error, boundary layer moisture retrievals appear to be improved via TPW classification of a priori first-guess errors. Six quality control (QC) tests, which check non-converged or bad retrievals, large residuals, high terrain and desert areas, and large temperature and moisture deviations from the first guess regression retrieval, are also applied in the AIRS physical retrievals. Significantly large errors are found for the retrievals rejected by these six QCs, and the retrieval errors are substantially reduced via QC over land, which suggest the usefulness and high impact of the QCs, especially over land. In conclusion, the use of dynamic a priori error information according to atmospheric moistness, and the use of appropriate QCs dealing with the geographical information and the deviation from the first-guess as well as the conventional inverse performance are suggested to improve temperature and moisture retrievals and their applications.  相似文献   

17.
Soil moisture exhibits outstanding memory characteristics and plays a key role within the climate system. Especially through its impacts on the evapotranspiration of soils and plants, it may influence the land energy balance and therefore surface temperature. These attributes make soil moisture an important variable in the context of weather and climate forecasting. In this study we investigate the value of (initial) soil moisture information for sub-seasonal temperature forecasts. For this purpose we employ a simple water balance model to infer soil moisture from streamflow observations in 400 catchments across Europe. Running this model with forecasted atmospheric forcing, we derive soil moisture forecasts, which we then translate into temperature forecasts using simple linear relationships. The resulting temperature forecasts show skill beyond climatology up to 2 weeks in most of the considered catchments. Even if forecasting skills are rather small at longer lead times with significant skill only in some catchments at lead times of 3 and 4 weeks, this soil moisture-based approach shows local improvements compared to the monthly European Centre for Medium Range Weather Forecasting (ECMWF) temperature forecasts at these lead times. For both products (soil moisture-only forecast and ECMWF forecast), we find comparable or better forecast performance in the case of extreme events, especially at long lead times. Even though a product based on soil moisture information alone is not of practical relevance, our results indicate that soil moisture (memory) is a potentially valuable contributor to temperature forecast skill. Investigating the underlying soil moisture of the ECMWF forecasts we find good agreement with the simple model forecasts, especially at longer lead times. Analyzing the drivers of the temperature forecast skills we find that they are mainly controlled by the strengths of (1) the soil moisture-temperature coupling and (2) the soil moisture memory. We find a negative relationship between these controls that weakens the forecast skills, nevertheless there is a middle ground between both controls in several catchments, as shown by our results.  相似文献   

18.
The Advanced Microwave Sounding Unit-A(AMSU-A) onboard the NOAA satellites NOAA-18 and NOAA-19 and the European Organization for the Exploitation of Meteorological Satellites(EUMETSAT)Met Op-A, the hyperspectral Atmospheric Infrared Sounder(AIRS) onboard Aqua, the High resolution Infra Red Sounder(HIRS) onboard NOAA-19 and Met Op-A, and the Advanced Technology Microwave Sounder(ATMS) onboard Suomi National Polar-orbiting Partnership(NPP) satellite provide upper-level sounding channels in tropical cyclone environments. Assimilation of these upper-level sounding channels data in the Hurricane Weather Research and Forecasting(HWRF) system with two different model tops is investigated for the tropical storms Debby and Beryl and hurricanes Sandy and Isaac that occurred in 2012. It is shown that the HWRF system with a higher model top allows more upper-level microwave and infrared sounding channels data to be assimilated into HWRF due to a more accurate upper-level background profile. The track and intensity forecasts produced by the HWRF data assimilation and forecast system with a higher model top are more accurate than those with a lower model top.  相似文献   

19.
Based on the tropical cyclone data from the Central Meteorological Observatory of China, Japan Meteorological Agency, Joint Typhoon Warning Center and European Centre for Medium-Range Weather Forecasts (ECMWF) during the period of 2004 to 2009, three consensus methods are used in tropical cyclone (TC) track forecasts. Operational consensus results show that the objective forecasts of ECMWF help to improve consensus skill by 2%, 3%-5% and 3%-5%, decrease track bias by 2.5 kin, 6-9 km and 10-12 km for the 24 h, 48 h and 72 h forecasts respectively over the years of 2007 to 2009. Analysis also indicates that consensus forecasts hold positive skills relative to each member. The multivariate regression composite is a method that shows relatively low skill, while the methods of arithmetic averaging and composite (in which the weighting coefficient is the reciprocal square of mean error of members) have almost comparable skills among members. Consensus forecast for a lead time of 96 h has negative skill relative to the ECMWF objective forecast.  相似文献   

20.
陆续  马旭林  王旭光 《大气科学》2015,39(6):1112-1122
随着气旋内部资料(Inner core data)在热带气旋预报中的使用,其重要性逐渐受到人们越来越多的关注。为了研究该资料中尾部机载雷达(Tail Doppler Radar,TDR)资料在业务系统中的应用效果,本文利用2012年飓风等级热带气旋Isaac期间的TDR资料,采用业务HWRF(Weather Research and Forecasting model for Hurricane)数值模式与业务GSI(Grid-point Statistical Interpolation system)三维变分同化(Three-Dimensional Variational Data Assimilation, 3DVar)系统对TDR资料进行了同化,展开了一系列预报试验,并对其效果进行了分析和研究。结果表明与HWRF的业务预报相比,GSI系统同化TDR资料后对热带气旋的路径和强度预报有明显改进;但其同化效果同时也表明业务三维变分中的静态背景误差协方差在TDR资料的应用中仍需要进一步的改进。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号