首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The advent of modern geostationary satellite infrared radiance observations has noticeably improved numerical weather forecasts and analyses.However,compared to midlatitude weather systems and tropical cyclones,research into using infrared radiance observations for numerically predicting and analyzing tropical mesoscale convective systems remain mostly fallow.Since tropical mesoscale convective systems play a crucial role in regional and global weather,this deficit should be addressed.This study is the first of its kind to examine the potential impacts of assimilating all-sky upper tropospheric infrared radiance observations on the prediction of a tropical squall line.Even though these all-sky infrared radiance observations are not directly affected by lower-tropospheric winds,the high-frequency assimilation of these all-sky infrared radiance observations improved the analyses of the tropical squall line’s outflow position.Aside from that,the assimilation of all-sky infrared radiance observations improved the analyses and prediction of the squall line’s cloud field.Finally,reducing the frequency of assimilating these all-sky infrared radiance observations weakened these improvements to the analyzed outflow position,as well as the analyses and predictions of cloud fields.  相似文献   

2.
This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike’s track, resulting in better forecasts.  相似文献   

3.
陆续  马旭林  王旭光 《大气科学》2015,39(6):1112-1122
随着气旋内部资料(Inner core data)在热带气旋预报中的使用,其重要性逐渐受到人们越来越多的关注。为了研究该资料中尾部机载雷达(Tail Doppler Radar,TDR)资料在业务系统中的应用效果,本文利用2012年飓风等级热带气旋Isaac期间的TDR资料,采用业务HWRF(Weather Research and Forecasting model for Hurricane)数值模式与业务GSI(Grid-point Statistical Interpolation system)三维变分同化(Three-Dimensional Variational Data Assimilation, 3DVar)系统对TDR资料进行了同化,展开了一系列预报试验,并对其效果进行了分析和研究。结果表明与HWRF的业务预报相比,GSI系统同化TDR资料后对热带气旋的路径和强度预报有明显改进;但其同化效果同时也表明业务三维变分中的静态背景误差协方差在TDR资料的应用中仍需要进一步的改进。  相似文献   

4.
The impact of assimilating Infrared Atmospheric Sounding Interferometer (IASI) radiance observations on the analyses and forecasts of Hurricane Maria (2011) and Typhoon Megi (2010) is assessed using Weather Research and Forecasting Data Assimilation (WRFDA). A cloud-detection scheme (McNally and Watts 2003) was implemented in WRFDA for cloud contamination detection for radiances measured by high spectral resolution infrared sounders. For both Hurricane Maria and Typhoon Megi, IASI radiances with channels around 15-μm CO2 band had consistent positive impact on the forecast skills for track, minimum sea level pressure, and maximum wind speed. For Typhoon Megi, the error reduction appeared to be more pronounced for track than for minimum sea level pressure and maximum wind. The sensitivity experiments with 6.7-μm H2O band were also conducted. The 6.7-μm band also had some positive impact on the track and minimum sea level pressure. The improvement for maximum wind speed forecasts from the 6.7-μm band was evident, especially for the first 42 h. The 15-μm band consistently improved specific humidity forecast and we found improved temperature and horizontal wind forecast on most levels. Generally, assimilating the 6.7-μm band degraded forecasts, likely indicating the inefficiency of the current WRF model and/or data assimilation system for assimilating these channels. IASI radiance assimilation apparently improved depiction of dynamic and thermodynamic vortex structures.  相似文献   

5.
为评价静止卫星大气温度廓线产品资料同化对飓风预报的影响,以2018年飓风“迈克尔”为例,选用GOES-16温度廓线产品,开展静止卫星资料同化及其对飓风预报影响的研究。首先,通过评估温度廓线产品精度,选取质量较好的高度层并以统计的各层均方根误差作为观测误差用于同化试验;然后,利用WRF-3DVar系统进行不同稀疏化及不同同化频次的循环同化敏感性试验;最后,利用WRF模式开展24 h数值预报。试验结果表明,在飓风“迈克尔”期间温度廓线在200~1 000 hPa之间的误差在2 K以内,将水平分辨率稀疏化为模式分辨率的6倍且循环同化频次为6 h时同化该资料对模式的初始场有最为合理的改进,从大尺度环境场上看使模式具备更合理的环流形势,能够有效提高对飓风的路径及强度的预报效果,更准确地模拟降水落区及美国佛罗里达州等降水关键区域的雨强。   相似文献   

6.
Atmospheric Infra Red Sounder(AIRS) measurements are a valuable supplement to current observational data, especially over the oceans where conventional data are sparse. In this study, two types of AIRS-retrieved temperature and moisture profiles, the AIRS Science Team product(Sci Sup) and the single field-of-view(SFOV) research product, were evaluated with European Centre for Medium-Range Weather Forecasts(ECMWF) analysis data over the Atlantic Ocean during Hurricane Ike(2008) and Hurricane Irene(2011). The evaluation results showed that both types of AIRS profiles agreed well with the ECMWF analysis, especially between 200 h Pa and 700 h Pa. The average standard deviation of both temperature profiles was approximately 1 K under 200 h Pa, where the mean AIRS temperature profile from the AIRS Sci Sup retrievals was slightly colder than that from the AIRS SFOV retrievals. The mean Sci Sup moisture profile was slightly drier than that from the SFOV in the mid troposphere. A series of data assimilation and forecast experiments was then conducted with the Advanced Research version of the Weather Research and Forecasting(WRF) model and its three-dimensional variational(3DVAR) data assimilation system for hurricanes Ike and Irene. The results showed an improvement in the hurricane track due to the assimilation of AIRS clear-sky temperature profiles in the hurricane environment. In terms of total precipitable water and rainfall forecasts, the hurricane moisture environment was found to be affected by the AIRS sounding assimilation.Meanwhile, improving hurricane intensity forecasts through assimilating AIRS profiles remains a challenge for further study.  相似文献   

7.
The impact of assimilating radiance data from the advanced satellite sensor GMI(GPM microwave imager) for typhoon analyses and forecasts was investigated using both a three-dimensional variational(3DVAR) and a hybrid ensemble-3DVAR method. The interface of assimilating the radiance for the sensor GMI was established in the Weather Research and Forecasting(WRF) model. The GMI radiance data are assimilated for Typhoon Matmo(2014), Typhoon Chan-hom(2015), Typhoon Meranti(2016), and Typhoon Mangkhut(2018) in the Pacific before their landing. The results show that after assimilating the GMI radiance data under clear sky condition with the 3DVAR method, the wind,temperature, and humidity fields are effectively adjusted, leading to improved forecast skills of the typhoon track with GMI radiance assimilation. The hybrid DA method is able to further adjust the location of the typhoon systematically. The improvement of the track forecast is even more obvious for later forecast periods. In addition, water vapor and hydrometeors are enhanced to some extent, especially with the hybrid method.  相似文献   

8.
为了研究“二阶差分法”反演的晴空区风矢同化在台风分析和预报中的作用,以1509号台风“灿鸿”和1211号台风“海葵”为例,首先利用WRF-3DVAR系统对晴空风矢进行同化,探讨了晴空风矢的引入对模式初始场的影响。然后利用WRF模式对两个个例分别进行48 h的预报试验。通过对比控制试验和同化试验,结果表明,同化晴空风矢资料能够对初始风场和位势高度场进行合理的调整,在台风周围引导气流的作用下,台风路径与实况更靠近,从而提高了台风路径的预报效果。除此之外,同化晴空风矢对台风强度以及风场预报也有一定的改善作用,还可更准确地预报出降水的落区及雨强,提高降水预报质量。因此,晴空风矢的引入,有利于改善模式的初始场,从而提高WRF模式对台风的预报能力。   相似文献   

9.
基于美国台风预报系统(Hurricane Weather Research and Forecasting,HWRF),研究了气团订正方法对GOES-13/15静止卫星成像仪资料同化效果的改进作用,选取了2012年6月23日生成于大西洋地区的台风Debby作为研究对象,通过一组对照试验比较了气团订正前后台风路径和初始场相关物理量的差异,结果表明:气团订正能显著减小GOES-13/15静止卫星成像仪资料的系统偏差,明显提高台风路径的预报效果,气团订正使得预报的台风路径与观测路径的平均偏差和标准差降低了30%左右,提前6 h实现了台风路径的正确转向。物理机制分析表明,经过气团订正后的静止卫星资料增强了位于台风东南侧副热带高压的强度,同时增加了台风东部的温度和比湿,在引导气流和大气温、湿场的共同作用下,台风预报路径实现了正确转向。   相似文献   

10.
Extending an earlier study, the best track minimum sea level pressure (MSLP) data are assimilated for landfalling Hurricane Ike (2008) using an ensemble Kalman filter (EnKF), in addition to data from two coastal ground-based Doppler radars, at a 4-km grid spacing. Treated as a sea level pressure observation, the MSLP assimilation by the EnKF enhances the hurricane warm core structure and results in a stronger and deeper analyzed vortex than that in the GFS (Global Forecast System) analysis; it also improves the subsequent 18-h hurricane intensity and track forecasts. With a 2-h total assimilation window length, the assimilation of MSLP data interpolated to 10-min intervals results in more balanced analyses with smaller subsequent forecast error growth and better intensity and track forecasts than when the data are assimilated every 60 minutes. Radar data are always assimilated at 10-min intervals. For both intensity and track forecasts, assimilating MSLP only outperforms assimilating radar reflectivity (Z) only. For intensity forecast, assimilating MSLP at 10-min intervals outperforms radar radial wind (Vr) data (assimilated at 10-min intervals), but assimilating MSLP at 60-min intervals fails to beat Vr data. For track forecast, MSLP assimilation has a slightly (noticeably) larger positive impact than Vr(Z) data. When Vr or Z is combined with MSLP, both intensity and track forecasts are improved more than the assimilation of individual observation type. When the total assimilation window length is reduced to 1h or less, the assimilation of MSLP alone even at 10-min intervals produces poorer 18-h intensity forecasts than assimilating Vr only, indicating that many assimilation cycles are needed to establish balanced analyses when MSLP data alone are assimilated; this is due to the very limited pieces of information that MSLP data provide.  相似文献   

11.
The present study is conducted to verify the short-range forecasts from mesoscale model version5 (MM5)/weather research and forecasting (WRF) model over the Indian region and to examine the impact of assimilation of quick scatterometer (QSCAT) near surface winds, spectral sensor microwave imager (SSM/I) wind speed and total precipitable water (TPW) on the forecasts by these models using their three-dimensional variational (3D-Var) data assimilation scheme for a 1-month period during July 2006. The control (without satellite data assimilation) as well as 3D-Var sensitivity experiments (with assimilating satellite data) using MM5/WRF were made for 48 h starting daily at 0000 UTC July 2006. The control run is analyzed for the intercomparison of MM5/WRF short-range forecasts and is also used as a baseline for assessing the MM5/WRF 3D-Var satellite data sensitivity experiments. As compared to the observation, the MM5 (WRF) control simulations strengthened (weakened) the cross equatorial flow over southern Arabian sea near peninsular India. The forecasts from MM5 and WRF showed a warm and moist bias at lower and upper levels with a cold bias at the middle level, which shows that the convective schemes of these models may be too active during the simulation. The forecast errors in predicted wind, temperature and humidity at different levels are lesser in WRF as compared to MM5, except the temperature prediction at lower level. The rainfall pattern and prediction skill from day 1 and day 2 forecasts by WRF is superior to MM5. The spatial distribution of forecast impact for wind, temperature, and humidity from 1-month assimilation experiments during July 2006 demonstrated that on average, for 24 and 48-h forecasts, the satellite data improved the MM5/WRF initial condition, so that model errors in predicted meteorological fields got reduced. Among the experiments, MM5/WRF wind speed prediction is most benefited from QSCAT surface wind and SSM/I TPW assimilation while temperature and humidity prediction is mostly improved due to latter. The largest improvement in MM5/WRF rainfall prediction is due to the assimilation of SSM/I TPW. The assimilation of SSM/I wind speed alone in MM5/WRF degraded the humidity and rainfall prediction. In summary the assimilation of satellite data showed similar impact on MM5/WRF prediction; largest improvement due to SSM/I TPW and degradation due to SSM/I wind speed.  相似文献   

12.
Although radar observations capture storm structures with high spatiotemporal resolutions, they are limited within the storm region after the precipitation formed. Geostationary satellites data cover the gaps in the radar network prior to the formation of the precipitation for the storms and their environment. The study explores the effects of assimilating the water vapor channel radiances from Himawari-8 data with Weather Research and Forecasting model data assimilation system(WRFDA) for a severe storm case over north China. A fast cloud detection scheme for Advanced Himawari imager(AHI)radiance is enhanced in the framework of the WRFDA system initially in this study. The bias corrections, the cloud detection for the clear-sky AHI radiance, and the observation error modeling for cloudy radiance are conducted before the data assimilation. All AHI radiance observations are fully applied without any quality control for all-sky AHI radiance data assimilation. Results show that the simulated all-sky AHI radiance fits the observations better by using the cloud dependent observation error model, further improving the cloud heights. The all-sky AHI radiance assimilation adjusts all types of hydrometeor variables, especially cloud water and precipitation snow. It is proven that assimilating all-sky AHI data improves hydrometeor specifications when verified against the radar reflectivity. Consequently, the assimilation of AHI observations under the all-sky condition has an overall improved impact on both the precipitation locations and intensity compared to the experiment with only conventional and AHI clear-sky radiance data.  相似文献   

13.
The impacts of AMSU-A and IASI (Infrared Atmospheric Sounding Interferometer) radiances assimila-tion on the prediction of typhoons Vicente and Saola (2012) are studied by using the ensemble transform ...  相似文献   

14.
李新峰  赵坤  王明筠  明杰 《气象科学》2013,33(3):255-263
高分辨率的中尺度预报模式ARPS及其3DVAR/云分析系统,针对2010年登陆福建的超强台风“鲇鱼”,研究对流可分辨尺度下,每1h循环同化沿海新一代多普勒雷达网资料分析、研究对台风初始场和预报场的改进作用.结果表明:单独同化雷达资料可显著改善初始场中的台风内核区动力和热力结构,以及台风强度和位置,进而提高18h台风强度、路径和降水预报,但预报路径和降水分布与实况仍存在差异.在雷达资料同化基础上加入常规观测资料,对初始场中台风内核区结构改进不大.但在显著调整大尺度背景场,从而进一步减少台风路径预报误差,能准确预报出福建沿海两个强降水区域的位置和强度.总体而言,雷达资料同化主要提高台风结构分析,而常规观测资料同化主要改善环境场分析,两者有效结合使得预报结果和实况最为接近.  相似文献   

15.
FY-2C云迹风资料同化应用对台风预报的影响试验研究   总被引:3,自引:2,他引:1  
刘瑞  翟国庆  王彰贵 《大气科学》2012,36(2):350-360
针对0505号台风“海棠”, 采用WRF区域中尺度模式进行控制试验和两个同化试验, 利用WRF-3DVAR同化系统同化FY-2C红外和水汽两个通道云迹风反演产品, 同化分云迹风经质量控制和未经质量控制两组同化试验。通过三组试验分析云迹风资料对降水和风场等的预报结果的影响, 并进行24小时降水量分级Ts评分检验以及风场点对点检验。结果表明: 同化经质量控制云迹风资料可以提高降水落区和强度预报的准确度, 不同等级的Ts评分较其它试验都有较明显改进; 风场预报模拟也有所改善。增加两例台风, 使用与“海棠” 相似的处理方法进行模拟试验, 并对模拟结果24小时降水分析与检验, 得到与“海棠”类似结论。因此, 经过合理性选择的云迹风资料的加入, 有利于补充初始场中可能未包含的中尺度信息, 从而提高试验中对于降水、风场等的模拟效果, 提高WRF模式的模拟预报能力。  相似文献   

16.
Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.  相似文献   

17.
In view of the growing interests in the explicit modeling of clouds and precipitation, the effects of varying vertical resolution and time-step sizes on the 72-h explicit simulation of Hurricane Andrew (1992) are studied using the Pennsylvania State University/National Center for Atmospheric Research (PSU/NCAR) mesoscale model (i.e., MM5) with the finest grid size of 6 km. It is shown that changing vertical resolution and time-step size has significant effects on hurricane intensity and inner-core cloud/precipitation, but little impact on the hurricane track. In general, increasing vertical resolution tends to produce a deeper storm with lower central pressure and stronger three-dimensional winds, and more precipitation. Similar effects, but to a less extent, occur when the time-step size is reduced. It is found that increasing the low-level vertical resolution is more efficient in intensifying a hurricane, whereas changing the upper-level vertical resolution has little impact on the hurricane intensity. Moreover, the use of a thicker surface layer tends to produce higher maximum surface winds. It is concluded that the use of higher vertical resolution,a thin surface layer, and smaller time-step sizes, along with higher horizontal resolution, is desirable to model more realistically the intensity and inner-core structures and evolution of tropical storms as well as the other convectively driven weather systems.  相似文献   

18.
An ensemble Kalman filter (EnKF) combined with the Advanced Research Weather Research and Forecasting model (WRF) is cycled and evaluated for western North Pacific (WNP) typhoons of year 2016. Conventional in situ data, radiance observations, and tropical cyclone (TC) minimum sea level pressure (SLP) are assimilated every 6 h using an 80-member ensemble. For all TC categories, the 6-h ensemble priors from the WRF/EnKF system have an appropriate amount of variance for TC tracks but have insufficient variance for TC intensity. The 6-h ensemble priors from the WRF/EnKF system tend to overestimate the intensity for weak storms but underestimate the intensity for strong storms. The 5-d deterministic forecasts launched from the ensemble mean analyses of WRF/EnKF are compared to the NCEP and ECMWF operational control forecasts. Results show that the WRF/EnKF forecasts generally have larger track errors than the NCEP and ECMWF forecasts for all TC categories because the regional simulation cannot represent the large-scale environment better than the global simulation. The WRF/EnKF forecasts produce smaller intensity errors and biases than the NCEP and ECMWF forecasts for typhoons, but the opposite is true for tropical storms and severe tropical storms. The 5-d ensemble forecasts from the WRF/EnKF system for seven typhoon cases show appropriate variance for TC track and intensity with short forecast lead times but have insufficient spread with long forecast lead times. The WRF/EnKF system provides better ensemble forecasts and higher predictability for TC intensity than the NCEP and ECMWF ensemble forecasts.  相似文献   

19.
Evaluation of long-term trends in tropical cyclone intensity forecasts   总被引:1,自引:0,他引:1  
Summary The National Hurricane Center and Joint Typhoon Warning Center operational tropical cyclone intensity forecasts for the three major northern hemisphere tropical cyclone basins (Atlantic, eastern North Pacific, and western North Pacific) for the past two decades are examined for long-term trends. Results show that there has been some marginal improvement in the mean absolute error at 24 and 48 h for the Atlantic and at 72 h for the east and west Pacific. A new metric that measures the percent variance of the observed intensity changes that is reduced by the forecast (variance reduction, VR) is defined to help account for inter-annual variability in forecast difficulty. Results show that there have been significant improvements in the VR of the official forecasts in the Atlantic, and some marginal improvement in the other two basins. The VR of the intensity guidance models was also examined. The improvement in the VR is due to the implementation of advanced statistical intensity prediction models and the operational version of the GFDL hurricane model in the mid-1990s. The skill of the operational intensity forecasts for the 5-year period ending in 2005 was determined by comparing the errors to those from simple statistical models with input from climatology and persistence. The intensity forecasts had significant skill out to 96 h in the Atlantic and out to 72 h in the east and west Pacific. The intensity forecasts are also compared to the operational track forecasts. The skill was comparable at 12 h, but the track forecasts were 2 to 5 times more skillful by 72 h. The track and intensity forecast error trends for the two-decade period were also compared. Results showed that the percentage track forecast improvement was almost an order of magnitude larger than that for intensity, indicating that intensity forecasting still has much room for improvement.  相似文献   

20.
The sensitivity of the simulation of tropical cyclone(TC) size to microphysics schemes is studied using the Advanced Hurricane Weather Research and Forecasting Model(WRF). Six TCs during the 2013 western North Pacific typhoon season and three mainstream microphysics schemes–Ferrier(FER), WRF Single-Moment 5-class(WSM5) and WRF Single-Moment6-class(WSM6)–are investigated. The results consistently show that the simulated TC track is not sensitive to the choice of microphysics scheme in the early simulation, especially in the open ocean. However, the sensitivity is much greater for TC intensity and inner-core size. The TC intensity and size simulated using the WSM5 and WSM6 schemes are respectively higher and larger than those using the FER scheme in general, which likely results from more diabatic heating being generated outside the eyewall in rainbands. More diabatic heating in rainbands gives higher inflow in the lower troposphere and higher outflow in the upper troposphere, with higher upward motion outside the eyewall. The lower-tropospheric inflow would transport absolute angular momentum inward to spin up tangential wind predominantly near the eyewall, leading to the increment in TC intensity and size(the inner-core size, especially). In addition, the inclusion of graupel microphysics processes(as in WSM6) may not have a significant impact on the simulation of TC track, intensity and size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号