首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The impact of assimilating radiances from the Advanced Microwave Sounding Unit-A (AMSU-A) on the track prediction of Typhoon Megi (2010) was studied using the Weather Research and Forecasting (WRF) model and a hybrid ensemble three-dimensional variational (En3DVAR) data assimilation (DA) system. The influences of tuning the length scale and variance scale factors related to the static background error covariance (BEC) on the track forecast of the typhoon were studied. The results show that, in typhoon radiance data assimilation, a moderate length scale factor improves the prediction of the typhoon track. The assimilation of AMSU-A radiances using 3DVAR had a slight positive impact on track forecasts, even when the static BEC was carefully tuned to optimize its performance. When the hybrid DA was employed, the track forecast was significantly improved, especially for the sharp northward turn after crossing the Philippines, with the flow-dependent ensemble covariance. The flow-dependent BEC can be estimated by the hybrid DA and was capable of adjusting the position of the typhoon systematically. The impacts of the typhoon-specific BEC derived from ensemble forecasts were revealed by comparing the analysis increments and forecasts generated by the hybrid DA and 3DVAR. Additionally, for 24 h forecasts, the hybrid DA experiment with use of the full flow-dependent background error substantially outperformed 3DVAR in terms of the horizontal winds and temperature in the lower and mid-troposphere and for moisture at all levels.  相似文献   

2.
The impact of assimilating radiance data from the advanced satellite sensor GMI(GPM microwave imager) for typhoon analyses and forecasts was investigated using both a three-dimensional variational(3DVAR) and a hybrid ensemble-3DVAR method. The interface of assimilating the radiance for the sensor GMI was established in the Weather Research and Forecasting(WRF) model. The GMI radiance data are assimilated for Typhoon Matmo(2014), Typhoon Chan-hom(2015), Typhoon Meranti(2016), and Typhoon Mangkhut(2018) in the Pacific before their landing. The results show that after assimilating the GMI radiance data under clear sky condition with the 3DVAR method, the wind,temperature, and humidity fields are effectively adjusted, leading to improved forecast skills of the typhoon track with GMI radiance assimilation. The hybrid DA method is able to further adjust the location of the typhoon systematically. The improvement of the track forecast is even more obvious for later forecast periods. In addition, water vapor and hydrometeors are enhanced to some extent, especially with the hybrid method.  相似文献   

3.
The impact of assimilating Infrared Atmospheric Sounding Interferometer (IASI) radiance observations on the analyses and forecasts of Hurricane Maria (2011) and Typhoon Megi (2010) is assessed using Weather Research and Forecasting Data Assimilation (WRFDA). A cloud-detection scheme (McNally and Watts 2003) was implemented in WRFDA for cloud contamination detection for radiances measured by high spectral resolution infrared sounders. For both Hurricane Maria and Typhoon Megi, IASI radiances with channels around 15-μm CO2 band had consistent positive impact on the forecast skills for track, minimum sea level pressure, and maximum wind speed. For Typhoon Megi, the error reduction appeared to be more pronounced for track than for minimum sea level pressure and maximum wind. The sensitivity experiments with 6.7-μm H2O band were also conducted. The 6.7-μm band also had some positive impact on the track and minimum sea level pressure. The improvement for maximum wind speed forecasts from the 6.7-μm band was evident, especially for the first 42 h. The 15-μm band consistently improved specific humidity forecast and we found improved temperature and horizontal wind forecast on most levels. Generally, assimilating the 6.7-μm band degraded forecasts, likely indicating the inefficiency of the current WRF model and/or data assimilation system for assimilating these channels. IASI radiance assimilation apparently improved depiction of dynamic and thermodynamic vortex structures.  相似文献   

4.
A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous threehourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements(RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.  相似文献   

5.
ATOVS 不同卫星资料在台风模拟中的同化试验研究   总被引:5,自引:1,他引:4  
利用美国国家大气研究中心(NCAR)开发的中尺度模式WRF(ARW)V3.2 及其三维变分同化系统WRF-3DVAR,以1011 号超强台风“ 凡亚比” 为个例,采用连续循环同化的方法对ATOVS 卫星资料进行同化试验,探讨了同化ATOVS 不同卫星资料对“ 凡亚比” 模拟的影响。结果表明,强度影响方面:同化ATOVS不同资料均可有效改善台风强度,台风中心海平面气压平均偏差从42 hPa 下降到18 hPa,但不同资料间的差异并不显著,平均在6 hPa 以内,这表明仅同化ATOVS 资料对台风强度的改善相对有限。路径影响方面:(1)不同卫星的同一种传感器资料效果略有不同,同化NOAA-18 和NOAA-15 的AMSU-A 资料效果较好,NOAA-16 的AMSU-A 效果较差;同化NOAA-15 和NOAA-16 的AMSU-B 资料效果相当,且均优于AMSU-A 资料。(2) 同一颗卫星不同传感器资料的差异较大,同化AMSU-B 资料的改善较为明显,HIRS-3 次之,AMSU-A较差,而同时同化不同资料并没有带来更为明显的改善。(3) 同时同化多颗卫星ATOVS 资料的试验表明,将多种资料引入到同化系统的同时,也带来相应的累积误差,因而仅同化一颗卫星可能比同时同化两颗或三颗卫星ATOVS 资料的效果要好。   相似文献   

6.
利用WRF(Weather research and forecasting)模式及模式模拟的资料,采用Hybrid ETKF-3DVAR(ensemble transform Kalman filter-three-dimensional variational data assimilation)方法同化模拟雷达观测资料。该混合同化方法将集合转换卡尔曼滤波(ensemble transform Kalman filter)得到的集合样本扰动通过转换矩阵直接作用到背景场上,利用顺序滤波的思想得到分析扰动场;然后通过增加额外控制变量的方式把"流依赖"的集合协方差信息引入到变分目标函数中去,在3DVAR框架基础下与观测数据进行融合,从而给出分析场的最优估计。试验结果表明,Hybrid ETKF-3DVAR同化方法相比传统3DVAR可以提供更为准确的分析场,Hybrid方法雷达资料初始化模拟的台风涡旋结构与位置比3DVAR更加接近"真实场",对台风路径预报也有明显改进。通过对比Hybrid S试验与Hybrid F试验发现,Hybrid的正效果主要来源于混合背景误差协方差中的"流依赖"信息,集合平均场代替确定性背景场带来的效果并不显著。  相似文献   

7.
杨春  闵锦忠  刘志权 《大气科学》2017,41(2):372-384
在WRFDA-3DVar(Weather Research and Forecasting model's 3-dimensional variational data assimilation)的框架下,添加了新的探测器AMSR2(Advanced Microwave Scanning Radiometer 2)微波辐射率资料的同化模块,实现了AMSR2辐射率资料在中小尺度同化系统中的有效使用。台风"山神"(Son-Tinh)直接同化AMSR2资料的个例试验结果表明,AMSR2资料可以很好的探测出台风的形态,并且与没有同化该资料的控制试验相比,同化AMSR2辐射率资料可以有效提高模式分析场的质量,进一步提高了台风中心气压,最大风速和台风路径的预报。  相似文献   

8.
Based on the newly developed Weather Research and Forecasting model(WRF)and its three-dimensional variational data assimilation(3DVAR)system,this study constructed twelve experiments to explore the impact of direct assimilation of different ATOVS radiance on the intensity and track simulation of super-typhoon Fanapi(2010)using a data assimilation cycle method.The result indicates that the assimilation of ATOVS radiance could improve typhoon intensity effectively.The average bias of the central sea level pressure(CSLP)drops to 18 hPa,compared to 42 hPa in the experiment without data assimilation.However,the influence due to different radiance data is not significant,which is less than 6hPa on average,implying limited improvement from sole assimilation of ATOVS radiance.The track issue is studied in the following steps.First,the radiance from the same sensor of different satellites could produce different effect.For the AMSU-A,NOAA-15 and NOAA-18,they produce equivalent improvement,whereas NOAA-16 produces slightly poor effect.And for the AMSU-B,NOAA-15 and NOAA-16,they produce equivalent and more positive effect than that provided by the AMSU-A.Second,the assimilation radiance from different sensors of the identical satellites could also produce different effect.The assimilation of AMSU-B produces the largest improvement,while the ameliorating effect of HIRS/3assimilation is inferior to that of AMSU-B assimilation,while the AMSU-A assimilation exhibits the poorest improvement.Moreover,the simultaneous assimilation of different radiance could not produce further improvement.Finally,the experiments of simultaneous assimilation radiance from multiple satellites indicate that such assimilation may lead to negative effect due to accumulative bias when adding various radiance data into the data assimilation system.Thus the assimilation of ATOVS radiance from a single satellite may perform better than that from two or three satellites.  相似文献   

9.
采用FNL再分析资料和美国联合台风警报中心(Joint Typhoon Warning Center,JTWC)资料,运用中尺度WRF(Weather Research and Forecasting)模式,分别使用增长模繁殖法(Breeding of Growing Mode,BGM)和集合卡尔曼变换方法(Ensemble Transform Kalman Filter,ETKF),对1209号台风"苏拉"进行了台风路径的集合预报试验,并对预报效果进行对比分析。结果表明:采用BGM或ETKF初始扰动的集合预报系统,集合平均预报对风场、温度场、位势高度场的预报效果均优于控制预报;ETKF方法的预报改进程度较BGM方法更大,且对风场和温度场预报技巧的优势尤为明显。BGM方法所得到的集合成员离散度小于ETKF方法,对大气真实状态的表征能力不及后者;两种扰动方法的集合平均都明显改善了台风"苏拉"的路径预报结果,尤其是控制预报在福建沿海第二次登陆后移速过快的问题,但对台风登陆位置预报的改进不明显;此外,采用ETKF方法的集合平均对台风"苏拉"路径预报的改进效果远优于采用BGM方法的集合平均预报。  相似文献   

10.
In this study, both reflectivity and radial velocity are assimilated into the Weather Research and Forecasting (WRF) model using ARPS 3DVAR technique and cloud analysis procedure for analysis and very short range forecast of cyclone ÁILA. Doppler weather radar (DWR) data from Kolkata radar are assimilated for numerical simulation of landfalling tropical cyclone. Results show that the structure of cyclone AILA has significantly improved when radar data is assimilated. Radar reflectivity data assimilation has strong influence on hydrometeor structures of the initial vortex and precipitation pattern and relatively less influence is observed on the wind fields. Divergence/convergence conditions over cyclone inner-core area in the low-to-middle troposphere (600–900 hPa) are significantly improved when wind data are assimilated. However, less impact is observed on the moisture field. Analysed minimum sea level pressure (SLP) is improved significantly when both reflectivity and wind data assimilated simultaneously (RAD-ZVr experiment), using ARPS 3DVAR technique. In this experiment, the centre of cyclone is relocated very close to the observed position and the system maintains its intensity for longer duration. As compared to other experiments track errors are much reduced and predicted track is very much closer to the best track in RAD-ZVr experiment. Rainfall pattern and amount of rainfall are better captured in this experiment. The study also reveals that cyclone structure, intensification, direction of movement, speed and location of cyclone are significantly improved and different stages of system are best captured when both radar reflectivity and wind data are assimilated using ARPS 3DVAR technique and cloud analysis procedure. Thus optimal impact of radar data is realized in RAD-ZVr experiment. The impact of DWR data reduces after 12 h forecast and it is due to the dominance of the flow from large-scale global forecast system model. Successful coupling of data assimilation package ARPS 3DVAR with WRF model for Indian DWR data is also demonstrated.  相似文献   

11.
Based on the GRAPES-MESO hybrid En-3DVAR (Ensemble three-dimension hybrid data assimilation for Global/Regional Assimilation and Prediction system) constructed by China Meteorological Administration, a 7-day simulation (from 10 July 2015 to 16 July 2015) is conducted for horizontal localization scales. 48h forecasts have been designed for each test, and seven different horizontal localization scales of 250, 500, 750, 1000, 1250, 1500 and 1750 km are set. The 7-day simulation results show that the optimal horizontal localization scales over the Tibetan Plateau and the plain area are 1500 km and 1000 km, respectively. As a result, based on the GRAPES-MESO hybrid En-3DVAR, a topography-dependent horizontal localization scale scheme (hereinafter referred to as GRAPES-MESO hybrid En-3DVAR-TD-HLS) has been constructed. The data assimilation and forecast experiments have been implemented by GRAPES-MESO hybrid En-3DVAR, 3DVAR and GRAPES-MESO hybrid En-3DVAR-TD-HLS, and then the analysis and forecast field of these three systems are compared. The results show that the analysis field and forecast field within 30h of GRAPES-MESO hybrid En-3DVAR-TD-HLS are better than those of the other two data assimilation systems. Particularly in the analysis field, the root mean square error (RMSE) of u_wind and v_wind in the entire vertical levels is significantly less than that of the other two systems. The time series of total RMSE indicate, in the 6-30h forecast range, that the forecast result of En-3DVAR-TD-HLS is better than that of the other two systems, but the En-3DVAR and 3DVAR are equivalent in terms of their forecast skills. The 36-48h forecasts of three data assimilation systems have similar forecast skill.  相似文献   

12.
Based on the GRAPES-MESO hybrid En-3 DVAR(Ensemble three-dimension hybrid data assimilation for Global/Regional Assimilation and Prediction system) constructed by China Meteorological Administration, a 7-day simulation(from 10 July 2015 to 16 July 2015) is conducted for horizontal localization scales. 48 h forecasts have been designed for each test, and seven different horizontal localization scales of 250, 500, 750, 1000, 1250, 1500 and 1750 km are set. The 7-day simulation results show that the optimal horizontal localization scales over the Tibetan Plateau and the plain area are 1500 km and 1000 km, respectively. As a result, based on the GRAPES-MESO hybrid En-3 DVAR, a topography-dependent horizontal localization scale scheme(hereinafter referred to as GRAPES-MESO hybrid En-3 DVAR-TD-HLS) has been constructed. The data assimilation and forecast experiments have been implemented by GRAPES-MESO hybrid En-3 DVAR, 3 DVAR and GRAPES-MESO hybrid En-3 DVAR-TD-HLS, and then the analysis and forecast field of these three systems are compared. The results show that the analysis field and forecast field within 30 h of GRAPES-MESO hybrid En-3 DVAR-TD-HLS are better than those of the other two data assimilation systems. Particularly in the analysis field, the root mean square error(RMSE) of u_wind and v_wind in the entire vertical levels is significantly less than that of the other two systems. The time series of total RMSE indicate, in the 6-30 h forecast range, that the forecast result of En-3 DVAR-TD-HLS is better than that of the other two systems, but the En-3 DVAR and 3 DVAR are equivalent in terms of their forecast skills. The 36-48 h forecasts of three data assimilation systems have similar forecast skill.  相似文献   

13.
Experiments are performed in this paper to understand the influence of satellite radiance data on the initial field of a numerical prediction system and rainfall prediction. First, Advanced Microwave Sounder Unit A (AMSU-A) and Unit B (AMSU-B) radiance data are directly used by three-dimensional variational data assimilation to improve the background field of the numerical model. Then, the detailed effect of the radiance data on the background field is analyzed. Secondly, the background field, which is formed by application of Advanced Television and Infrared Observation Satellite Operational Vertical Sounder (ATOVS) microwave radiance assimilation, is employed to simulate some heavy rainfall cases. The experiment results show that the assimilation of AMSU-A (B) microwave radiance data has a certain impact on the geopotential height, temperature, relative humidity and flow fields. And the impacts on the background field are mostly similar in the different months in summer. The heavy rainfall experiments reveal that the application of AMSU-A (B) microwave radiance data can improve the rainfall prediction significantly. In particular, the AMSU-A radiance data can significantly enhance the prediction of rainfall above 10 mm within 48 h, and the AMSU-B radiance data can improve the prediction of rainfall above 50 mm within 24 h. The present study confirms that the direct assimilation of satellite radiance data is an effective way to improve the prediction of heavy rainfall in the summer in China.  相似文献   

14.
本文基于中尺度区域模式WRF,开展模式层顶高度变化对高空气象要素,特别是高空风场数值模拟影响的研究。通过设计模式顶高45、5 hPa两个试验,同化来源于NOAA-15、NOAA-18、NOAA-19和METOP-2的AMSU-A辐射计高通道数据,表明提高模式层顶能够使卫星更多的高通道样本数量进入同化系统,达到减小背景场误差,同时减小高于层顶通道辐射能量对低层通道影响的目的,一定程度上改进了同化效果,从而改善高空气象要素,特别是风场的模拟效果,与观测值的均方根误差减小了约0.4~0.5 m·s-1。  相似文献   

15.
基于WRF预报模式、WRFDA Hybrid集合变分同化系统和ETKF方法,构建了面向城市气象观测网数据的快速更新混合同化系统。针对北京地区地基微波辐射计和风廓线雷达组网观测资料数据同化,开展了静态背景误差调整因子(特征长度尺度因子和方差因子)、局地化距离和集合权重系数4个重要参数敏感性试验研究。试验结果表明:当温度、相对湿度、u风和v风的特征长度尺度因子和方差因子分别调整为0.7/1.0、1.0/1.0、0.7/1.0和0.7/1.0,局地化距离和集合权重系数分别调整为11.2 km和0.5时,快速更新混合同化系统的分析场均方根误差最小。为对比三种常用同化方案,开展了默认参数混合同化、最优参数混合同化、三维变分同化对比试验,试验结果表明:在针对北京地区地基微波辐射计和风廓线雷达组网观测资料的快速更新同化预报试验中,混合同化方案表现优于三维变分,同时相对于默认参数混合同化方案,最优参数混合同化方案的风场、温度及湿度的分析场和预报场得到了进一步改善:风温湿的分析场均方根误差分别最大降低了13%、19%和5%,12~24 h预报场的均方根误差分别最大降低了2%、12%和5%。  相似文献   

16.
The Weather Research and Forecasting (WRF-ARW) model and its three-dimensional variational data assimilation (3D-Var) system are used to investigate the impact of the Advanced Microwave Sounding Unit-A (AMSU-A) radiances on the prediction of Indian Ocean tropical cyclones. Three tropical cyclones are selected for this study: cyclone Mala (April 2006; Bay of Bengal), cyclone Gonu (June 2007; Arabian Sea), and cyclone Sidr (November 2007; Bay of Bengal). For each case, observing system experiments are designed, by producing two sets of analyses from which forecasts are initialized. Both sets of analyses contain all conventional and satellite observations operationally used, including, but not limited to, Quick Scatterometer (QuikSCAT) surface winds, Special Sensor Microwave/Imager (SSM/I) surface winds, Meteosat-derived atmospheric motion vectors (AMVs), and differ only in the exclusion (CNT) or inclusion (EXP) of AMSU-A radiances. Results show that the assimilation of AMSU-A radiances changes the large-scale thermodynamic structure of the atmosphere, and also produce a stronger warm core. These changes cause large forecast track improvements. In particular, without AMSU-A assimilation, most forecasts do not produce landfall. On the contrary, the forecasts initialized from improved EXP analyses in which AMSU-A data are included produce realistic landfall. In addition, intensity forecast is also improved. Even if the analyzed cyclone intensity is not affected by the assimilation of AMSU-A radiances, the predicted intensity improves substantially because of the development of warm cores which, through creation of stronger gradients, helps the model in producing intense low centre pressure.  相似文献   

17.
A dual-resolution(DR) version of a regional ensemble Kalman filter(EnKF)-3D ensemble variational(3DEnVar) coupled hybrid data assimilation system is implemented as a prototype for the operational Rapid Refresh forecasting system. The DR 3DEnVar system combines a high-resolution(HR) deterministic background forecast with lower-resolution(LR) EnKF ensemble perturbations used for flow-dependent background error covariance to produce a HR analysis. The computational cost is substantially reduced by running the ensemble forecasts and EnKF analyses at LR. The DR 3DEnVar system is tested with 3-h cycles over a 9-day period using a 40/13-km grid spacing combination. The HR forecasts from the DR hybrid analyses are compared with forecasts launched from HR Gridpoint Statistical Interpolation(GSI) 3D variational(3DVar)analyses, and single LR hybrid analyses interpolated to the HR grid. With the DR 3DEnVar system, a 90% weight for the ensemble covariance yields the lowest forecast errors and the DR hybrid system clearly outperforms the HR GSI 3DVar.Humidity and wind forecasts are also better than those launched from interpolated LR hybrid analyses, but the temperature forecasts are slightly worse. The humidity forecasts are improved most. For precipitation forecasts, the DR 3DEnVar always outperforms HR GSI 3DVar. It also outperforms the LR 3DEnVar, except for the initial forecast period and lower thresholds.  相似文献   

18.
模式变量背景误差在观测空间的投影,也即观测变量的背景误差包含了变分同化系统的重要信息,其在诊断和分析变分同化系统中资料的影响等方面具有重要作用,特别是在背景场检查质量控制中。在GRAPES全球三维变分同化(3DVar)系统中仅给定了控制变量的背景误差,并未直接给定观测变量的背景误差。为了能够对GRAPES全球3DVar进行全面的诊断和分析,改进卫星微波温度计资料的质量控制,推导出GRAPES全球3DVar同化系统控制变量随机扰动方法估计观测变量的背景误差的公式,为分析和改进GRAPES全球3DVar提供了一个有力工具,并进而估计了AMSU-A亮温的背景误差,分析了AMSU-A不同通道亮温的背景误差特征,将其应用于GRAPES全球3DVar的AMSU-A亮温的背景场检查质量控制中。结果表明,控制变量随机扰动方法估计的GRAPES全球3DVar同化系统AMSU-A亮温的背景误差正确合理。同化循环预报试验结果表明,亮温的背景误差在背景场检查中的应用显著提高了GRAPES全球3DVar同化的亮温资料的数量,显著提高了GRAPES南半球对流层中高层位势高度场的预报技巧。在GRAPES全球3DVar同化系统中推导和实现的控制变量扰动方法为诊断和分析GRAPES全球3DVar观测资料同化效果提供了有力工具。   相似文献   

19.
This study introduces the operational data assimilation (DA) system at the Korea Institute of Atmospheric Prediction Systems (KIAPS) to the numerical weather prediction community. Its development history and performance are addressed with experimental illustrations and the authors’ previously published studies. Milestones in skill improvements include the initial operational implementation of three-dimensional variational data assimilation (3DVar), the ingestion of additional satellite observations, and changing the DA scheme to a hybrid four-dimensional ensemble-variational DA using forecasts from an ensemble based on the local ensemble transform Kalman filter (LETKF). In the hybrid system, determining the relative contribution of the ensemble-based covariance to the resultant analysis is crucial, particularly for moisture variables including a variety of horizontal scale spectra. Modifications to the humidity control variable, partial rather than full recentering of the ensemble for humidity further improves moisture analysis, and the inclusion of more radiance observations with higher-level peaking channels have significant impacts on stratosphere temperature and wind performance. Recent update of the operational hybrid DA system relative to the previous 3DVar system is described for detailed improvements with interpretation.  相似文献   

20.
红外高光谱大气探测仪IASI可提供高精度的大气垂直温度和湿度信息,能够探测台风结构特征,有效弥补台风影响区域观测资料稀缺的不足。以WRFDA三维变分同化系统为基础构建IASI同化试验平台,实现McNally提出的MW云检测方法,并调整参数形成大阈值的LMW云检测方法,以超强台风“红霞”(1506)和“莫兰蒂”(1614)为试验个例,对IASI观测资料进行同化对比试验。对于台风“红霞”,MW云检测方案对于高层通道299保留的观测数目仅为大阈值LMW云检测的16.2%和WRFDA系统默认的MMR云检测的9.2%,对于底层通道921分别为3.3%和2.6%。但是MW试验分析场强度最强,获得的72 h台风路径预报最接近真实路径,路径误差最小。两个台风个例试验结果相似,表明有效的云检测过程能提高IASI资料同化分析场的准确性,同化IASI资料有利于改善台风预报技巧。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号