首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
How well the climate models simulate extreme temperature over East Asia and how the extreme indices would change under anthropogenic global warming are investigated. The indices studied include hot days (HD), tropical nights (TN), growing degree days (GDD), and cooling degree days (CDD) in summer and heating degree days (HDD) and frost days (FD) in winter. The representative concentration pathway 4.5 (RCP 4.5) experiments for the period of 2075–2099 are compared with historical simulations for the period of 1979–2005 from 15 coupled models that are participated in phase 5 of the Coupled Model Intercomparison Project (CMIP5). To optimally estimate future change and its uncertainty, groups of best models are selected based on Taylor diagrams, relative entropy, and probability density function (PDF) methods previously suggested. Overall, the best models’ multi-model ensemble based on Taylor diagrams has the lowest errors in reproducing temperature extremes in the present climate among three methods. Selected best models in three methods tend to project considerably different changes in the extreme indices from each other, indicating that the selection of reliable models are of critical importance to reduce uncertainties. Three groups of best models show significant increase of summerbased indices but decrease of the winter-based indices. Over East Asia, the most significant increase is seen in the HD (336 ± 23.4% of current climate) and the most significant decrease is appeared in the HDD (82 ± 4.2%). It is suggested that the larger future change in the HD is found over in the Southeastern China region, probably due to a higher local maximum temperature in the present climate. All of the indices show the largest uncertainty over Southeastern China, particularly in the TN (~3.9 times as large as uncertainty over East Asia) and in the HD (~2.4). It is further noted that the TN reveals the largest uncertainty over three East Asian countries (~1.7 and 1.4 over Korea and Japan, respectively). These future changes in extreme temperature events have an important implication for energy-saving applications and human molarity in the future.  相似文献   

2.
根据1961-2010年天津市逐日气象要素,包括平均温度、最高温度、最低温度、相对湿度以及风速,采用统计学方法分析了近50 a天津市的冷暖度日变化以及冬季采暖期和夏季空调期的气候变化特征,探讨了冷暖度日、舒适日数与区域气候变化之间的关系。结果表明:近50 a天津市冷暖度日具有相反的变化趋势,暖度日(HDD)显著下降、冷度日(CDD)显著上升,且暖度日的变化幅度大于冷度日,变化主要集中于80年代之后。冷暖度日与极端温度之间具有显著相关性。采暖期低温日数呈下降趋势、空调期高温日数呈上升趋势。采暖期冷不舒适日数呈显著下降趋势,夏季空调期热不舒适日数呈显著上升趋势,与同期平均气温之间存在显著性相关,且不舒适气候的随机性呈增多趋势。说明在气候变暖背景下,区域气候变化对天津市采暖期和夏季空调期具有重要影响。  相似文献   

3.
Climate indices facilitate the interpretation of expected climate change impacts for many sectors in society, economy, and ecology. The new localized data set of climatic change signals for temperature and precipitation presented by Zubler et al. (Clim Change, 2013) is applied for an analysis of frequently used climate indices in Switzerland. The indices considered are: number of summer days and tropical nights, growing season length, number of frost days and ice days, heating and cooling degree days, and the number of days with fresh snow. For the future periods 2020-49, 2045-74 and 2070–2099 the indices are computed using a delta-change approach based on the reference period 1980–2009 for the emission scenarios A1B, A2, and RCP3PD. The scenario data suggest the following relevant findings: (1) a doubling of the number of summer days by the end of the century under the scenarios A1B and A2, (2) an appearance of tropical nights even above 1500 m asl, (3) a possible reduction of the number of frost days by more than 3 months at altitudes higher than 2500 m asl, (4) a decline of heating degree days by about 30 % until the end of the century, and (5) the near disappearance of days with fresh snow at low altitudes. It is also shown that the end-of-the-century projections of all indices strongly depend on the chosen emission scenario.  相似文献   

4.
北京地区热度日和冷度日的变化特征   总被引:13,自引:3,他引:13       下载免费PDF全文
应用1951—2004年北京逐日平均温度制作北京月、年的热度日 (HDD) 和冷度日 (CDD)。其中平均月HDD以1月 (687.9度日) 最大, 多年平均的年值为2922.6度日, 多年变化呈明显的下降趋势, 下降率为-99.5度日/10 a。平均月CDD以7月 (259.2度日) 最大。CDD多年平均的年值为826.7度日, 多年变化呈上升趋势, 上升率为39.0度日/10 a。1971—2004年HDD月城郊差值 (北京站-密云站) 冬季较大, 最大值为-73.8度日 (12月)。月CDD的城郊差值比HDD的差值小, 最大差值在8月 (34.0度日)。年HDD和CDD与年平均气温具有较高的相关性。年际、年代际HDD与年际、年代际平均气温具有反位相变化趋势, 随着气候增暖, 北京地区HDD将趋于减小, 冬季用于供暖的能源将减少; CDD将趋于增加, 夏季用于制冷降温的能源将增加。  相似文献   

5.
华中区域取暖、降温度日的年代际及空间变化特征   总被引:2,自引:0,他引:2       下载免费PDF全文
选取华中区域(河南、湖北、湖南)通过均一化检验的53个气象站,利用1961—2007年逐日平均气温计算区域逐年取暖度日(HDD)、降温度日(CDD),分析其趋势及年代际变化和空间分布特征。结果表明:47年来区域年HDD总体呈显著下降趋势;CDD呈微弱的下降,变化不显著,这与暖季较小的增温速率有关。HDD由河南向湖南基本上呈现递减的趋势,CDD与HDD呈相反的变化特征。HDD同冷季平均气温呈反位相变化,而CDD同暖季平均气温呈同位相变化。  相似文献   

6.
Exploring the characteristic of the extreme climatic events, especially future projection is considerably important in assessing the impacts of climatic change on hydrology and water resources system. We investigate the future patterns of climate extremes (2001–2099) in the Haihe River Basin (HRB) derived from Coupled General Circulation Model (CGCM) multimodel ensemble projections using the Bayesian Model Average (BMA) approach, under a range of emission scenarios. The extremes are depicted by three extreme temperature indices (i.e., frost days (FD), growing season length (GSL), and T min >90th percentile (TN90)) and five extreme precipitation indices (i.e., consecutive dry days (CDD), precipitation ≥10 mm (R10), maximum 5-day precipitation total (R5D), precipitation >95th percentile (R95T), and simple daily intensity index (SDII)). The results indicate frost days display negative trend over the HRB in the 21st century, particularly in the southern basin. Moreover, a greater season length and more frequent warm nights are also projected in the basin. The decreasing CDD, together with the increasing R10, R5D, R95T, and SDII in the 21st century indicate that the extreme precipitation events will increase in their intensity and frequency in the basin. Meanwhile, the changes of all eight extremes climate indices under A2 and A1B scenarios are more pronounced than in B1. The results will be of practical significance in mitigation of the detrimental effects of variations of climatic extremes and improve the regional strategy for water resource and eco-environment management, particularly for the HRB characterized by the severe water shortages and fragile ecological environment.  相似文献   

7.
近40年我国极端温度变化趋势和季节特征   总被引:16,自引:4,他引:12       下载免费PDF全文
利用1961—2000年我国194个测站逐日最高温度和最低温度器测资料,结合具有实际意义的季节极端温度指数,分析了我国近40年极端温度事件的年变化趋势和季节特征。对年极端气候指数的研究表明:绝对阈值定义的冷暖指数由于无法考虑南北气候差异,其结果不理想。百分比阈值所得的冷暖指数中,冷日指数和暖日指数具有不对称性,冷夜指数和暖夜指数具有较强的对称性。对季节极端温度指数研究表明:冬季极端冷指数变化趋势最为明显,夏季极端暖指数的变化趋势次之,春、秋两季极端冷指数的变化趋势不明显;年和季节尺度的极端冷暖指数均反映出增暖趋势。  相似文献   

8.
北京市气温对电力负荷影响的计量经济分析   总被引:4,自引:1,他引:3       下载免费PDF全文
以温度派生变量度日指数为解释变量构建了气温与电力负荷的计量经济模型。模型证明了天气对电力负荷的季节性影响, 且影响显著。通过引入序列相关AR结构和解释变量的动态结构, 模型得到逐步优化, 调整的拟合优度达95%。为了检验模型的预测能力, 利用历史数据对其进行了评估, 评估结果表明模型有较好的中期电力负荷预测能力。该模型对电力企业电力调度、电力建设有较大的参考价值。  相似文献   

9.
A series of coupled atmosphere-ocean-land global climate model (GCM) simulations using the National Center for Atmospheric Research (NCAR) Community Climate System Model 3 (CCSM3) has been performed for the period 1870–2099 at a T85 horizontal resolution following the GCM experimental design suggested in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). First, a hindcast was performed using the atmospheric concentrations of three greenhouse gases (CO2, CH4, N2O) specified annually and globally on the basis of observations for the period 1870–1999. The hindcast results were compared with observations to evaluate the GCM’s reliability in future climate simulations. Second, climate projections for a 100-year period (2000–2099) were made using six scenarios of the atmospheric concentrations of the three greenhouse gases according to the A1FI, A1T, A1B, A2, B1, and B2 emission profiles of the Special Report on Emissions Scenarios. The present CCSM simulations are found to be consistent with IPCC’s AR4 results in the temporal and spatial distributions for both the present-day and future periods. The GCM results were used to examine the changes in extreme temperatures and precipitation in East Asia and Korea. The extreme temperatures were categorized into warm and cold events: the former includes tropical nights, warm days, and heat waves during summer (June–July–August) and the latter includes frost days, cold days, and cold surges during winter (December–January–February). Focusing on Korea, the results predict more frequent heat waves in response to future emissions: the projected percentage changes between the present day and the late 2090s range from 294% to 583% depending on the emission scenario. The projected global warming is predicted to decrease the frequency of cold extreme events; however, the projected changes in cold surge frequency are not statistically significant. Whereas the number of cold surges in the A1FI emission profile decreases from the present-day value by up to 24%, the decrease in the B1 scenario is less than 1%. The frequency and intensity of extreme precipitation events year-round were examined. Both the frequency and the intensity of these events are predicted to increase in the region around Korea. The present results will be helpful for establishing an adaptation strategy for possible climate change nationwide, especially extreme climate events, associated with global warming.  相似文献   

10.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   

11.
利用1952—2006年呼和浩特市逐日平均温度统计了热度日(HDD)和冷度日(CDD)变化特征。表明,呼和浩特市HDD以1月最大(918度日),多年年均值为4527度日,55a间呈现比较明显的平稳降低态势,线性趋势率为-145.5度日/10a;CDD以7月最大(42度日);多年年均值为74度日,多年变化呈现波动上升的趋势,线性趋势率为16.5度日/10a。HDD和CDD的日数动态变化与二者多年变化趋势是一致的,分别呈现降低和上升的趋势。呼和浩特市理论供暖和制冷日数分别为271d和38d。  相似文献   

12.
Changes in daily climate extremes in the arid area of northwestern China   总被引:3,自引:0,他引:3  
There has been a paucity of information on trends in daily climate and climate extremes, especially for the arid region. We analyzed the changes in the indices of climate extremes, on the basis of daily maximum and minimum air temperature and precipitation at 59 meteorological stations in the arid region of northwest China over the period 1960–2003. Twelve indices of extreme temperature and six indices of extreme precipitation are examined. Temperature extremes show a warming trend with a large proportion of stations having statistically significant trends for all temperature indices. The regional occurrence of extreme cool days and nights has decreased by ?0.93 and ?2.36 days/decade, respectively. Over the same period, the occurrence of extreme warm days and nights has increased by 1.25 and 2.10 days/decade, respectively. The number of frost days and ice days shows a statistically significant decrease at the rate of ?3.24 and ?2.75 days/decade, respectively. The extreme temperature indices also show the increasing trend, with larger values for the index describing variations in the lowest minimum temperature. The trends of Min Tmin (Tmax) and Max Tmin (Tmax) are 0.85 (0.61) and 0.32 (0.17)?°C/decade. Most precipitation indices exhibit increasing trends across the region. On average, regional maximum 1-day precipitation, annual total wet-day precipitation, and number of heavy precipitation days and very wet days show insignificant increases. Insignificant decreasing trends are also found for consecutive dry days. The rank-sum statistic value of most temperature indices exhibits consistent or statistically significant trends across the region. The regional medians after 1986 of Min Tmin (Tmax), Max Tmin (Tmax), warm days (nights), and warm spell duration indicator show statistically more larger than medians before 1986, but the frost days, ice days, cool days (nights), and diurnal temperature range reversed. The medians of precipitation indices show insignificant change except for consecutive dry days before and after 1986.  相似文献   

13.
Extreme climate events in China: IPCC-AR4 model evaluation and projection   总被引:11,自引:1,他引:10  
Observations from 550 surface stations in China during 1961–2000 are used to evaluate the skill of seven global coupled climate models in simulating extreme temperature and precipitation indices. It is found that the models have certain abilities to simulate both the spatial distributions of extreme climate indices and their trends in the observed period. The models’ abilities are higher overall for extreme temperature indices than for extreme precipitation indices. The well-simulated temperature indices are frost days (Fd), heat wave duration index (HWDI) and annual extreme temperature range (ETR). The well-simulated precipitation indices are the fraction of annual precipitation total due to events exceeding the 95th percentile (R95T) and simple daily intensity index (SDII). In a general manner, the multi-model ensemble has the best skill. For the projections of the extreme temperature indices, trends over the twenty-first century and changes at the end of the twenty-first century go into the same direction. Both frost days and annual extreme temperature range show decreasing trends, while growing season length, heat wave duration and warm nights show increasing trends. The increases are especially manifested in the Tibetan Plateau and in Southwest China. For extreme precipitation indices, the end of the twenty-first century is expected to have more frequent and more intense extreme precipitation. This is particularly visible in the middle and lower reaches of the Yangtze River, in the Southeast coastal region, in the west part of Northwest China, and in the Tibetan Plateau. In the meanwhile, accompanying the decrease in the maximum number of consecutive dry days in Northeast and Northwest, drought situation will reduce in these regions.  相似文献   

14.
The terms “weather extremes” and “climate extremes” are widely used in meteorology, often in relation to climate change. This paper reviews the empirical investigations into parallel changes in extreme events and climate change published in recent years and looks at their relevance for the global energy system. Empirical investigation into the correlation of extremes with global warming covers five groups: changes in temperature, precipitation, wind (storm) extremes, tropical and extra-tropical circulation phenomena. For temperature extremes, extensive analyses demonstrate that extreme hot days and nights will likely become more frequent, and extreme cold days and nights less frequent. Intense precipitation events will likely become more frequent in most continental regions. Scientific confidence in the trends of the frequency, duration, and intensity of tropical cyclones, is still low. A poleward shift is observed for extratropical cyclones, whereas no convincing tendencies of many smaller-scale phenomena, for example, tornados, or hail, can yet be detected. All these extremes have serious implications for the energy sector.  相似文献   

15.
Assessment of climate extremes in the Eastern Mediterranean   总被引:4,自引:0,他引:4  
Summary Several seasonal and annual climate extreme indices have been calculated and their trends (over 1958 to 2000) analysed to identify possible changes in temperature- and precipitation-related climate extremes over the eastern Mediterranean region. The most significant temperature trends were revealed for summer, where both minimum and maximum temperature extremes show statistically significant warming trends. Increasing trends were also identified for an index of heatwave duration. Negative trends were found for the frequency of cold nights in winter and especially in summer. Precipitation indices highlighted more regional contrasts. The western part of the study region, which comprises the central Mediterranean and is represented by Italian stations, shows significant positive trends towards intense rainfall events and greater amounts of precipitation. In contrast, the eastern half showed negative trends in all precipitation indices indicating drier conditions in recent times. Significant positive trends were revealed for the index of maximum number of consecutive dry days, especially for stations in southern regions, particularly on the islands.Current affiliation: National Observatory of Athens, Athens, Greece.  相似文献   

16.
Degree days are usually defined as the accumulated daily mean temperature varying with the base temperature, and are one of the most important indicators of climate changes. In this study, the present-day and projected changes of four degree days indices from daily mean surface air temperature output simulated by Max Planck Institute, Earth Systems Model of low resolution (MPI-ESM-LR) model are evaluated with the high resolution gridded-observation dataset and two modern reanalyses in China. During 1979–2005, the heating degree days (HDD) and the numbers of HDD (NHDD) have decreased for observation, reanalyses (ERA-Interim and NCEP/NCAR) and model simulations (historical and decadal experiments), consistent with the increasing cooling degree days (CDD) and the numbers of CDD (NCDD). These changes reflect the general warming in China during the past decades. In most cases, ERA-Interim is closer to observation than NCEP/NCAR and model simulations. There are discrepancies between observation, reanalyses and model simulations in the spatial patterns and regional means. The decadal hindcast/forecast simulation performance of MPI-ESM-LR produce warmer than the observed mean temperature in China during the entire period, and the hindcasts forecast a trend lower than the observed. Under different representative concentration pathway (RCP) emissions scenarios, HDD and NHDD show significant decreases, and CDD and NCDD consistently increase during 2006–2100 under RCP8.5, RCP4.5 and RCP2.6, especially before the mid-21 century. More pronounced changes occur under RCP8.5, which is associated with a high rate of radiative forcing. The 20th century runs reflect the sensitivity to the initial conditions, and the uncertainties in terms of the inter-ensemble are small, whereas the long-term trend is well represented with no differences among ensembles.  相似文献   

17.
Results from high resolution 7-km WRF regional climate model (RCM) simulations are used to analyse changes in the occurrence frequencies of heat waves, of precipitation extremes and of the duration of the winter time freezing period for highly populated urban areas in Central Europe. The projected climate change impact is assessed for 11 urban areas based on climate indices for a future period (2021–2050) compared to a reference period (1971–2000) using the IPCC AR4 A1B Scenario as boundary conditions. These climate indices are calculated from daily maximum, minimum and mean temperatures as well as precipitation amounts. By this, the vulnerability of these areas to future climate conditions is to be investigated. The number of heat waves, as well as the number of single hot days, tropical nights and heavy precipitation events is projected to increase in the near future. In addition, the number of frost days is significantly decreased. Probability density functions of monthly mean summer time temperatures show an increase of the 95th percentile of about 1–3 °C for the future compared with the reference period. The projected increase of cooling and decrease of heating degree days indicate the possible impact on urban energy consumption under future climate conditions.  相似文献   

18.
The changes in a selection of extreme climate indices(maximum of daily maximum temperature(TXx),minimum of daily minimum temperature(TNn),annual total precipitation when the daily precipitation exceeds the 95th percentile of wet-day precipitation(very wet days,R95p),and the maximum number of consecutive days with less than 1 mm of precipitation(consecutive dry days,CDD))were projected using multi-model results from phase 5 of the Coupled Model Intercomparison Project in the early,middle,and latter parts of the 21st century under different Representative Concentration Pathway(RCP)emissions scenarios.The results suggest that TXx and TNn will increase in the future and,moreover,the increases of TNn under all RCPs are larger than those of TXx.R95p is projected to increase and CDD to decrease significantly.The changes in TXx,TNn,R95p,and CDD in eight sub-regions of China are different in the three periods of the 21st century,and the ranges of change for the four indices under the higher emissions scenario are projected to be larger than those under the lower emissions scenario.The multi-model simulations show remarkable consistency in their projection of the extreme temperature indices,but poor consistency with respect to the extreme precipitation indices.More substantial inconsistency is found in those regions where high and low temperatures are likely to happen for TXx and TNn,respectively.For extreme precipitation events(R95p),greater uncertainty appears in most of the southern regions,while for drought events(CDD)it appears in the basins of Xinjiang.The uncertainty in the future changes of the extreme climate indices increases with the increasing severity of the emissions scenario.  相似文献   

19.
In this study, the influence of the East Atlantic Oscillation (EAO) on the climate indices based on the daily minimum temperature at eight stations in Serbia was examined. The following climate indices were analyzed: frost days (FD), cold nights (TN10p), warm nights (TN90p), minimum value of daily minimum temperature (TNn), tropical nights (TR), and cold spell duration indice (CSDI). Analysis of correlation between the East Atlantic Index (EAI) and the geopotential at 500 hPa, as well as between the EAI and climate indices was realized for all seasons and months during the period 1950–2009. Two characteristic situations for the extreme positive and negative values of the EAI were analyzed. Seasonal and monthly trend analyses of climate indices were performed. Decreases of FD and TN10p and increases of TN90p and TR were observed. It was found that the negative correlation prevailed between the EAI and TN10p/FD, and positive one between the EAI and TN90p/TR for all seasons and months. The highest correlation was observed between the EAI and TN90p in February.  相似文献   

20.
基于RCP4.5情景下6.25 km高分辨率统计降尺度数据,使用国际上通用的极端气候事件指数,分析雄安新区及整个京津冀地区未来极端气候事件的可能变化。首先对当代模拟结果进行评估,结果表明,集合平均模拟可以较好地再现大部分极端气候事件指数的分布,且对与气温有关的极端气候事件指数模拟效果较好。但也存在一定偏差,特别是对连续干旱日数(CDD)的模拟效果相对较差。集合平均的预估结果表明,未来在全球变暖背景下,雄安新区及整个京津冀地区均表现为极端暖事件增多,极端冷事件减少,连续干旱日数减少,极端强降水事件增多。具体来看,到21世纪末期,日最高气温最高值(TXx)和日最低气温最低值(TNn)在整个区域上都是增加的,大部分地区增加值分别超过2.4℃和3.2℃;夏季日数(SU)和热带夜数(TR)也都表现为增加,但两者的变化分布基本相反,其中SU在山区增加幅度较大,平原地区增加幅度较小,而TR在平原地区的增加值较山区更显著,两个指数未来增加值分别为20~40 d和5~40 d;霜冻日数(FD)和冰冻日数(ID)都表现为减少,减少值分别超过10 d和5 d;与降水有关的极端气候事件指数,CDD、降雨日数(R1mm)和中雨日数(R10mm)的变化均以减少为主,但数值较小,一般都在?10%~0之间;最大5 d降水量(RX5day)、降水强度(SDII)和大雨日数(R20mm)主要表现为增加,增加值一般在0~25%之间。从区域平均的变化来看,与气温有关的极端气候事件指数的变化趋势较为显著,与降水有关的极端气候事件指数变化趋势较小。两个区域对比来看,雄安新区模式间的不确定性更大,反映出模式对较小区域模拟的不足。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号