首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pacific Northwest (PNW) hydrology is particularly sensitive to changes in climate because snowmelt dominates seasonal runoff, and temperature changes impact the rain/snow balance. Based on results from the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4), we updated previous studies of implications of climate change on PNW hydrology. PNW 21st century hydrology was simulated using 20 Global Climate Models (GCMs) and 2 greenhouse gas emissions scenarios over Washington and the greater Columbia River watershed, with additional focus on the Yakima River watershed and the Puget Sound which are particularly sensitive to climate change. We evaluated projected changes in snow water equivalent (SWE), soil moisture, runoff, and streamflow for A1B and B1 emissions scenarios for the 2020s, 2040s, and 2080s. April 1 SWE is projected to decrease by approximately 38–46% by the 2040s (compared with the mean over water years 1917–2006), based on composite scenarios of B1 and A1B, respectively, which represent average effects of all climate models. In three relatively warm transient watersheds west of the Cascade crest, April 1 SWE is projected to almost completely disappear by the 2080s. By the 2080s, seasonal streamflow timing will shift significantly in both snowmelt dominant and rain–snow mixed watersheds. Annual runoff across the State is projected to increase by 2–3% by the 2040s; these changes are mainly driven by projected increases in winter precipitation.  相似文献   

2.
Worldwide, 98% of total electricity is currently produced by thermoelectric power and hydropower. Climate change is expected to directly impact electricity supply, in terms of both water availability for hydropower generation and cooling water usage for thermoelectric power. Improved understanding of how climate change may impact the availability and temperature of water resources is therefore of major importance. Here we use a multi-model ensemble to show the potential impacts of climate change on global hydropower and cooling water discharge potential. For the first time, combined projections of streamflow and water temperature were produced with three global hydrological models (GHMs) to account for uncertainties in the structure and parametrization of these GHMs in both water availability and water temperature. The GHMs were forced with bias-corrected output of five general circulation models (GCMs) for both the lowest and highest representative concentration pathways (RCP2.6 and RCP8.5). The ensemble projections of streamflow and water temperature were then used to quantify impacts on gross hydropower potential and cooling water discharge capacity of rivers worldwide. We show that global gross hydropower potential is expected to increase between +2.4% (GCM-GHM ensemble mean for RCP 2.6) and +6.3% (RCP 8.5) for the 2080s compared to 1971–2000. The strongest increases in hydropower potential are expected for Central Africa, India, central Asia and the northern high-latitudes, with 18–33% of the world population living in these areas by the 2080s. Global mean cooling water discharge capacity is projected to decrease by 4.5-15% (2080s). The largest reductions are found for the United States, Europe, eastern Asia, and southern parts of South America, Africa and Australia, where strong water temperature increases are projected combined with reductions in mean annual streamflow. These regions are expected to affect 11–14% (for RCP2.6 and the shared socio-economic pathway (SSP)1, SSP2, SSP4) and 41–51% (RCP8.5–SSP3, SSP5) of the world population by the 2080s.  相似文献   

3.
Climate change is projected to result, on average, in earlier snowmelt and reduced summer flows in the Pacific Northwest, patterns not well represented in historical observations used in water planning. We evaluate the sensitivities of water supply systems in the Puget Sound basin cities of Everett, Seattle, and Tacoma to historical and projected future streamflow variability and water demands. We simulate streamflow for the 2020s, 2040s, and 2080s using the distributed hydrology–soil–vegetation model (DHSVM), driven by downscaled ensembles of climate simulations archived from the 2007 IPCC Fourth Assessment Report. We use these streamflow predictions as inputs to reservoir system models for the three water supply systems. Over the next century, under average conditions all systems are projected to experience declines and eventual disappearance of the springtime snowmelt peak. How these shifts affect management depends on physical characteristics, operating objectives, and the adaptive capacity of each system. Without adaptations, average seasonal drawdown of reservoir storage is projected to increase in all three systems throughout the 21st century. Reliability of all systems in the absence of demand increases is robust through the 2020s however, and remains above 98% for Seattle and Everett in the 2040s and 2080s. With demand increases, however, reliability of the systems in their current configurations and with current operating policies progressively declines through the century.  相似文献   

4.
We examine summer temperature patterns in the Wenatchee River and two of its major tributaries Icicle and Nason Creeks, located in the Pacific Northwest region of the United States. Through model simulations we evaluate the cooling effects of mature riparian vegetation corridors along the streams and potential increases due to global warming for the 2020s–2080s time horizons. Site potential shade influences are smaller in the mainstream due to its relatively large size and reduced canopy density in the lower reaches, proving a modest reduction of about 0.3°C of the stream length average daily maximum temperature, compared with 1.5°C and 2.8°C in Icicle and Nason Creeks. Assuming no changes in riparian vegetation shade, stream length-average daily maximum temperature could increase in the Wenatchee River from 1–1.2°C by the 2020s to 2°C in the 2040s and 2.5–3.6°C in the 2080s, reaching 27–30°C in the warmest reaches. The cooling effects from the site potential riparian vegetation are likely to be offset by the climate change effects in the Wenatchee River by the 2020s. Buffers of mature riparian vegetation along the banks of the tributaries could prevent additional water temperature increases associated with climate change. By the end of the century, assuming site potential shade, the tributaries could have a thermal condition similar to today’s condition which has less shade. In the absence of riparian vegetation restoration, at typical summer low flows, stream length average daily mean temperatures could reach about 16.4–17°C by the 2040s with stream length average daily maxima around 19.5–20.6°C, values that can impair or eliminate salmonid rearing and spawning. Modeled increases in stream temperature due to global warming are determined primarily by the projected reductions in summer streamflows, and to a lesser extent by the increases in air temperature. The findings emphasize the importance of riparian vegetation restoration along the smaller tributaries, to prevent future temperature increases and preserve aquatic habitat.  相似文献   

5.
Food production in China is a fundamental component of the national economy and driver of agricultural policy. Sustaining and increasing output to meet growing demand faces significant challenges including climate change, increasing population, agricultural land loss and competing demands for water. Recent warming in China is projected to accelerate by climate models with associated changes in precipitation and frequency of extreme events. How changes in cereal production and water availability due to climate change will interact with other socio-economic pressures is poorly understood. By linking crop and water simulation models and two scenarios of climate (derived from the Regional Climate Model PRECIS) and socio-economic change (downscaled from IPCC SRES A2 and B2) we demonstrate that by the 2040s the absolute effects of climate change are relatively modest. The interactive effects of other drivers are negative, leading to decreases in total production of ?18% (A2) and ?9% (B2). Outcomes are highly dependent on climate scenario, socio-economic development pathway and the effects of CO2 fertilization on crop yields which may almost totally offset the decreases in production. We find that water availability plays a significant limiting role on future cereal production, due to the combined effects of higher crop water requirements (due to climate change) and increasing demand for non-agricultural use of water (due to socio-economic development). Without adaptation, per capita cereal production falls in all cases, by up to 40% of the current baseline.By simulating the effects of three adaptation scenarios we show that for these future scenarios China is able to maintain per capita cereal production, given reasonable assumptions about policies on land and water management and progress in agricultural technology. Our results are optimistic because PRECIS simulates much wetter conditions than a multi-model average, the CO2 crop yield response function is highly uncertain and the effects of extreme events on crop growth and water availability are likely to be underestimated.  相似文献   

6.
Peninsular environments are ecosystems that are one of the most vulnerable to global warming. Despite the importance of conserving regional biodiversity, peninsular environments are among the least studied with respect to the influences of global warming. In this study, we used data on benthic macroinvertebrate communities from 521 sites across Korea (a nationwide scale) to evaluate the potential impact of temperature increases on river ecosystems. Weighted averaging regression models (WARMs) were used to project the relationships between relative macroinvertebrate abundance and water temperature, based on the temperature data of the Intergovernmental Panel on Climate Change (IPCC) A1B scenario. Maximum tolerance water temperatures were used to quantify the risks to macroinvertebrates at the catchment and national scales. Ambient air temperatures in the 2090s were projected to increase by an average of 3.4?ºC relative to the baseline of the 2000s at the national scale. Mayflies, stoneflies and caddisflies were identified as potentially the most sensitive taxa to global warming. The impact of global warming on macroinvertebrates was predicted to be minimal prior to the 2060s; however, by the 2080s, species loss was predicted to be 55 %. Potential distribution ranges of cold water species in the future decades were expected to decrease continuously over time, while those of warm species were expected to increase from the 2000s to the 2040s and then decrease until the 2080s. Our projections may be useful for understanding how climate parameters affect the biogeographical patterns of aquatic biodiversity from a thermal-preference perspective.  相似文献   

7.
We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scenarios (A2 and B1) archived from the 2007 IPCC Fourth Assessment Report (AR4). While all GCMs agree with respect to the direction of 21st Century temperature changes, there is considerable variability in the magnitude, direction, and seasonality of projected precipitation changes. Our simulations show that, averaged over all 11 GCMs, the Nile River is expected to experience increase in streamflow early in the study period (2010–2039), due to generally increased precipitation. Streamflow is expected to decline during mid- (2040–2069) and late (2070–2099) century as a result of both precipitation declines and increased evaporative demand. The predicted multimodel average streamflow at High Aswan Dam (HAD) as a percentage of historical (1950–1999) annual average are 111 (114), 92 (93) and 84 (87) for A2 (B1) global emissions scenarios. Implications of these streamflow changes on the water resources of the Nile River basin were analyzed by quantifying the annual hydropower production and irrigation water release at HAD. The long-term HAD release for irrigation increases early in the century to 106 (109)% of historical, and then decreases to 87 (89) and 86 (84)% of historical in Periods II and III, respectively, for the A2 (B1) global emissions scenarios. Egypt’s hydropower production from HAD will be above the mean annual average historical value of about 10,000 GWH for the early part of 21st century, and thereafter will generally follow the streamflow trend, however with large variability among GCMs. Agricultural water supplies will be negatively impacted, especially in the second half of the century.  相似文献   

8.
根据IPCC提出的共享社会经济路径(SSPs),本文以中国14个乡村振兴核心区为研究区,结合中国当前人口特征设定不同SSPs路径下本地化人口预估参数,采用人口—发展—环境(PDE)模型,预估2020~2040年人口变化特征.结合SSPs-RCPs情景下多模式的干旱评估结果,探讨未来乡村振兴核心区干旱暴露人口较基准期(1...  相似文献   

9.
近十年来我国气候变暖影响研究的若干进展   总被引:51,自引:12,他引:51       下载免费PDF全文
近年来,我国政府和科技界十分关注气候王馥棠变暖对我国经济发展可能影响的评估, 开展了许多重大项目和课题的研究。该文仅就气候变暖对我国自然植被、农业、森林、水资源、能源利用和区域海平面上升等领域影响评估研究的若干有意义的初步结果简要归纳和评述如下:取自不同GCM模型的未来气候变化情景下的影响评估模拟表明,我国的特征性自然植被类型将会发生明显的变化。同当前气候(1951~1980年)下的模拟分布相比,到2050年我国几乎所有地方的农业种植制度均将发生较大变化;气候变暖将导致复种指数增加和种植方式多样化,但降水与蒸散之间可能出现的负平衡和土壤水分胁迫的增加以及生育期的可能缩短,最终将导致我国主要作物的产量下降。气候变暖对我国水资源最明显的影响将会发生在黄淮海流域,这个区域的水资源供需短缺将大大提高。同时,气候变暖将改变我国室内取暖和降温的能源需求关系:北方冬季取暖的能源消耗将减少, 而南方夏季降温的能源消耗将会增加。海平面的上升将使我国三个主要沿海低洼脆弱区,即珠江三角洲、长江三角洲和黄河三角洲,面临部分遭受海水淹没的威胁。  相似文献   

10.
Model Projections of Precipitation Minus Evaporation in China   总被引:1,自引:0,他引:1       下载免费PDF全文
Changes in precipitation minus evaporation (P -E) are analyzed to investigate the possible impacts of climate change on water resource conditions in China. Simulations of SRES A1B and 20C3M scenarios from the WCRP CMIP3 GCMs are employed in the study. Time slice analysis shows that there would be more annual mean P -E across China in 2040-2055 and 2080-2099, compared to 1980-1999, with the largest percentage change over Northwest China and the Bohai Rim area. Precipitation and evaporation would also increase over entire China during these two periods. Annual mean P -E, precipitation, and evaporation averaged over the whole China and its eight sub-areas all yield generally upward trends during the 21st century. This indicates that on annual mean scale, the global warming related precipitation dominates the hydroclimate conditions in China. On seasonal mean scale, although precipitation is projected to increase over China, P -E exhibits both decreasing and increasing trends over certain regions of China. This suggests that the variation of global warming related evaporation dominates hydroclimate conditions over some parts of China, especially in northern China. Therefore, in hydroclimate condition projections, considering both evaporation and precipitation changes should be more reasonable than considering only precipitation.  相似文献   

11.
Impact of climate change on Pacific Northwest hydropower   总被引:2,自引:0,他引:2  
The Pacific Northwest (PNW) hydropower resource, central to the region’s electricity supply, is vulnerable to the impacts of climate change. The Northwest Power and Conservation Council (NWPCC), an interstate compact agency, has conducted long term planning for the PNW electricity supply for its 2005 Power Plan. In formulating its power portfolio recommendation, the NWPCC explored uncertainty in variables that affect the availability and cost of electricity over the next 20 years. The NWPCC conducted an initial assessment of potential impacts of climate change on the hydropower system, but these results are not incorporated in the risk model upon which the 2005 Plan recommendations are based. To assist in bringing climate information into the planning process, we present an assessment of uncertainty in future PNW hydropower generation potential based on a comprehensive set of climate models and greenhouse gas emissions pathways. We find that the prognosis for PNW hydropower supply under climate change is worse than anticipated by the NWPCC’s assessment. Differences between the predictions of individual climate models are found to contribute more to overall uncertainty than do divergent emissions pathways. Uncertainty in predictions of precipitation change appears to be more important with respect to impact on PNW hydropower than uncertainty in predictions of temperature change. We also find that a simple regression model captures nearly all of the response of a sequence of complex numerical models to large scale changes in climate. This result offers the possibility of streamlining both top-down impact assessment and bottom-up adaptation planning for PNW water and energy resources.  相似文献   

12.
The climatological characteristics of precipitation and the water vapor budget in the Haihe River basin (HRB) are analyzed using daily observations at 740 stations in China in 1951-2007 and the 4-time daily ERA40 reanalysis data in 1958-2001. The results show that precipitation and surface air temperature present significant interannual and interdecadal variability, with cold and wet conditions before the 1970s but warm and dry conditions after the 1980s. Precipitation has reduced substantially since the 1990s, with a continued increase of surface air temperature. The total column water vapor has also reduced remarkably since the late 1970s. The multi-model ensemble from the Fourth Assessment Report (AR4) of the Intergovernmental Panel on Climate Change (IPCC) has capably simulated the 20th century climate features and successfully reproduced the spatial patterns of precipitation and temperature. Unfortunately, the models do not reproduce the interdecadal changes. Based on these results, future projections of the climate in the HRB are discussed under the IPCC Special Report on Emissions Scenarios (SRES) B1, A1B, and A2. The results show that precipitation is expected to increase in the 21st century, with substantial interannual fluctuations relative to the models’ baseline climatology. A weak increasing trend in precipitation is projected before the 2040s, followed by an abrupt increase after the 2040s, especially in winter. Precipitation is projected to increase by 10%-18% by the end of the 21st century. Due to the persistent warming of surface air temperature, water vapor content in the lower troposphere is projected to increase. Relative humidity will decrease in the mid-lower troposphere but increase in the upper troposphere. On the other hand, precipitation minus evaporation remains positive throughout the 21st century. Based on these projection results, the HRB region is expected to get wetter in the 21st century due to global warming.  相似文献   

13.
To a set of well-regarded international scenarios (UNEP’s GEO-4), we have added consideration of the demand, supply, and energy implications related to copper production and use over the period 2010–2050. To our knowledge, these are the first comprehensive metal supply and demand scenarios to be developed. We find that copper demand increases by between 275 and 350% by 2050, depending on the scenario. The scenario with the highest prospective demand is not Market First (a “business as usual” vision), but Equitability First, a scenario of transition to a world of more equitable values and institutions. These copper demands exceed projected copper mineral resources by mid-century and thereafter. Energy demand for copper production also demonstrates strong increases, rising to as much as 2.4% of projected 2050 overall global energy demand. We investigate possible policy responses to these results, concluding that improving the efficiency of the copper cycle and encouraging the development of copper-free energy distribution on the demand side, and improving copper recycling rates on the supply side are the most promising of the possible options. Improving energy efficiency in primary copper production would lead to a reduction in the energy demand by 0.5% of projected 2050 overall global energy demand. In addition, encouraging the shift towards renewable technologies is important to minimize the impacts associated with copper production.  相似文献   

14.
At the current rate of global warming, the target of limiting it within 2 degrees by the end of the century seems more and more unrealistic. Policymakers, businesses and organizations leading international negotiations urge the scientific community to provide realistic and accurate assessments of the possible consequences of so called “high end” climate scenarios.This study illustrates a novel procedure to assess the future flood risk in Europe under high levels of warming. It combines ensemble projections of extreme streamflow for the current century based on EURO-CORDEX RCP 8.5 climate scenarios with recent advances in European flood hazard mapping. Further novelties include a threshold-based evaluation of extreme event magnitude and frequency, an alternative method to removing bias in climate projections, the latest pan-European exposure maps, and an improved flood vulnerability estimation.Estimates of population affected and direct flood damages indicate that by the end of the century the socio-economic impact of river floods in Europe is projected to increase by an average 220% due to climate change only. When coherent socio-economic development pathways are included in the assessment, central estimates of population annually affected by floods range between 500,000 and 640,000 in 2050, and between 540,000 and 950,000 in 2080, as compared to 216,000 in the current climate. A larger range is foreseen in the annual flood damage, currently of 5.3 B€, which is projected to rise at 20–40 B€ in 2050 and 30–100 B€ in 2080, depending on the future economic growth.  相似文献   

15.
The Yakima River Reservoir system supplies water to ~180,000 irrigated hectares through the operation of five reservoirs with cumulative storage of ~30% mean annual river flow. Runoff is derived mostly from winter precipitation in the Cascade Mountains, much of which is stored as snowpack. Climate change is expected to result in earlier snowmelt runoff and reduced summer flows. Effects of these changes on irrigated agriculture were simulated using a reservoir system model coupled to a hydrological model driven by downscaled scenarios from 20 climate models archived by the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. We find earlier snowmelt results in increased water delivery curtailments. Historically, the basin experienced substantial water shortages in 14% of years. Without adaptations, for IPCC A1B global emission scenarios, water shortages increase to 27% (13% to 49% range) in the 2020s, to 33% in the 2040s, and 68% in the 2080s. For IPCC B1 emissions scenarios, shortages occur in 24% (7% to 54%) of years in the 2020s, 31% in the 2040s and 43% in the 2080s. Historically unprecedented conditions where senior water rights holders suffer shortfalls occur with increasing frequency in both A1B and B1 scenarios. Economic losses include expected annual production declines of 5%–16%, with greater probabilities of operating losses for junior water rights holders.  相似文献   

16.
The discussion reviews the prevailing pattern of energy demand and supply in the MINK states, speculates on the region's long-term energy future in the absence and presence of greenhouse warming, and, in the latter case, considers energy sector adaptation to such a prospect. Climate-sensitive energydemand is dominated by heating and cooling in various sectors of the regional economy (around 20% of regional energy consumption) and by such agricultural applications as irrigation pumping and crop drying (around 5%). A climate-sensitive energysupply issue of some importance is the region's partial dependence on hydroelectric capacity in the upper Missouri river basin. The analysis finds that, unlike the rather significant impacts likely to be experienced by other sectors of the regional economy, the hypothesized warming trend will translate into only small net increases in energy demand; and that technological possibilities and policy measures are available to mute any serious climatic effects on the energy sector.  相似文献   

17.
全球气候变暖已经成为不争的事实,人们逐渐认识到依靠大量能源消费的生产方式、不惜牺牲环境的经济增长模式、无节制大量消费的生活方式应该从根本上得到改变.城市作为工业、建筑、交通的载体,也是高能耗、高碳排放的主要源头,需要改变传统城市发展的模式来应对全球变暖的挑战,发展低碳城市被认为是未来最有希望的经济发展动力.首先采用IPCC能源转换模型对南京市碳排量进行测算,选取南京的人口数量、GDP、人均GDP、人口城市化率、产业结构多元化系数(ESD)、能源消费结构多元化系数(ESCD)和能源强度作为对比数列,以南京CO2排放总量作为参考数列,运用灰色系统关联模型进行关联度计算并排序.结果显示,南京市碳排放量关联度从大到小依次为ESD、人口数量、城市化率、ECSD、能源强度、人均GDP、GDP,这与南京工业生产因化石能源的大量使用对城市碳排放量贡献占总排量一半以上的分析结果相吻合.最后详细分析各指标对南京建设低碳城市的影响,并提出对策建议.  相似文献   

18.
Despite a clear need, little research has been carried out at the regional-level to quantify potential climate-related impacts to electricity production and delivery systems. This paper introduces a bottom-up study of climate change impacts on California's energy infrastructure, including high temperature effects on power plant capacity, transmission lines, substation capacity, and peak electricity demand. End-of-century impacts were projected using the A2 and B1 Intergovernmental Panel on Climate Change emission scenarios. The study quantifies the effect of high ambient temperatures on electricity generation, the capacity of substations and transmission lines, and the demand for peak power for a set of climate scenarios. Based on these scenarios, atmospheric warming and associated peak demand increases would necessitate up to 38% of additional peak generation capacity and up to 31% additional transmission capacity, assuming current infrastructure. These findings, although based on a limited number of scenarios, suggest that additional funding could be put to good use by supporting R&D into next generation cooling equipment technologies, diversifying the power generation mix without compromising the system's operational flexibility, and designing effective demand side management programs.  相似文献   

19.
SOME ADVANCES IN CLIMATE WARMING IMPACT RESEARCH IN CHINA SINCE 1990   总被引:1,自引:0,他引:1  
Increasing the concentration of greenhouse gases in the atmosphere will strengthen the naturalgreenhouse effect,which could lead to global climate warming and more other changes.China is alargely agricultural country with a large size of population and the relative shortages of farminglands and water resources,thus increasing the importance of climate warming for national economydevelopment.Therefore,Chinese government and scientists have paid great attention to theimpact-assessment of climate warming on national economy in China,especially during the past 10years.This presentation will briefly describe some major issues of climate warming impact researchon national vegetation,agriculture,forest,water resources,energy use and regional sea level forChina,etc.As a result,all climate change scenarios derived by GCMs suggest a substantial change in thecharacteristic natural vegetation types.It is also shown that comparing with the distributionsimulated under the normal time period 1951—1980 as the present climate,by 2050 large changesin cropping systems would occur almost everywhere in China.Climate warming would lead toincrease cropping diversification and multiplication.Unfortunately,the possible net balancebetween precipitation and evapotranspiration would be negative and it would lead to reduce thegrain production in China significantly due to enhanced moisture stress in soil.The most evidentinfluence of climate warming on water resources would happen in Huanghe-Huaihe-Haihe Basin andthe water supply-demand deficit would be substantially enhanced in this area.And also,a warmerclimate for China will alter the energy requirement for domestic heating and cooling,that is,reduce energy use for heating in northern China and increase energy consumption for cooling insouthern China.  相似文献   

20.
吉林省城市住宅采暖气候耗能距平序列的建立方法   总被引:1,自引:0,他引:1  
 由于中国社会经济统计资料中均缺乏历年采暖能源消费数据,在分析气候变化对采暖能耗的影响时,始终存在着一个瓶颈。为此,提出了一种城市住宅采暖气候耗能距平序列的建立方法,这种方法把气候变化因素与相关的社会经济因素(如人口、人均居住面积等)结合在一起,较直观地反映了气候变化对城市住宅采暖耗能的影响。以地处高纬的吉林省为例,利用吉林省历年城镇人口、城镇人均居住面积、采暖度日数以及单位面积采暖耗煤量指标,建立了吉林省历年采暖气候耗能距平序列。结果表明:相对于1971-2000年30 a平均气候状况,吉林省2001/2002年的采暖期理论上因气候偏暖可以节约35.98万t标准煤,而2000/2001年采暖期因气候偏冷需要增加15.5万t标准煤。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号