首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Climate strongly affects energy supply and demand in the Pacific Northwest (PNW) and Washington State (WA). We evaluate potential effects of climate change on the seasonality and annual amount of PNW hydropower production, and on heating and cooling energy demand. Changes in hydropower production are estimated by linking simulated streamflow scenarios produced by a hydrology model to a simulation model of the Columbia River hydro system. Changes in energy demand are assessed using gridded estimates of heating degree days (HDD) and cooling degree days (CDD) which are then combined with population projections to create energy demand indices that respond both to climate, future population, and changes in residential air conditioning market penetration. We find that substantial changes in the amount and seasonality of energy supply and demand in the PNW are likely to occur over the next century in response to warming, precipitation changes, and population growth. By the 2040s hydropower production is projected to increase by 4.7–5.0% in winter, decrease by about 12.1–15.4% in summer, with annual reductions of 2.0–3.4%. Larger decreases of 17.1–20.8% in summer hydropower production are projected for the 2080s. Although the combined effects of population growth and warming are projected to increase heating energy demand overall (22–23% for the 2020s, 35–42% for the 2040s, and 56–74% for the 2080s), warming results in reduced per capita heating demand. Residential cooling energy demand (currently less than one percent of residential demand) increases rapidly (both overall and per capita) to 4.8–9.1% of the total demand by the 2080s due to increasing population, cooling degree days, and air conditioning penetration.  相似文献   

2.
Climate change is projected to result, on average, in earlier snowmelt and reduced summer flows in the Pacific Northwest, patterns not well represented in historical observations used in water planning. We evaluate the sensitivities of water supply systems in the Puget Sound basin cities of Everett, Seattle, and Tacoma to historical and projected future streamflow variability and water demands. We simulate streamflow for the 2020s, 2040s, and 2080s using the distributed hydrology–soil–vegetation model (DHSVM), driven by downscaled ensembles of climate simulations archived from the 2007 IPCC Fourth Assessment Report. We use these streamflow predictions as inputs to reservoir system models for the three water supply systems. Over the next century, under average conditions all systems are projected to experience declines and eventual disappearance of the springtime snowmelt peak. How these shifts affect management depends on physical characteristics, operating objectives, and the adaptive capacity of each system. Without adaptations, average seasonal drawdown of reservoir storage is projected to increase in all three systems throughout the 21st century. Reliability of all systems in the absence of demand increases is robust through the 2020s however, and remains above 98% for Seattle and Everett in the 2040s and 2080s. With demand increases, however, reliability of the systems in their current configurations and with current operating policies progressively declines through the century.  相似文献   

3.
The Yakima River Reservoir system supplies water to ~180,000 irrigated hectares through the operation of five reservoirs with cumulative storage of ~30% mean annual river flow. Runoff is derived mostly from winter precipitation in the Cascade Mountains, much of which is stored as snowpack. Climate change is expected to result in earlier snowmelt runoff and reduced summer flows. Effects of these changes on irrigated agriculture were simulated using a reservoir system model coupled to a hydrological model driven by downscaled scenarios from 20 climate models archived by the 2007 Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. We find earlier snowmelt results in increased water delivery curtailments. Historically, the basin experienced substantial water shortages in 14% of years. Without adaptations, for IPCC A1B global emission scenarios, water shortages increase to 27% (13% to 49% range) in the 2020s, to 33% in the 2040s, and 68% in the 2080s. For IPCC B1 emissions scenarios, shortages occur in 24% (7% to 54%) of years in the 2020s, 31% in the 2040s and 43% in the 2080s. Historically unprecedented conditions where senior water rights holders suffer shortfalls occur with increasing frequency in both A1B and B1 scenarios. Economic losses include expected annual production declines of 5%–16%, with greater probabilities of operating losses for junior water rights holders.  相似文献   

4.
Precipitation from the Eastern Sierra Nevada watersheds of Owens Lake and Mono Lake is one of the main water sources for Los Angeles’ over 4 million people, and plays a major role in the ecology of Mono Lake and of these watersheds. We use the Variable Infiltration Capacity (VIC) hydrologic model at daily time scale, forced by climate projections from 16 global climate models under greenhouse gas emissions scenarios B1 and A2, to evaluate likely hydrologic responses in these watersheds for 1950–2099. Comparing climate in the latter half of the 20th Century to projections for 2070–2099, we find that all projections indicate continued temperature increases, by 2–5 °C, but differ on precipitation changes, ranging from ?24 % to +56 %. As a result, the fraction of precipitation falling as rain is projected to increase, from a historical 0.19 to a range of 0.26–0.52 (depending on the GCM and emission scenario), leading to earlier timing of the annual hydrograph’s center, by a range of 9–37 days. Snowpack accumulation depends on temperature and even more strongly on precipitation due to the high elevation of these watersheds (reaching 4,000 m), and projected changes for April 1 snow water equivalent range from ?67 % to +9 %. We characterize the watershed’s hydrologic response using variables integrated in space over the entire simulated area and aggregated in time over 30-year periods. We show that from the complex dynamics acting at fine time scales (seasonal and sub-seasonal) simple dynamics emerge at this multi-year time scale. Of particular interest are the dynamic effects of temperature. Warming anticipates hydrograph timing, by raising the fraction of precipitation falling as rain, reducing the volume of snowmelt, and initiating snowmelt earlier. This timing shift results in the depletion of soil moisture in summer, when potential evapotranspiration is highest. Summer evapotranspiration losses are limited by soil moisture availability, and as a result the watershed’s water balance at the annual and longer scales is insensitive to warming. Mean annual runoff changes at base-of-mountain stations are thus strongly determined by precipitation changes.  相似文献   

5.
The outputs from two General Circulation Models (GCMs) with two emissions scenarios were downscaled and bias-corrected to develop regional climate change projections for the Tahoe Basin. For one model—the Geophysical Fluid Dynamics Laboratory or GFDL model—the daily model results were used to drive a distributed hydrologic model. The watershed model used an energy balance approach for computing evapotranspiration and snowpack dynamics so that the processes remain a function of the climate change projections. For this study, all other aspects of the model (i.e. land use distribution, routing configuration, and parameterization) were held constant to isolate impacts of climate change projections. The results indicate that (1) precipitation falling as rain rather than snow will increase, starting at the current mean snowline, and moving towards higher elevations over time; (2) annual accumulated snowpack will be reduced; (3) snowpack accumulation will start later; and (4) snowmelt will start earlier in the year. Certain changes were masked (or counter-balanced) when summarized as basin-wide averages; however, spatial evaluation added notable resolution. While rainfall runoff increased at higher elevations, a drop in total precipitation volume decreased runoff and fine sediment load from the lower elevation meadow areas and also decreased baseflow and nitrogen loads basin-wide. This finding also highlights the important role that the meadow areas could play as high-flow buffers under climatic change. Because the watershed model accounts for elevation change and variable meteorological patterns, it provided a robust platform for evaluating the impacts of projected climate change on hydrology and water quality.  相似文献   

6.
Snow cover changes in the middle (2040–2059) and end (2080–2099) of the twenty-first century over China were investigated with a regional climate model, nested within the global model BCC_CSM1.1. The simulations had been conducted for the period of 1950–2099 under the RCP4.5 and RCP8.5 scenarios. Results show that the model perform well in representing contemporary (1986–2005) spatial distributions of snow cover days (SCDs) and snow water equivalent (SWE). However, some differences between observation and simulation were detected. Under the RCP4.5 scenarios, SCDs are shortened by 10–20 and 20–40 days during the middle and end of the twenty-first century, respectively. Whereas simulated SWE is lowered by 0.1–10 mm in most areas over the Tibetan Plateau (TP). On the other hand, the spatial distributions of SWE are reversed between the middle and end terms in the northeast China. Furthermore, compared with the changes of RCP4.5 scenario, SCDs are reduced by 5–20 days in the middle period under RCP8.5 scenario with even larger decreasing amplitude in the end term. SWE was lowered by 0.1–2.5 mm in most areas except the northeast of China in middle term under RCP8.5 scenario. The great center of SCDs and SWE changes are always located over TP. The regional mean of SCDs and SWE for the TP and for China display a declining trend from 2006 to 2099 with more pronounced changes in the TP than in China as a whole. Under the RCP8.5 scenario, the changes are enhanced compared to those under RCP4.5.  相似文献   

7.
This study evaluates the sensitivity of Washington State’s freshwater habitat of Pacific Salmon (Oncorhynchus spp.) to climate change. Our analysis focuses on summertime stream temperatures, seasonal low flows, and changes in peak and base flows because these physical factors are likely to be key pressure points for many of Washington’s salmon populations. Weekly summertime water temperatures and extreme daily high and low streamflows are evaluated under multimodel composites for A1B and B1 greenhouse gas emissions scenarios. Simulations predict rising water temperatures will thermally stress salmon throughout Washington’s watersheds, becoming increasingly severe later in the twenty-first century. Streamflow simulations predict that basins strongly influenced by transient runoff (a mix of direct runoff from cool-season rainfall and springtime snowmelt) are most sensitive to climate change. By the 2080s, hydrologic simulations predict a complete loss of Washington’s snowmelt dominant basins, and only about ten transient basins remaining in the north Cascades. Historically transient runoff watersheds will shift towards rainfall dominant behavior, undergoing more severe summer low flow periods and more frequent days with intense winter flooding. While cool-season stream temperature changes and impacts on salmon are not assessed in this study, it is possible that climate-induced warming in winter and spring will benefit parts of the freshwater life-cycle of some salmon populations enough to increase their reproductive success (or overall fitness). However, the combined effects of warming summertime stream temperatures and altered streamflows will likely reduce the reproductive success for many Washington salmon populations, with impacts varying for different life history-types and watershed-types. Diminishing streamflows and higher stream temperatures in summer will be stressful for stream-type salmon populations that have freshwater rearing periods in summer. Increased winter flooding in transient runoff watersheds will likely reduce the egg-to-fry survival rates for ocean-type and stream-type salmon.  相似文献   

8.
We assess the potential impacts of climate change on the hydrology and water resources of the Nile River basin using a macroscale hydrology model. Model inputs are bias corrected and spatially downscaled 21st Century simulations from 11 General Circulation Models (GCMs) and two global emissions scenarios (A2 and B1) archived from the 2007 IPCC Fourth Assessment Report (AR4). While all GCMs agree with respect to the direction of 21st Century temperature changes, there is considerable variability in the magnitude, direction, and seasonality of projected precipitation changes. Our simulations show that, averaged over all 11 GCMs, the Nile River is expected to experience increase in streamflow early in the study period (2010–2039), due to generally increased precipitation. Streamflow is expected to decline during mid- (2040–2069) and late (2070–2099) century as a result of both precipitation declines and increased evaporative demand. The predicted multimodel average streamflow at High Aswan Dam (HAD) as a percentage of historical (1950–1999) annual average are 111 (114), 92 (93) and 84 (87) for A2 (B1) global emissions scenarios. Implications of these streamflow changes on the water resources of the Nile River basin were analyzed by quantifying the annual hydropower production and irrigation water release at HAD. The long-term HAD release for irrigation increases early in the century to 106 (109)% of historical, and then decreases to 87 (89) and 86 (84)% of historical in Periods II and III, respectively, for the A2 (B1) global emissions scenarios. Egypt’s hydropower production from HAD will be above the mean annual average historical value of about 10,000 GWH for the early part of 21st century, and thereafter will generally follow the streamflow trend, however with large variability among GCMs. Agricultural water supplies will be negatively impacted, especially in the second half of the century.  相似文献   

9.
The current body of research in western North America indicates that water resources in southern Alberta are vulnerable to climate change impacts. The objective of this research was to parameterize and verify the ACRU agro-hydrological modeling system for a small watershed in southern Alberta and subsequently simulate the change in future hydrological responses over 30-year simulation periods. The ACRU model successfully simulated monthly streamflow volumes (r 2?=?0.78), based on daily simulations over 27 years. The delta downscaling technique was used to perturb the 1961?C1990 baseline climate record from a range of global climate model (GCM) projections to provide the input for future hydrological simulations. Five future hydrological regimes were compared to the 1961?C1990 baseline conditions to determine the average net effect of change scenarios on the hydrological regime of the Beaver Creek watershed over three 30-year time periods (starting in 2010, 2040 and 2070). The annual projections of a warmer and mostly wetter climate in this region resulted in a shift of the seasonal streamflow distribution with an increase in winter and spring streamflow volumes and a reduction of summer and fall streamflow volumes over all time periods, relative to the baseline conditions (1961?C1990), for four of the five scenarios. Simulations of actual evapotranspiration and mean annual runoff showed a slight increase, which was attributed to warmer winters, resulting in more winter runoff and snowmelt events.  相似文献   

10.
Future climate scenarios projected by three different General Circulation Models and a delta-change methodology are used as input to the Generalized Watershed Loading Functions – Variable Source Area (GWLF-VSA) watershed model to simulate future inflows to reservoirs that are part of the New York City water supply system (NYCWSS). These inflows are in turn used as part of the NYC OASIS model designed to simulate operations for the NYCWSS. In this study future demands and operation rules are assumed stationary and future climate variability is based on historical data to which change factors were applied in order to develop the future scenarios. Our results for the West of Hudson portion of the NYCWSS suggest that future climate change will impact regional hydrology on a seasonal basis. The combined effect of projected increases in winter air temperatures, increased winter rain, and earlier snowmelt results in more runoff occurring during winter and slightly less runoff in early spring, increased spring and summer evapotranspiration, and reduction in number of days the system is under drought conditions. At subsystem level reservoir storages, water releases and spills appear to be higher and less variable during the winter months and are slightly reduced during summer. Under the projected future climate and assumptions in this study the NYC reservoir system continues to show high resilience, high annual reliability and relatively low vulnerability.  相似文献   

11.
Potential global climate change impacts on hydrology pose a threat to water resources systems throughout the world. The California water system is especially vulnerable to global warming due to its dependence on mountain snow accumulation and the snowmelt process. Since 1983, more than 60 studies have investigated climate change impacts on hydrology and water resources in California. These studies can be categorized in three major fields: (1) Studies of historical trends of streamflow and snowpack in order to determine if there is any evidence of climate change in the geophysical record; (2) Studies of potential future predicted effects of climate change on streamflow and; (3) Studies that use those predicted changes in natural runoff to determine their economic, ecologic, or institutional impacts. In this paper we review these studies with an emphasis on methodological procedures. We provide for each category of studies a summary of significant conclusions and potential areas for future work.  相似文献   

12.
The Californian Mono Lake Basin (MLB) is a fragile ecosystem, for which a 1983 ruling carefully balanced water diversions with ecological needs without the consideration of global climate change. The hydroclimatologic response to the impact of projected climatic changes in the MLB has not been comprehensively assessed and is the focus of this study. Downscaled temperature and precipitation projections from 16 Global Climate Models (GCMs), using two emission scenarios (B1 and A2), were used to drive a calibrated Soil and Water Assessment Tool (SWAT) hydrologic model to assess the effects on streamflow on the two significant inflows to the MLB, Lee Vining and Rush Creeks. For the MLB, the GCM ensemble output suggests significant increases in annual temperature, averaging 2.5 and 4.1 °C for the B1 and A2 emission scenarios, respectively, with concurrent small (1–3 %) decreases in annual precipitation by the end of the century. Annual total evapotranspiration is projected to increase by 10 mm by the end of the century for both emission scenarios. SWAT modeling results suggest a significant hydrologic response in the MLB by the end of the century that includes a) decreases in annual streamflow by 15 % compared to historical conditions b) an advance of the peak snowmelt runoff to 1 month earlier (June to May), c) a decreased (10–15 %) occurrence of ‘wet’ hydrologic years, and d) and more frequent (7–22 %) drought conditions. Ecosystem health and water diversions may be affected by reduced water availability in the MLB by the end of the century.  相似文献   

13.
The potential effects of climate change on the hydrology and water resources of the Columbia River Basin (CRB) were evaluated using simulations from the U.S. Department of Energy and National Center for Atmospheric Research Parallel Climate Model (DOE/NCAR PCM). This study focuses on three climate projections for the 21st century based on a `business as usual' (BAU) global emissions scenario, evaluated with respect to a control climate scenario based on static 1995 emissions. Time-varying monthly PCM temperature and precipitation changes were statistically downscaled and temporally disaggregated to produce daily forcings that drove a macro-scale hydrologic simulation model of the Columbia River basin at 1/4-degree spatial resolution. For comparison with the direct statistical downscaling approach, a dynamical downscaling approach using a regional climate model (RCM) was also used to derive hydrologic model forcings for 20-year subsets from the PCM control climate (1995–2015) scenario and from the three BAU climate(2040–2060) projections. The statistically downscaled PCM scenario results were assessed for three analysis periods (denoted Periods 1–3: 2010–2039,2040–2069, 2070–2098) in which changes in annual average temperature were +0.5,+1.3 and +2.1 °C, respectively, while critical winter season precipitation changes were –3, +5 and +1 percent. For RCM, the predicted temperature change for the 2040–2060 period was +1.2 °C and the average winter precipitation change was –3 percent, relative to the RCM controlclimate. Due to the modest changes in winter precipitation, temperature changes dominated the simulated hydrologic effects by reducing winter snow accumulation, thus shifting summer streamflow to the winter. The hydrologic changes caused increased competition for reservoir storage between firm hydropower and instream flow targets developed pursuant to the Endangered Species Act listing of Columbia River salmonids. We examined several alternative reservoir operating policies designed to mitigate reservoir system performance losses. In general, the combination of earlier reservoir refill with greater storage allocations for instream flow targets mitigated some of the negative impacts to flow, but only with significant losses in firm hydropower production (ranging from –9 percent in Period1 to –35 percent for RCM). Simulated hydropower revenue changes were lessthan 5 percent for all scenarios, however, primarily due to small changes inannual runoff.  相似文献   

14.
Climate change is likely to lead more frequent droughts in the Pacific Northwest (PNW) of America. Rising air temperature will reduce winter snowfall and increase earlier snowmelt, subsequently reducing summer flows. Longer crop-growing season caused by higher temperatures will lead to increases in evapotranspiration and irrigation water demand, which could exacerbate drought damage. However, the impacts of climate change on drought risk will vary over space and time. Thus, spatially explicit drought assessment can help water resource managers and planners to better cope with risk. This study seeks to identify possible drought-vulnerable regions in the Willamette River Basin of the PNW. In order to estimate drought risk in a spatially explicit way, relative Standardized Precipitation Index (rSPI) and relative Standardized Runoff Index (rSRI) were employed. Statistically downscaled climate simulations forcing two greenhouse gas emission scenarios, A1B and B1, were used to investigate the possible changes in drought frequency with 3-, 6-, 12-, and 24-month time scales. The results of rSPI and rSRI showed an increase in the short-term frequency of drought due to decreases in summer precipitation and snowmelt. However, long-term drought showed no change or a slight decreasing pattern due to increases in winter precipitation and runoff. According to the local index of spatial autocorrelation analysis, the Willamette Valley region was more vulnerable (hot spot) to drought risk than the mountainous regions of the Western Cascades and the High Cascades (cold spot). Although the hydrology of the Western Cascades and the High Cascades will be affected by climate change, these regions will remain relatively water-rich. This suggests that improving the water transfer system could be a reasonable climate adaptation option. Additionally, these results showed that the spatial patterns of drought risk change were affected by drought indices, such that appropriate drought index selection will be important in future studies of climate impacts on spatial drought risk.  相似文献   

15.
In this paper we present an analysis of the direct impacts of climate change on the hydrology of the upper watersheds (range in elevation from 1,000 to 5,500 m above sea level) of the snowmelt-driven Limarí river basin, located in north-central Chile (30° S, 70° W). A climate-driven hydrology and water resources model was calibrated using meteorological and streamflow observations and later forced by a baseline and two climate change projections (A2, B2) that show an increase in temperature of about 3?C4°C and a reduction in precipitation of 10?C30% with respect to baseline. The results show that annual mean streamflow decreases more than the projected rainfall decrease because a warmer climate also enhances water losses to evapotranspiration. Also in future climate, the seasonal maximum streamflow tends to occur earlier than in current conditions, because of the increase in temperature during spring/summer and the lower snow accumulation in winter.  相似文献   

16.
Recent studies predict that projected climate change will lead to significant reductions in summer streamflow in the mountainous regions of the Western US. Hydrologic modeling directed at quantifying these potential changes has focused on the magnitude and timing of spring snowmelt as the key control on the spatial–temporal pattern of summer streamflow. We illustrate how spatial differences in groundwater dynamics can also play a significant role in determining streamflow responses to warming. We examine two contrasting watersheds, one located in the Western Cascades and the other in the High Cascades mountains of Oregon. We use both empirical analysis of streamflow data and physically based, spatially distributed modeling to disentangle the relative importance of multiple and interacting controls. In particular, we explore the extent to which differences in snow accumulation and melt and drainage characteristics (deep ground water vs. shallow subsurface) mediate the effect of climate change. Results show that within the Cascade Range, local variations in bedrock geology and concomitant differences in volume and seasonal fluxes of subsurface water will likely result in significant spatial variability in responses to climate forcing. Specifically, watersheds dominated by High Cascade geology will show greater absolute reductions in summer streamflow with predicted temperature increases.  相似文献   

17.
2010—2100年淮河径流量变化情景预估   总被引:2,自引:0,他引:2       下载免费PDF全文
根据淮河流域14个气象站点1964—2007年观测降水量与温度数据和ECHAM5/MPI-OM模式在3种排放情景下对该流域2001—2100年的气候预估,利用人工神经网络模型预估淮河蚌埠站2010—2100年逐月径流量变化。计算结果表明:3种排放情景下2010—2100年淮河径流量年际变化幅度差异较大,SRES-A2情景总体处于波动上升趋势,其中2051—2085年上升趋势显著;SRES-A1B情景2024—2037年年平均流量显著降低;SRES-B1情景年平均流量的变率甚小。季节分析表明:春季径流量在2010—2100年变幅最小,距平百分率在-15.1%~18.6%之间小幅波动。夏季平均流量在2040年代前呈下降趋势,之后小幅波动上升。秋、冬季平均流量SRES-A2和SRES-A1B情景变幅显著,其中,秋季SRES-A2情景2060年代距平百分率下降达50.6%,为3种情景下各季节径流量降幅之最;冬季SRES-A1B情景2050年代其增幅达到54.7%,亦为上升幅度之最。  相似文献   

18.
Spring snowmelt is the most important contribution of many rivers in western North America. If climate changes, this contribution may change. A shift in the timing of springtime snowmelt towards earlier in the year already is observed during 1948–2000 in many western rivers. Streamflow timingchanges for the 1995–2099 period are projected using regression relationsbetween observed streamflow-timing responses in each river, measured by the temporal centroid of streamflow (CT) each year, and local temperature (TI) and precipitation (PI) indices. Under 21st century warming trends predicted by the Parallel Climate Model (PCM) under business-as-usual greenhouse-gas emissions, streamflow timing trends across much of western North America suggest even earlier springtime snowmelt than observed to date. Projected CT changes are consistent with observed rates and directions of change during the past five decades, and are strongest in the Pacific Northwest, Sierra Nevada, and Rocky Mountains, where many rivers eventually run 30–40 daysearlier. The modest PI changes projected by PCM yield minimal CT changes. The responses of CT to the simultaneous effects of projected TI and PI trends are dominated by the TI changes. Regression-based CT projections agree with those from physically-based simulations of rivers in the Pacific Northwest and Sierra Nevada.  相似文献   

19.
The potential hydrologic impact of climatic change on three sub-basins of the South Saskatchewan River Basin (SSRB) within Alberta, namely, Oldman, Bow and Red Deer River basins was investigated using the Modified Interactions Soil-Biosphere-Atmosphere (MISBA) land surface scheme of Kerkhoven and Gan (Advances in Water Resources 29:808–826 2006). The European Centre for Mid-range Weather Forecasts global re-analysis (ERA-40) climate data, Digital Elevation Model of the National Water Research Institute, land cover data and a priori soil parameters from the Ecoclimap global data set were used to drive MISBA to simulate the runoff of SSRB. Four SRES scenarios (A21, A1FI, B21 and B11) of four General Circulation Models (CCSRNIES, CGCM2, ECHAM4 and HadCM3) of IPCC were used to adjust climate data of the 1961–1990 base period (climate normal) to study the effect of climate change on SSRB over three 30-year time periods (2010–2039, 2040–2069, 2070–2099). The model results of MISBA forced under various climate change projections of the four GCMs with respect to the 1961–1990 normal show that SSRB is expected to experience a decrease in future streamflow and snow water equivalent, and an earlier onset of spring runoff despite of projected increasing trends in precipitation over the 21st century. Apparently the projected increase in evaporation loss due to a warmer climate over the 21st century will offset the projected precipitation increase, leading to an overall decreasing trend in the basin runoff of SSRB. Finally, a Gamma probability distribution function was fitted to the mean annual maximum flow and mean annual mean flow data simulated for the Oldman, Bow and Red Deer River Basins by MISBA to statistically quantify the possible range of uncertainties associated with SRES climate scenarios projected by the four GCMs selected for this study.  相似文献   

20.
Water temperature influences the distribution, abundance, and health of aquatic organisms in stream ecosystems, so understanding the impacts of climate warming on stream temperature will help guide management and restoration. This study assesses climate warming impacts on stream temperatures in California’s west-slope Sierra Nevada watersheds, and explores stream temperature modeling at the mesoscale. We used natural flow hydrology to isolate climate induced changes from those of water operations and land use changes. A 21 year time series of weekly streamflow estimates from WEAP21, a spatially explicit rainfall-runoff model were passed to RTEMP, an equilibrium temperature model, to estimate stream temperatures. Air temperature was uniformly increased by 2°C, 4°C, and 6°C as a sensitivity analysis to bracket the range of likely outcomes for stream temperatures. Other meteorological conditions, including precipitation, were unchanged from historical values. Raising air temperature affects precipitation partitioning into snowpack, runoff, and snowmelt in WEAP21, which change runoff volume and timing as well as stream temperatures. Overall, stream temperatures increased by an average of 1.6°C for each 2°C rise in air temperature, and increased most during spring and at middle elevations. Viable coldwater habitat shifted to higher elevations and will likely be reduced in California. Thermal heterogeneity existed within and between basins, with the high elevations of the southern Sierra Nevada and the Feather River watershed most resilient to climate warming. The regional equilibrium temperature modeling approach used here is well suited for climate change analysis because it incorporates mechanistic heat exchange, is not overly data or computationally intensive, and can highlight which watersheds are less vulnerable to climate warming. Understanding potential changes to stream temperatures from climate warming will affect how fish and wildlife are managed, and should be incorporated into modeling studies, restoration assessments, and licensing operations of hydropower facilities to best estimate future conditions and achieve desired outcomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号