首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
利用1960—2015年湖北省荆州市6个国家地面气象观测站的逐日平均气温资料,采用候气温分析荆州春、夏、秋、冬四季初日与长度变化特征,结果表明:荆州近56 a四季初日表现为春季和夏季提前,秋季和冬季推迟;春、夏和秋季初日随年代变化显著,而冬季初日随年代变化不显著。季节平均长度夏季和冬季为120 d左右,春季和秋季为60 d左右,夏季日数冬季日数春季日数秋季日数。从年际变化来看,夏季变长,冬季缩短,春秋季变化不明显;从年代际变化来看,夏季明显变长,秋季和冬季缩短较明显,而春季变化不明显。  相似文献   

2.
根据杭州探空站近34a(1979-2012年)850hPa等压面以及地面的月平气温资料,分别讨论了杭州站两个层次上各季平均气温的演变特征。结果表明:1)杭州站各季节的地面和850hPa气温变化存在基本相同的年际变化和基本一致的线性变化趋势,其中春季增温最强,夏季、秋季次之,冬季最差。2)近34a杭州站四季平均气温升高趋势表明,地面气温上升趋势明显大于高空850hPa。3)近34a中的各个季节气温普遍存在变暖的的趋势。地面和高空850hPa气温的突变普遍始于上世纪80年代末和90年代。  相似文献   

3.
1960-2009年咸宁市气候变化特征分析   总被引:1,自引:0,他引:1       下载免费PDF全文
利用1960-2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温早在1990年发生突变。春季与秋季平均气温的变化比较一致,冬季平均气温对全球变暖响应最敏感,春秋与秋季对气候变暖的响应是比较敏感,而夏季对气候变暖的响应最为迟缓。近50 a年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著、其余季节无明显相关性。  相似文献   

4.
利用1960—2009年咸宁市3个地面气象站气象资料,统计分析近50 a来该区域气温、降水等主要气候要素的年变化、四季变化及年代际变化的趋势特征。结果表明:近50 a研究区气温有上升趋势,气候倾向率为0.23℃/10 a,年平均气温在20世纪90年代末发生突变。春秋季平均气温分别在2002年和1999年发生突变,夏季平均气温在2006年发生突变,冬季平均气温在1990年发生突变。春季与秋季平均气温的变化较一致,冬季平均气温对全球变暖响应最敏感,春季与秋季对气候变暖的响应较敏感,而夏季对气候变暖的响应最为迟缓。近50 a咸宁市年降水量呈波动但无明显增降的趋势,其中春夏两季变化趋势较为一致并有下降的趋势,且春夏降水量的变化主导着年降水量的变化;而冬季降水量有上升的趋势。通过对气温与降水变化趋势的比较,发现冬季对气候变化的响应最显著,其余季节无明显相关性。  相似文献   

5.
本溪地区50年气温变化特征   总被引:9,自引:0,他引:9  
吉奇  宋冀凤  徐璐璐 《气象科技》2007,35(5):661-664
应用本溪地区1953~2005年气温序列资料,对其基本气候特征、年代际变化、周期变化、冷暖阶段、变化趋势等进行了分析。结果表明:年平均气温与各季气温分布规律非一致性变化;年平均气温最冷出现在20世纪50年代,而生长季最低气温出现在70年代,春季最冷与年平均气温是一致的,夏季和秋季最冷出现在70年代,冬季最冷则出现在60年代。年均气温上升来源于冬季,春季和秋季平均气温增温幅度增大,近15年各季出现负增温现象,但气温变化总体是趋于上升的。  相似文献   

6.
水城近50a气温变化特征分析   总被引:1,自引:0,他引:1  
陈海涛 《贵州气象》2009,33(4):23-24
利用水城站1957-2006年的逐月平均气温、平均最高气温及平均最低气温资料,采用线性倾向估计对水城近50a季平均气温及年平均最高、最低气温的年际、年代际变化进行了统计分析。结果表明:近50a来水城年平均气温呈上升趋势,其线性倾向率为0.134℃/10a,春季气温距平近50a来却呈下降趋势,夏、秋、冬季气温呈上升趋势,上升趋势不一致,从各季节平均气温变化幅度来看,秋季最大,夏、冬次之,春季最小。50a来年平均最高气温、年平均最低气温均呈上升趋势。  相似文献   

7.
本文基于国家气候中心气候系统模式BCC_CSM1.1自1960—2004年每年起报的年代际预测试验结果,初步评估了该模式对北极涛动(AO)的预报技巧。同时,把该模式年代际预测结果与历史试验模拟比较,分析了气候模式初始化对年代际试验预测季节尺度AO及其年际变化的贡献。结果表明,年代际试验和历史试验均能反映出AO模态是北半球中高纬大气变率第一模态的特征,其中年代际预测试验回报的AO模态与观测的空间相关系数高于历史试验。两组试验基本能再现AO指数冬季最强、夏季最弱的特征。与历史试验相比,年代际预测试验回报月和冬季AO指数与观测的相关系数更高,特别是年代际试验与观测的月AO指数相关系数达到了0.1的显著性水平。年代际试验回报月、春季AO指数的变化周期更接近观测结果。因此,年代际试验中初始状态使用海温资料进行初始化,在一定程度上可以提高AO的回报能力。  相似文献   

8.
评估CMIP6年代际预测试验对季节平均SAT的预测技巧的结果表明:模式不能有效预测冬季和秋季SAT的年代际变率.IPSL-CM6A-LR和多模式集合平均对于春季SAT展现了预测技巧,其中对于变率的预测技巧好于振幅的结果.基于蒙古和我国华北地区的显著预测技巧,模式对于夏季SAT表现出最佳的预测水平.与外部强迫相比,模式对于SAT的预测技巧可能来自初始化.模式中的一个明显系统性误差值得注意,即模式中冬季SAT的变率可以持续到其他季节,而在观测中其他季节的SAT变化与冬季SAT相对独立.  相似文献   

9.
河北省冷暖变化气候特征分析   总被引:21,自引:1,他引:21       下载免费PDF全文
刘学锋  阮新  李元华 《气象科学》2005,25(6):638-644
利用河北省70个站自建站至2000年近50a的系统气温观测资料,分析了河北省冷暖变化的年际和年代际特征,及其区域差异和季节差别,并估计了河北省未来50a冷暖变化趋势。结果表明:河北省年平均气温、年平均最高气温、年平均最低气温的年际和年代际变化都呈现增温趋势,增温幅度由大到小依次为:年平均最低气温、年平均气温、年平均最高气温;全省年平均、最高、最低气温变化趋势与其五个分区的变化趋势具有整体一致性,都皇现升温趋势,但各区域的增温幅度不一,增幅最大的区域是冀东平原区,最小的区域是河北省北部;各季气温变化呈现春、秋季平均气温变化程度相对比较平缓,冬季增温幅度最大的特点,自80年代末始,暖冬现象明显;在全球和中国气候将继续变暖的背景下,河北省气温估计未来50a升高在1~2℃之间。  相似文献   

10.
河南省冷暖变化气候特征分析   总被引:3,自引:1,他引:2  
利用河南省107个观测站1961-2006年46 a的气温观测资料,分析了河南省冷暖变化的年际和年代际特征及其区域差异和季节差别.结果表明:河南省年平均气温、年平均最高气温、年平均最低气温的年际和年代际变化都呈现增温趋势,增温幅度由大到小依次为年平均最低气温、年平均气温、年平均最高气温;全省7个气候分区年平均气温、最低气温变化趋势具有整体一致性,都呈现升温趋势,但各区域的增温幅度不一,增幅最大的区域是太行山气候区,最小的区域是豫西山地气候区.平均最高气温南阳盆地、淮北平原、豫北平原3个气候区呈略降趋势,其他4个气候区呈升温趋势,豫西山地气候区增幅最大;各季气温变化呈现春、秋季平均气温变化幅度相对比较平缓、冬季增温幅度最大的特点,自20世纪90年代初始,暖冬现象明显;在全球和中国气候将继续变暖的背景下,河南省平均气温按10 a增加0.22℃计,估计未来50 a升高1~2℃.  相似文献   

11.
Climate changes in future 21 st century China and their uncertainties are evaluated based on 22 climate models from the Coupled Model Intercomparison Project Phase 5(CMIP5). By 2081–2100, the annual mean surface air temperature(SAT) is predicted to increase by 1.3℃± 0.7℃, 2.6℃± 0.8℃ and 5.2℃± 1.2℃ under the Representative Concentration Pathway(RCP) scenarios RCP2.6, RCP4.5 and RCP8.5, relative to 1986–2005, respectively. The future change in SAT averaged over China increases the most in autumn/winter and the least in spring, while the uncertainty shows little seasonal variation.Spatially, the annual and seasonal mean SAT both show a homogeneous warming pattern across China, with a warming rate increasing from southeastern China to the Tibetan Plateau and northern China, invariant with time and emissions scenario.The associated uncertainty in SAT decreases from northern to southern China. Meanwhile, by 2081–2100, the annual mean precipitation increases by 5% ± 5%, 8% ± 6% and 12% ± 8% under RCP2.6, RCP4.5 and RCP8.5, respectively. The national average precipitation anomaly percentage, largest in spring and smallest in winter, and its uncertainty, largest in winter and smallest in autumn, show visible seasonal variations. Although at a low confidence level, a homogeneous wetting pattern is projected across China on the annual mean scale, with a larger increasing percentage in northern China and a weak drying in southern China in the early 21 st century. The associated uncertainty is also generally larger in northern China and smaller in southwestern China. In addition, both SAT and precipitation usually show larger seasonal variability on the sub-regional scale compared with the national average.  相似文献   

12.
CMIP5全球气候模式对青藏高原地区气候模拟能力评估   总被引:9,自引:4,他引:5  
胡芩  姜大膀  范广洲 《大气科学》2014,38(5):924-938
青藏高原是气候变化的敏感和脆弱区,全球气候模式对于这一地区气候态的模拟能力如何尚不清楚。为此,本文使用国际耦合模式比较计划第五阶段(CMIP5)的历史模拟试验数据,评估了44 个全球气候模式对1986~2005 年青藏高原地区地表气温和降水两个基本气象要素的模拟能力。结果表明,CMIP5 模式低估了青藏高原地区年和季节平均地表气温,年均平均偏低2.3℃,秋季和冬季冷偏差相对更大;模式可较好地模拟年和季节平均地表气温分布型,但模拟的空间变率总体偏大;地形效应校正能够有效订正地表气温结果。CMIP5 模式对青藏高原地区降水模拟能力较差。尽管它们能够模拟出年均降水自西北向东南渐增的分布型,但模拟的年和季节降水量普遍偏大,年均降水平均偏多1.3 mm d-1,这主要是源于春季和夏季降水被高估。同时,模式模拟的年和季节降水空间变率也普遍大于观测值,尤其表现在春季和冬季。相比较而言,44 个模式集合平均性能总体上要优于大多数单个模式;等权重集合平均方案要优于中位数平均;对择优挑选的模式进行集合平均能够提高总体的模拟能力,其中对降水模拟的改进更为显著。  相似文献   

13.
青藏高原与中国其他地区气候突变时间的比较   总被引:25,自引:5,他引:20  
丁一汇  张莉 《大气科学》2008,32(4):794-805
基于1961~2006年中国地面观测气温和降水资料,对青藏高原地区以及中国其他6个地区地表气温、降水的变化趋势和突变时间进行了检测和比较。结果发现,(1)地表气温:1961~2006年青藏高原地区年和四季的地表气温都呈增加趋势。年平均地表气温在20世纪80年代中期开始变暖,但显著快速增暖的突变发生在90年代中期,该时间比东北、华北、西北和淮河地区晚,与长江中下游和华南地区接近,不同季节青藏高原地区与其他地区变暖突变时间的差别也各有不同,但所有季节快速变暖突变的时间都比东北地区晚,中国东部陆地地区年和冬季平均地表气温表现出北早南晚的经向差异;(2)降水:1961~2006年青藏高原地区年降水量没有检测到显著的变化趋势,冬春降水量显著增加,而夏季降水有微弱的减少,秋季降水显著减少。降水突变的信号明显比温度突变的信号弱,年降水量和春季降水都没有检测到突变的发生,降水突变方向(增或减)和突变时间在区域与区域之间以及不同季节之间都存在较大差异。由上可见,青藏高原气候的显著快速变化比中国东部长江以北地区有明显的滞后现象,尤其是冬春温度变化,这可能是由于青藏高原地区积雪增加导致的反照率增加和冰川融化吸热对青藏高原变暖的减弱作用所致。  相似文献   

14.
使用CCSM3(community climate system model version 3)模式的"淡水扰动试验"结果,对热盐环流强度减弱后中国区域冬、夏气候的不同响应特征进行了研究。结果表明:CCSM3可较为准确地再现中国附近区域表面气温及降水量的量值和分布形态。当热盐环流年平均强度减弱约80%之后,中国区域冬、夏季的表面气温与降水量显著降低,但冬、夏季的降低幅度与空间分布形态存在显著的差异。冬季的降温幅度较大且分布较为一致,平均降温幅度可达2.2℃,最大的降温幅度可达4℃;夏季的降温幅度相对较小且南北差异较大,平均降温幅度为1.3℃,最大的降温幅度为3℃。冬、夏季降水量的降低幅度都在6%左右,但其成因及其分布形态都存在显著差异。  相似文献   

15.
1951—2010年大连市气温变化特征   总被引:1,自引:0,他引:1  
利用1951—2010年大连市气温资料,采用气候趋势系数和气候倾向率、Mann-Kendal1突变分析等方法对年和季平均气温、最高最低气温变化特征进行了分析和突变检验。结果表明:大连市年和季平均气温呈上升趋势,进入21世纪,升温趋势有所减缓;大连市年平均气温的增温速率为0.33/10 a,明显高于近50 a中国平均增温速率0.22/10 a,更高于近50 a全球平均0.13/10 a的增温速率。大连市平均气温的升高主要发生在春季和冬季;年平均最低气温的升温幅度大于年平均最高气温的升温幅度;年、季平均气温存在突变,突变始于1987—1990年前后,突变前后平均气温均值相差较大;年、季平均最高气温和最低气温大都存在突变,但秋季平均最高气温无突变。  相似文献   

16.
利用1951—2010年大连市气温资料,采用气候趋势系数和气候倾向率、Mann-Kendal1突变分析等方法对年和季平均气温、最高最低气温变化特征进行了分析和突变检验。结果表明:大连市年和季平均气温呈上升趋势,进入21世纪,升温趋势有所减缓;大连市年平均气温的增温速率为0.33/10 a,明显高于近50 a中国平均增温...  相似文献   

17.
通过对15组CMIP3和CMIP5两代模式集合平均对中国西北干旱区气温和降水的模拟能力比较,发现CMIP5模式对气温和降水的模拟更接近观测值。CMIP5模式模拟年、春季、夏季、秋季平均气温的相关系数比CMIP3模式分别提升了0.15、0.13、0.24和0.02,冬季下降了0.07。CMIP5模式对西北干旱区的平均气温变化趋势的模拟效果比CMIP3有所提高,对年、春季、夏季、秋季、冬季趋势的模拟偏差比CMIP3分别减少了0.03℃/10a、0.10℃/10a、0.01℃/10a、0.06℃/10a、0.14℃/10a。对西北干旱区平均气温年、季的模拟偏差分布上,CMIP5模式的偏差均比CMIP3低1~2℃。但是天山区年、季节平均气温的模拟与整体模拟偏低情况相反,CMIP3和CMIP5分别偏高3~6℃和1~4℃,对夏季的模拟偏高最严重,分别达到6℃和4℃。CMIP5模式整体对西北干旱区降水量的模拟结果与观测值的平均相关系数与CMIP3相差不大,均不超过0.1,而且偏差仍然较大。CMIP5模式对西北干旱区的降水量的变化趋势模拟效果比CMIP3有所降低,对年、春季、夏季、秋季、冬季趋势的模拟偏差比CMIP3增加了0.67 mm/10a、0.23 mm/10a、0.51 mm/10a、0.11 mm/10a、0.14 mm/10a。CMIP5模式对年、春季、夏季、秋季和冬季的降水量模拟的均方根误差相比CMIP3分别减少77.6 mm、25.5 mm、25.0 mm、18.8 mm和13.9 mm。在空间上,CMIP5模式对年、季节降水模拟仍然偏高,但是比CMIP3有明显缓解;CMIP3和CMIP5模式对夏季天山区年降水量和夏季降水量的模拟也与大部分区域偏高的趋势明显相反,两代模式对夏季天山区的降水模拟均偏低50 mm左右。  相似文献   

18.
Given observed initial conditions, how well do coupled atmosphere–ocean models predict precipitation climatology with 1-month lead forecast? And how do the models’ biases in climatology in turn affect prediction of seasonal anomalies? We address these questions based on analysis of 1-month lead retrospective predictions for 21 years of 1981–2001 made by 13 state-of-the-art coupled climate models and their multi-model ensemble (MME). The evaluation of the precipitation climatology is based on a newly designed metrics that consists of the annual mean, the solstitial mode and equinoctial asymmetric mode of the annual cycle, and the rainy season characteristics. We find that the 1-month lead seasonal prediction made by the 13-model ensemble has skills that are much higher than those in individual model ensemble predictions and approached to those in the ERA-40 and NCEP-2 reanalysis in terms of both the precipitation climatology and seasonal anomalies. We also demonstrate that the skill for individual coupled models in predicting seasonal precipitation anomalies is positively correlated with its performances on prediction of the annual mean and annual cycle of precipitation. In addition, the seasonal prediction skill for the tropical SST anomalies, which are the major predictability source of monsoon precipitation in the current coupled models, is closely link to the models’ ability in simulating the SST mean state. Correction of the inherent bias in the mean state is critical for improving the long-lead seasonal prediction. Most individual coupled models reproduce realistically the long-term annual mean precipitation and the first annual cycle (solstitial mode), but they have difficulty in capturing the second annual (equinoctial asymmetric) mode faithfully, especially over the Indian Ocean (IO) and Western North Pacific (WNP) where the seasonal cycle in SST has significant biases. The coupled models replicate the monsoon rain domains very well except in the East Asian subtropical monsoon and the tropical WNP summer monsoon regions. The models also capture the gross features of the seasonal march of the rainy season including onset and withdraw of the Asian–Australian monsoon system over four major sub-domains, but striking deficiencies in the coupled model predictions are observed over the South China Sea and WNP region, where considerable biases exist in both the amplitude and phase of the annual cycle and the summer precipitation amount and its interannual variability are underestimated.  相似文献   

19.
作者使用国际耦合模式比较计划第六阶段(CMIP6)的历史模拟试验数据,评估了42个全球气候模式对1995-2014年新疆温度和降水气候态的模拟能力.结果表明,CMIP6模式能够合理模拟新疆年和季节的温度和降水气候态的空间分布.相较于观测,多模式中位数的年均,春季,夏季,秋季和冬季区域平均温度偏差分别为0.1℃,-1.6...  相似文献   

20.
基于中国气象科学研究院T255全球高分辨率气候系统模式(CAMS-CSM)2011—2020年多样本集合回报试验,评估模式在中国及3个典型区域地表短波辐射(downward short-wave radiation flux,DSWRF)的季节预测能力。结果表明:CAMS-CSM模式能较好预测DSWRF的季节变化特征,但春季、夏季预测强度偏弱,秋季、冬季偏强。不同季节、不同地区DSWRF异常场的预报技巧差异明显。由DSWRF异常的空间相关系数和时间相关系数可以看到,内蒙古和西北地区秋季、冬季预报技巧较高,京津冀部分地区夏季、秋季节预报技巧较低。从趋势异常综合评分指数看,中国区域超前1个月预报各季节评分均超过70分,对西北地区夏季、秋季的评分指数最高,超过80分。整体而言,高分辨率气候模式对中国区域DSWRF超前0~1个月预报有一定预测能力,尤其是太阳能资源丰富的西北地区,可为未来DSWRF短期预测及太阳能清洁能源选址等提供参考。除模式系统性偏差外,春季、夏季DSWRF预报偏差主要来源于总云量预报的模拟偏差,改进模式云微物理过程是提高DSWRF季节预测能力的重要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号