首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

2.
Summary The dependence of the albedo on illumination direction is analyzed by constructing a canopy model in which the individual leaves are planar, Lambertian reflectors. Leaf transmission is treated separately, and is assumed to be proportional to the cosine of the zenith angle of the leaf normal. Effects of shading and obscuration are formulated assuming random distribution of the leaves with respect to the viewing and illumination directions. Variants of the model with different azimuthal leaf distributions are created and discussed as explicit expressions of the viewing/illumination geometry and the canopy characteristics.The canopy spectral single-scattering albedo factors, which are the conditional probabilities of a photon escaping from the canopy after a first reflection or a first transmission, are obtained by numerical integration over a hemisphere of the bidirectional reflectance and transmittance factors. Our analysis identifies the ratio of the projection of leaf area on the vertical plane perpendicular to the principal plane to that on a horizontal plane as the parameter that controls the dependence of the albedo on the solar zenith angle. The albedo factor due to the leaf transmittance generally increases with the zenith angle of illuminating beam more sharply than that due to the leaf reflectance.Model variants with various azimuthal distributions are compared with measured albedo of soybeans. Second and higher order scatterings are accounted for in a simplified way. The degree to which a model variant fits the measured albedo and its change with the solar zenith angle depends both on the leaf inclination angleand the azimuthal distribution of the leaf area.With 6 Figures  相似文献   

3.
Summary The dependency of erythemal weighted solar UV irradiance on tilted surfaces with different orientation is investigated with respect to solar zenith angle, variable atmospheric conditions and albedo of the location. For overcast conditions or a cloud in front of the sun, the irradiance on a horizontal surface in general is largest, with the consequence that it is reduced for surfaces with any tilted position. For cloud free conditions the irradiance on a tilted plane, in comparison to that on a horizontal flat surface, is increased for orientations towards the sun, but reduced for other orientations. The increase is strongest for low sun in combination with clear atmosphere and high ground albedo, as is typical for snow covered mountain conditions.  相似文献   

4.
Abstract

Cloudless‐sky solar fluxes calculated by the radiative transfer algorithm used in the Canadian Climate Centre's general circulation climate model are compared with measurements of upwelling radiation at the top of the atmosphere (TOA) and downwelling radiation at the surface. The 12‐layer model partitions the solar spectrum into two broad wavebands (0.25–0.68 and 0.68–4.00 μm). The comparison utilized TOA fluxes estimated from Nimbus‐ 7 measurements and measured downwelling fluxes at the surface for Kalgoorlie, West Australia, and downwelling fluxes at the surface for Woodbridge, Ontario. Model estimates and measurements agreed to within experimental error for most solar zenith angles. Estimates improved, especially at Woodbridge, when aerosol effects were included. The mean bias error was less than 4% for surface irradiance and less than 6% for upwelling TOA irradiance, which produces a TOA albedo error of about 0.01.  相似文献   

5.
Measurements of incoming global, diffuse and reflected radiation at a tower site in Lake Ontario are used to evaluate components of surface albedo. Albedo for diffuse radiation lies between 0.074 and 0.082 and a coefficient for backscatter from sub-surface water layers shows little deviation from a mean of 0.017. Direct beam albedo for a calm surface follows the Fresnel law. Waves increase direct-beam albedo particularly at higher solar zenith angles. A pronounced dependence of albedo upon zenith angle for clear skies decreases with increasing cloud amount and becomes undetectable in overcast conditions. On a daily basis, albedo ranged between 0.07 in early July to 0.11 in mid-November. Day-to-day scatter is within ±1% of the mean seasonal trend.  相似文献   

6.
Summary The diffuse sky radiation component in the ultraviolet wavelengths is often at least 50% of the global irradiance under clear skies, and is the dominant component of ultraviolet global radiation under translucent overcast skies. The distribution of sky radiance was measured in a rural area and modeled for wavelength bands of ultraviolet-B (UVB, 280–320 nm) and ultraviolet-A (UVA, 320–400 nm). Sky radiance measurements were made during the summer of 1993 over a wide range of solar zenith angles using radiance sensors mounted on a hand-operated hemispherical rotation mount. UVB irradiance measurements were also made during each scan. Since the ratio of measured irradiance under overcast skies and that predicted for clear skies was not correlated with cloud base height, opaque cloud fraction, or solar zenith angle, it was concluded that the scattering from the clouds dominated the global irradiance, and this scattering was relatively unaffected by the scattering off opaque clouds in the translucent atmosphere.Analysis of the translucent overcast sky UVA and UVB radiance measurements using a semi-empirical distribution model showed that the spectral influences on multiple scattering, single scattering, and horizon brightening components of the distributions agreed with basic atmospheric radiation theory. The best model used solar zenith, the sky zenith, and the scattering angle with resultant coefficient of determination values of 0.62 and 0.25 for the UVA and UVB respectively. The developed equations can be applied directly to the diffuse sky irradiance on the horizontal to provide radiance distributions for the sky.With 6 Figures  相似文献   

7.
Urban albedo change as a function of urban geometrical structure has been examined by using a two-dimensional urban block-canyon array model. The complex multiple reflections of incident photons in the urban canyon are simulated by using a Monte-Carlo method. The photons are tracked until they leave the canyon or are completely absorbed. In the model, the direct and diffuse components of incident solar radiation are introduced and the specular and isotropic reflection characteristics are considered for the relevant urban surfaces. The result shows that the urban albedo decreases as the urban irregularity increases as indicated by the model experiment of Aida (1982). The dependence of albedo on the incident solar zenith angle observed in the experiment is also confirmed for various urban models.As an application, some actual urban structures in the Marunouchi area in Tokyo are examined. Urban planning for absorption and reflection of solar radiation in urban areas is also discussed based on the analysis of the change in albedo with canyon dimensions and solar zenith angle.  相似文献   

8.
A neighbourhood-scale multi-layer urban canopy model of shortwave and longwave radiation exchange that explicitly includes the radiative effects of tall vegetation (trees) is presented. Tree foliage is permitted both between and above buildings, and mutual shading, emission and reflection between buildings and trees are included. The basic geometry is a two-dimensional canyon with leaf area density profiles and probabilistic variation of building height. Furthermore, the model accounts for three-dimensional path lengths through the foliage. Ray tracing determines the receipt of direct shortwave irradiance by building and foliage elements. View factors for longwave and shortwave diffuse radiation exchange are computed once at the start of the simulation using a Monte Carlo ray tracing approach; for subsequent model timesteps, matrix inversion rapidly solves infinite reflections and interception of emitted longwave between all elements. The model is designed to simulate any combination of shortwave and longwave radiation frequency bands, and to be portable to any neighbourhood-scale urban canopy geometry based on the urban canyon. Additionally, the model is sufficiently flexible to represent forest and forest-clearing scenarios. Model sensitivity tests demonstrate the model is robust and computationally feasible, and highlight the importance of vertical resolution to the performance of urban canopy radiation models. Full model evaluation is limited by the paucity of within-canyon radiation measurements in urban neighbourhoods with trees. Where appropriate model components are tested against analytic relations and results from an independent urban radiation transfer model. Furthermore, system response tests demonstrate the ability of the model to realistically distribute shortwave radiation among urban elements as a function of built form, solar angle and tree foliage height, density and clumping. Separate modelling of photosynthetically-active and near-infrared shortwave bands is shown to be important in some cases. Increased canyon height-to-width ratio and/or tree cover diminishes the net longwave radiation loss of individual canyon elements (e.g., floor, walls), but, notably, has little effect on the net longwave loss of the whole urban canopy. When combined with parametrizations for the impacts of trees on airflow and hydrological processes in the urban surface layer, the new radiation model extends the applicability of urban canopy models and permits more robust assessment of trees as tools to manage urban climate, air quality, human comfort and building energy loads.  相似文献   

9.
本文发展了一个从宽带水平面太阳直接辐射日曝辐量 (总辐射与散射辐射日曝辐量之差) 反演光谱大气气溶胶光学厚度的方法, 包括建立一个 “等效” 的瞬时太阳天顶角模型, 并提出了一个基于气溶胶标高的云影响甄别方法。对该反演方法的数值模拟和误差分析表明: “等效” 瞬时太阳天顶角模型的不稳定性引起的光学厚度反演误差平均为3.66%; 光学厚度日变化对一段较长时间的平均光学厚度的影响不显著; 订正造成的散射辐射误差≤20%时, 光学厚度平均偏差≤4%。通过与AERONET产品的比对验证表明: 本文发展的光学厚度反演方法和云影响甄别方法都是有效的; 晴空反演的0.75 μm光学厚度与AERONET的相关系数超过0.95, 平均误差约0.02; 云甄别方法计算的季节和年平均光学厚度与AERONET具有较好的一致性。  相似文献   

10.
The role of clouds in photodissociation is examined by both modeling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. (The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.) A 3-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the in-cloud actinic flux is given as a function of in-cloud optical thickness. The 3-layer model seems to be an useful model for estimation of photodissociation rates in dispersion models. Further, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption and Mie scattering and absorption by cloud drops and aerosols should be taken into account. It is stressed that both models are one-dimensional and as such are unable to deal with partial cloudiness. It is shown that if no clouds are present, the actinic flux depends primarily on the solar zenith angle. The actinic flux usually increases with height. For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness, which determines cloud albedo. It can be shown that in-cloud characteristics and cloud height are less important in describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud. Finally, using the photostationary state relationship, good agreement is found between model results and aircraft measurements.  相似文献   

11.
阿尔卑斯山杉林冠层影响辐射传输的个例分析   总被引:3,自引:1,他引:2  
利用瑞士Alptal观测站杉树林冠层上方、下方的辐射观测资料,分析了冠层对短波辐射的减弱及对长波辐射的增幅作用及其季节变化。结果表明,对比较密集的常绿针叶林,冠层对入射短波辐射的透过率随着太阳高度的降低而减小,春季以后趋于稳定;冠层对长波辐射的增幅作用随天气状况而变化,这种增幅作用在晴空条件下最显著,可达1.5倍。在冬季,因为太阳辐射较弱,冠层对长波辐射的增幅作用超过对短波辐射的减弱从而增加地面净辐射。在其它季节,太阳辐射比较强,冠层对短波辐射的减弱超过对长波辐射的增幅作用而减少地面净辐射。地面净辐射与冠层上方气温的变化趋势虽然在有些时段一致,但在伴随降雪过程的降温时段,地面净辐射与气温的变化趋势近乎反相,在积雪融化时段,地面净辐射的增加比气温升高更显著,尤其是在白天。  相似文献   

12.
A new canopy radiation transfer and surface albedo scheme is developed as part of the land surface model EALCO (Ecological Assimilation of Land and Climate Observations). The model uses a gap probability-based successive orders of scattering approach that explicitly includes the heterogeneities of stands and crown elements and the radiation multiple scattering. The model uses the optical parameters of ecosystem elements and physically represents ecosystem processes in surface albedo dynamics. Model tests using measurements from a boreal deciduous forest ecosystem show that the model well reproduced the observed diurnal and seasonal albedo dynamics under different weather and ecosystem conditions. The annual mean absolute errors between modeled and measured daily albedo and reflected radiation are 0.01 and 1.33 W m−2, respectively. The model results provide a quantitative assessment of the impacts of plant shading and sky conditions on surface albedo observed in high-latitude ecosystems. The contribution of ground snow to surface albedo in winter was found to be less than 0.1 even though the canopy is leafless during this time. The interception of snow by the leafless canopy can increase the surface albedo by 0.1–0.15. The model results show that the spectral properties of albedo have large seasonal variations. In summer, the near infrared component is substantially larger than visible, and surface albedo is less sensitive to sky conditions. In winter, the visible band component is markedly increased and can exceed the near infrared proportion under cloudy conditions or when snow exists on the canopy. The spectral properties of albedo are also found to have large diurnal variations under the clear-sky conditions in winter.  相似文献   

13.
The role of clouds in photodissociation is examined by both modelling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.As far as the modelling aspect is concerned, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes, and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption, and Mie scattering and absorption by cloud drops and aerosols should be taken into account.Further, a three-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle, and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the incloud actinic flux is given as a function of in-cloud optical thickness. The three-layer model seems to be a useful model for the estimation of photodissociation rates in dispersion models.It is stressed that both models in their present form cannot handle partial cloudiness.It is shown that if no clouds are present, the actinic flux depends primarily on solar zenith angle. Further, the incident flux at the top of the atmosphere diminishes downward into the atmosphere due to the increasing effect of scattering. Therefore, the actinic flux usually increases with height, although above clouds the actinic flux sometimes decreases with height due to a large contribution of the upward scattered light.For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness. Cloud optical thickness determines cloud albedo. It can be shown that incloud characteristics and cloud height are less important while describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud.Finally, using the photostationary state relationship, a comparison is performed between model results and ground-based measurements as well as in-cloud air craft measurements.  相似文献   

14.
Summary An angular dependence model (ADM) is needed to convert radiance measurements into fluxes. This paper provides an overview on the progress and issues related to the angular correction of radiation data at the top-of-the-atmosphere (TOA), followed by an investigation on the performance of the Earth Radiation Budget Experiment (ERBE) ADMs in the Arctic during summer. The variation of inferred albedo with viewing geometry indicates the merit of an ADM. The ERBE ADM for land does well as it leads to near constant albedos for given solar zenith angles. The ADM for snow/ice is least satisfactory when applied to the Arctic in summer. The performance of the ocean ADM is acceptable except at large solar zenith angles for which albedo increases with viewing zenith angle. Significant and systematic variation of albedo with viewing angle and relative azimuth angle are manifest when the overcast ERBE ADM is applied to over-cast-over-snow/ice scenes. A methodology for correcting ERBE ADMs was proposed by normalizing the anisotropic factor over bins containing sufficient measurements.With 6 Figures  相似文献   

15.
北京地面紫外辐射(光谱)的观测与分析   总被引:13,自引:0,他引:13       下载免费PDF全文
通过对北京大气物理研究所与长春光机所合作研制的地基太阳紫外辐射光谱仪观测资料的分析,和用辐射传输模式UVSS计算的结果,对影响到达地面的UVB辐照度的主要因子太阳高度角(SZA)、臭氧总量和地表反照率进行了分析研究。最后对紫外光谱仪的观测资料做了总量和谱分析。  相似文献   

16.
We have developed models of physically-based cloud and ocean surfacesfor use in photochemical models. These surface models are described in termsof a flux albedo and a normalized reflection function.Through these, the dependence of albedo on wavelength, solar zenithangle, cloud optical depth (cloud surfaces) and surface windspeed (ocean surfaces) are allowed for. In addition, the non-Lambertian nature of these surfaces is accounted for.We have integrated these surfacemodels into a multiple scattering radiative transfer model to assess their effects on the stratospheric radiation field and J-values. This was accomplished by comparison with results obtainedusing Lambertian, constant albedo surfaces. Comparisons of stratospheric radiation fields revealed that boththe wavelength and directional dependences of the cloud and oceansurfaces could be large effects.Differences between calculated J-values varied from 0 to 12% depending upon species, solar zenith angle, andheight.The J-values were then used as input for a chemical box model to examine the effects these surfaces had on stratospheric chemistry. Comparisons were made against box model runs using J-values fromconstant surfaces. Overall, the effect was on the order of 10%.Differences in number densities using these different surfacesvaried with latitude, height and species.Runs were made with and without heterogeneous chemistry.  相似文献   

17.
Broadband solar irradiance data obtained in the spectral range 400–940 nm at Kwangju, South Korea from 1999–2000 have been analyzed to investigate the effects of cloud cover and atmospheric optical depth on solar radiation components. Results from measurements indicate that the percentage of direct and diffuse horizontal components of solar irradiance depend largely on total optical depth (TOD) and cloud cover. During summer and spring, the percentages of diffuse solar irradiance relative to the global irradiance were 5.0% and 4.9% as compared to 2.2% and 3.0% during winter and autumn. The diffuse solar irradiance is higher than the direct in spring and summer by 24.2%, and 40.6%, respectively, which may largely be attributed to the attenuation (scattering) of radiation by heavy dust pollution and large cloud amount. In cloud-free conditions with cloud cover ≤2/10, the fraction of the direct and diffuse components were 66.0% and 34.0%, respectively, with a mean daily global irradiance value of 7.92±2.91 MJ m−2 day−1. However, under cloudy conditions (with cloud cover ≥8/10), the diffuse and direct fractions were 97.9% and 2.2% of the global component, respectively. The annual mean TOD under cloudless conditions (cloud cover≤2/10) yields 0.74±0.33 and increased to as much as 3.15±0.67 under cloudy conditions with cloud amount ≥8/10. An empirical formula is derived for estimating the diffuse and direct components of horizontal solar irradiance by considering the total atmospheric optical depth (TOD). Results from statistical models are shown for the estimation of solar irradiance components as a function of TOD with sufficient accuracy as indicated by low standard error for each solar zenith angle (SZA).  相似文献   

18.
复杂地形对计算地表太阳短波辐射的影响   总被引:18,自引:2,他引:16  
首先利用数字高程数据(DEM)、大气辐射传输模式6S以及野外观测资料计算了复杂地形(青藏高原)上地表入射太阳辐射,然后计算不考虑地形产生的地表辐射的计算误差,对误差进行归一化后得到相对辐射误差.结果显示,相对辐射误差的标准差(即相对地表辐射计算误差绝对值的统计平均值) Se随太阳天顶角的增加呈指数增长,随高度标准差的增加几乎呈线性增长,随数字高程数据的分辨率(或卫星资料的分辨率)降低而降低.利用分步拟合方法拟合了Se随太阳天顶角、高度标准差和数字高程分辨率的变化.利用拟合方程可以计算任意地形条件下,不同分辨率的卫星(或数字高程)资料在不同太阳天顶角情况下,不考虑地形复杂性产生的平均地表入射太阳辐射的计算误差,结果表明,使用中分辨率的卫星(如MODIS)资料计算地表太阳净辐射时,需要考虑地形复杂性.  相似文献   

19.
GMS卫星资料估算地表旬太阳辐射   总被引:3,自引:0,他引:3  
刘文  刘洪鹏  王延平 《气象》2002,28(6):35-38
GMS-5静止气象卫星较宽的可见光波段,为估算到达地表的太阳辐射提供了极好的信息源。利用GMS-5可见光通道资料,分析估计太阳辐射的可行性,并给出了相应的卫星资料处理方法。利用逐时观测资料和济南日射观测站太阳总辐射小时辐照总量实测资料,建立了可见光反照率与小时辐照总量的统计关系,探讨了旬太阳辐射的估算模型。估算结果与日射站实测结果比较,旬辐射估计量的均方误差为7.7MJ.m^-1,平均相对误差为3.4%。  相似文献   

20.
Solar ultraviolet radiation at the surface has been measured at Potsdam on cloudless days by spectrometer OL 752/10. The measurements are compared with broad-band filter measurements and with model calculations using a modified version of Green's model, which is independent of the measurements. Input data to the model such as atmospheric ozone and aerosol optical thicknesses were measured by a Dobson and Brewer spectrophotometer as well as a Linke Feussner pyrheliometer, respectively. Differences between the model and the measurements are discussed in terms of uncertainties in the calibration and errors of instruments as well as uncertainties in the model calculations including the errors of input data. It is demonstrated that different chemically and biologically effective radiances can be determined from only one set of measured spectral irradiance components, i.e. global radiation and diffuse downward and upward directed radiation. Examples of diurnal variations of the photochemical production of ozone and hydroxyl radicals as determined from spectral irradiance measurements and measured concentrations of relevant trace gases are given.It is shown from the measured irradiance that relations between different effects of radiation to the biosphere depend on solar zenith angle, and to a certain extent also on atmospheric ozone. This has to be taken into account when adverse effects of changing UV radiation are evaluated. Radiation Amplification Factors derived from measurements correspond to those determined from model calculations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号