首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of various cloud parameters and the interactions with the ground albedo and the solar zenith angle have been studied by means of model simulations. The radiative transfer model suitable for a cloudy atmosphere as well as for a clear atmosphere has been developed on the basis of the Discrete Ordinate Method. This study leads to a general understanding for cloudy atmospheres: in the presence of a uniform cloud, the cloud scattering is dominant to molecular and aerosol scattering, and it is also wavelength-independent; the ratio of transmitted irradiance in a cloudy atmosphere to that in the background clear atmosphere is independent of cloud height and solar zenith angle. That’s to say, the radiation downwelling out of a cloud is quite isotropic; it decreases approximately exponentially with the cloud optical depth at a rate related to the ground albedo; the reflected irradiance at the top of the atmosphere is dependent on cloud optical depth as well as on solar zenith angle, but not on ground albedo for clouds of not very thin optical depth.  相似文献   

2.
Summary Sky luminance and spectral radiance has been characterised at Neumayer, Antarctica for selected situations during the austral summer 2003/04. Luminance has also been measured at Boulder, Colorado, USA in June 2003. The high reflectivity of the surface (albedo) in Antarctica, reaching values up to 100% in the ultraviolet (UV) and visible part of the solar spectrum due to snow cover, modifies the radiation field considerably when compared to mid-latitudes. A dependence of luminance and spectral radiance on solar zenith angle (SZA) and surface albedo has been identified. For snow and cloudless sky, the horizon luminance exceeds the zenith luminance by as much as a factor of 8.2 and 7.6 for a SZA of 86° and 48°, respectively. In contrast, over grass this factor amounts to 4.9 for a SZA of 86° and a factor of only 1.4 for a SZA of 48°. Thus, a snow surface with high albedo can enhance horizon brightening compared to grass by a factor of 1.7 for low sun at a SZA of 86° and by a factor of 5 for high sun at a SZA of 48°. For cloudy cases, zenith luminance and radiance exceed the cloudless value by a factor of 10 due to multiple scattering between the cloud base and high albedo surface. Measurements of spectral radiance show increased horizon brightening for increasing wavelengths and generally confirm the findings for luminance. Good agreement with model results is found for some cases; however there are also large deviations between measured and modelled values especially in the infrared. These deviations can only partly be explained by measurement uncertainties; to completely resolve the differences between model and measurement further studies need to be performed, which will require an improvement of modelling the spectral radiance. From the present study it can be concluded that a change in albedo conditions, which is predicted as a consequence of climate change, will significantly change the radiation conditions in polar regions as well.  相似文献   

3.
We have developed models of physically-based cloud and ocean surfacesfor use in photochemical models. These surface models are described in termsof a flux albedo and a normalized reflection function.Through these, the dependence of albedo on wavelength, solar zenithangle, cloud optical depth (cloud surfaces) and surface windspeed (ocean surfaces) are allowed for. In addition, the non-Lambertian nature of these surfaces is accounted for.We have integrated these surfacemodels into a multiple scattering radiative transfer model to assess their effects on the stratospheric radiation field and J-values. This was accomplished by comparison with results obtainedusing Lambertian, constant albedo surfaces. Comparisons of stratospheric radiation fields revealed that boththe wavelength and directional dependences of the cloud and oceansurfaces could be large effects.Differences between calculated J-values varied from 0 to 12% depending upon species, solar zenith angle, andheight.The J-values were then used as input for a chemical box model to examine the effects these surfaces had on stratospheric chemistry. Comparisons were made against box model runs using J-values fromconstant surfaces. Overall, the effect was on the order of 10%.Differences in number densities using these different surfacesvaried with latitude, height and species.Runs were made with and without heterogeneous chemistry.  相似文献   

4.
The albedo of snow for different cloudiness conditions is an important parameter in the Earth's radiation budget analysis and in the study of snowpack's thermal conditions. In this study an efficient approximate method is derived to calculate the incident spectral solar flux and snow-cover albedo in terms of different atmospheric, cloud, and snow parameters. The global flux under partially cloudy skies is expressed in terms of the clear sky flux and a coefficient which models the effect of scattering and absorption by cloud patches and multiple reflections between the cloud base and snowcover. The direct and the diffuse components of the clear sky flux are obtained using the spectral flux outside the atmosphere and the spectral transmission coefficients for absorption and scattering by molecules and aerosols.The spectral snow reflectance model considers both specular surface reflection and volumetric multiple scattering. The surface reflection is calculated by using a crystal-shape-dependent bidirectional reflectance distribution function; the volumetric multiple scattering is calculated by using a crystal-size-dependent approximate solution in the radiative transfer equation. The input parameters to the model are atmospheric precipitable water, ozone content, turbidity, cloud optical thickness, the size and shape of ice crystals of snow and surface pressure. The model yields spectral and integrated solar flux and snow reflectance as a function of solar elevation and fractional cloudcover.The model is illustrated using representative parameters for the Antarctic coastal regions. The albedo for a clear sky depends inversely on the solar elevation. At high elevations the albedo depends primarily upon the grain size; at low elevation the albedo depends on grain size and shape. The gradient of the albedo-elevation curve increases as the grains become larger and faceted. The albedo for a densely overcast sky is a few percent higher than the clear-sky albedo at high elevations. A simple relationship between grain size and the overcast albedo is obtained. For a set of grain size and shape, the albedo as a function of solar elevation and fractional cloud cover is tabulated.  相似文献   

5.
The radiative energy exchange between arctic sea-ice and stratiform clouds is studied by means of aircraft measurements and a two-stream radiation transfer model. The data have been obtained by flights of two identically instrumented aircraft during the Radiation and Eddy Flux Experiments REFLEX I in autumn 1991 and REFLEX II in winter 1993 over the arctic marginal ice zone of Fram Strait. The instrumental equipment comprised Eppley pyranometers and pyrgeometers, which measure the solar and terrestrial upwelling and downwelling hemispheric radiation flux densities, and a line-scan-camera on one aircraft to monitor the surface structure of the sea-ice. An empirical parametrization of the albedo of partly ice-covered ocean surfaces is obtained from the data, which describes the albedo increasing linearly with the concentration of the snow-covered sea-ice and with the cosine of the sun zenith angle at sun elevations below 10°. Cloud optical parameters, such as single scattering albedo, asymmetry factor and shortwave and longwave height-dependent extinction coefficient are determined by adjusting modeled radiation flux densities to observations. We found significant influence of the multiple reflection of shortwave radiation between the ice surface and the cloud base on the radiation regime. Consistent with the data, a radiation transfer model shows that stratus clouds of 400 m thickness with common cloud parameters may double the global radiation at the surface of sea-ice compared to open water values. The total cloud-surface-albedo under these circumstances is 30% larger over sea-ice than over water. Parametrizations of the global and reflected radiation above and below stratus clouds are proposed on the basis of the measurements and modeling. The upwelling and downwelling longwave emission of stratus clouds with thicknesses of more than 500 m can be satisfactorily estimated by Stefan's law with an emissivity of nearly 1 and when the maximum air temperature within the cloud is used.  相似文献   

6.
The role of clouds in photodissociation is examined by both modeling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. (The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.) A 3-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the in-cloud actinic flux is given as a function of in-cloud optical thickness. The 3-layer model seems to be an useful model for estimation of photodissociation rates in dispersion models. Further, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption and Mie scattering and absorption by cloud drops and aerosols should be taken into account. It is stressed that both models are one-dimensional and as such are unable to deal with partial cloudiness. It is shown that if no clouds are present, the actinic flux depends primarily on the solar zenith angle. The actinic flux usually increases with height. For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness, which determines cloud albedo. It can be shown that in-cloud characteristics and cloud height are less important in describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud. Finally, using the photostationary state relationship, good agreement is found between model results and aircraft measurements.  相似文献   

7.
Summary The aim of this study is the evaluation of models that estimate daily global solar radiation on tilted surfaces from that measured on horizontal surfaces. Global solar radiation incident on a tilted plane consists of three components: beam radiation, diffuse radiation and reflected radiation from the ground. The Klein (1977) method, modified by Andersen (1980), was used for estimating direct solar radiation incident on tilted surfaces and an isotropic model was used for estimating reflected solar radiation incident on a tilted plane. In contrast models for the diffuse radiation component show major differences, which justifies a validation study which has been done. Eight models for derivation of daily slope diffuse irradiance from daily horizontal diffuse irradiance were tested against recorded slope irradiances at Karaj (35°55′ N; 50°56′ E), Iran. The following models were included: Badescu (2002), Tian et al. (2001), Reindl et al. (1990), Skartveit and Olseth (1986), Koronakis (1986), Steven and Unsworth (1980), Hay (1979) and Liu and Jordan (1962). All the models use the same method for calculating beam radiation as well as ground reflected radiation. However, only diffuse component of radiation was compared. Statistical indices showed that Reindl’s model gives the most accurate prediction for the south-facing surface and Koronakis’s model performs best for the west-facing surface. The Relative Root Mean Square Errors (%RMSE), except for Steven and Unsworth’s model that has unacceptable results, for whole data range from 1.02 to 10.42%. In general, Reindl’s model produces the best agreement with the measured tilted data.  相似文献   

8.
Radiative transfer model simulations were used to investigate the erythemal ultraviolet(EUV) correction factors by separating the UV-A and UV-B spectral ranges. The correction factor was defined as the ratio of EUV caused by changing the amounts and characteristics of the extinction and scattering materials. The EUV correction factors(CFEUV) for UV-A[CFEUV(A)] and UV-B [CFEUV(B)] were affected by changes in the total ozone, optical depths of aerosol and cloud, and the solar zenith angle. The differences between CFEUV(A) and CFEUV(B) were also estimated as a function of solar zenith angle, the optical depths of aerosol and cloud, and total ozone. The differences between CFEUV(A) and CFEUV(B) ranged from-5.0% to 25.0% for aerosols, and from-9.5% to 2.0% for clouds in all simulations for different solar zenith angles and optical depths of aerosol and cloud. The rate of decline of CFEUV per unit optical depth between UV-A and UV-B differed by up to 20% for the same aerosol and cloud conditions. For total ozone, the variation in CFEUV(A) was negligible compared with that in CFEUV(B) because of the effective spectral range of the ozone absorption band. In addition, the sensitivity of the CFEUVs due to changes in surface conditions(i.e., surface albedo and surface altitude) was also estimated by using the model in this study. For changes in surface albedo, the sensitivity of the CFEUVs was 2.9%–4.1% per 0.1 albedo change,depending on the amount of aerosols or clouds. For changes in surface altitude, the sensitivity of CFEUV(B) was twice that of CFEUV(A), because the Rayleigh optical depth increased significantly at shorter wavelengths.  相似文献   

9.
The purpose of this study is to examine the effect of clouds on the ultraviolet erythemal irradiance. The study was developed at three stations in the Iberian Peninsula: Madrid and Murcia, using data recorded in the period 2000–2001, and Zaragoza, using data recorded in 2001. In order to determine the cloud effect on ultraviolet erythemal irradiance, we considered a cloud modification factor defined as the ratio between the measured values of ultraviolet erythemal irradiance and the corresponding clear-sky ultraviolet erythemal irradiance, which would be expected for the same time period and atmospheric conditions. The dependence of this cloud modification factor on total cloud amount, cloud type and solar elevation angle was investigated. The results suggest that the effect of cloud on ultraviolet erythemal irradiance can be parameterized in a simple way in terms of the cloud amount. Our results suggest that the same cloud modification factor model can be used at the three analysed locations estimating the ultraviolet erythemal irradiance with mean bias deviation (MBD) in the range of the expected experimental errors. This cloud modification factor is lower than that associated to the whole solar spectral range, indicating that the attenuation for the ultraviolet erythemal irradiance is lower than that associated to other solar spectral ranges. The cloud modification factor for ultraviolet erythemal irradiance presents dependence with solar elevation, with opposite dependencies with solar elevation for overcast and partial cloud cover conditions, a fact that can be explained in terms of the influence of reflection-enhancement of the ultraviolet irradiance in the last case. Concerning the influence of cloud type, a limited study of two cloud categories, low and medium level and high level, indicated that for overcast conditions, lower clouds presents an attenuation of ultraviolet erythemal irradiance 20% greater than that associated to high level clouds.  相似文献   

10.
东亚地区云和地表反照率对硫酸盐直接辐射强迫的影响   总被引:9,自引:3,他引:9  
王喜红  石广玉 《气象学报》2002,60(6):758-765
文中利用区域气候模式深入探讨了东亚地区云及地表反照率对硫酸盐直接辐射强迫的影响 ,同时定量估算了东亚地区云区气溶胶的直接辐射强迫 ,讨论了硫酸盐对地表和大气短波辐射平衡产生的不同影响。研究表明 :云对气溶胶的直接辐射强迫具有很强的减弱作用 ,这种减弱作用不仅取决于云覆盖份数 ,而且取决于云的光学厚度。就区域平均而言 ,文中模拟的东亚地区气溶胶直接辐射强迫为 - 0 .0 97W /m2 ,占总直接辐射强迫的 10 .4%左右。表明云对硫酸盐直接辐射具有很强的减弱作用 ,在估算其总的直接辐射强迫时 ,云区的贡献不可忽视。较高的地表反照率会减弱硫酸盐的直接辐射强迫 ,而较低地表反照率则会增加硫酸盐的辐射强迫。硫酸盐气溶胶对大气辐射平衡影响非常小 ,但对地表辐射平衡产生重要影响 ,影响程度与大气几乎一致。  相似文献   

11.
The role of clouds in photodissociation is examined by both modelling and observations. It is emphasized that the photodissociation rate is proportional to the actinic flux rather than to the irradiance. The actinic flux concerns the energy that is incident on a molecule, irrespective of the direction of incidence. The irradiance concerns the energy that is incident on a plane.As far as the modelling aspect is concerned, a multi-layer delta-Eddington model is used to calculate irradiances, actinic fluxes, and photodissociation rates of nitrogen dioxide J(NO2) as a function of height in inhomogeneous atmospheres. For the considered wavelength interval [290–420 nm], Rayleigh scattering, ozone absorption, and Mie scattering and absorption by cloud drops and aerosols should be taken into account.Further, a three-layer model is used to calculate the actinic flux above and below a cloud, relative to the incident flux, in terms of cloud albedo, zenith angle, and the albedo of the underlying and overlying atmosphere. Cloud albedo is mainly determined by cloud optical thickness. An expression for the incloud actinic flux is given as a function of in-cloud optical thickness. The three-layer model seems to be a useful model for the estimation of photodissociation rates in dispersion models.It is stressed that both models in their present form cannot handle partial cloudiness.It is shown that if no clouds are present, the actinic flux depends primarily on solar zenith angle. Further, the incident flux at the top of the atmosphere diminishes downward into the atmosphere due to the increasing effect of scattering. Therefore, the actinic flux usually increases with height, although above clouds the actinic flux sometimes decreases with height due to a large contribution of the upward scattered light.For cloudy atmospheres, another important parameter with respect to the actinic flux is added: cloud optical thickness. Cloud optical thickness determines cloud albedo. It can be shown that incloud characteristics and cloud height are less important while describing the effect of a cloud on the actinic flux (outside the cloud). The in-cloud values of the actinic flux can exceed the values outside the cloud.Finally, using the photostationary state relationship, a comparison is performed between model results and ground-based measurements as well as in-cloud air craft measurements.  相似文献   

12.
Summary Erythemal weighted solar UV irradiances, responsible for damage to human skin, need to be known for arbitrarily oriented surfaces, since human skin has various orientations to the sun. A model for determining such irradiances is presented with the results in good agreement with measurements. The model gives spectral or biologically weighted irradiances for any user-defined orientation of a flat receiver and for selectable atmospheric and surface conditions.  相似文献   

13.
Summary A model for biologically-effective ultraviolet radiation (UVR) of the sun is described, which allows the calculation of diffuse irradiance on inclined surfaces. A model is presented, for which isotropic scattered and reflected radiance are assumed. Using the horizon as a borderline between the upper and lower hemisphere, the scattering phenomena in the atmosphere for UVR are discussed. In contrast to models for other solar spectral ranges, the radiation field of UVR is close to isotropic. Only the horizon darkening by the long optical pathlengths was included in the model. This term was quantified by the UV albedo.Dedicated to O. Univ.-Prof. Dr. F. Steinhauser.With 1 Figure  相似文献   

14.
Two competing cloud-radiative feedbacks identified in previous studies i.e., cloud albedo feedback and the super greenhouse effect, are examined in a sensitivity study with a global coupled ocean-atmosphere general circulation model. Cloud albedo feedback is strengthened in a sensitivity experiment by lowering the sea-surface temperature (SST) threshold in the specified cloud albedo feedback scheme. This simple parameterization requires coincident warm SSTs and deep convection for upper-level cloud albedos to increase. The enhanced cloud albedo feedback in the sensitivity experiment results in decreased maximum values of SST and cooler surface temperatures over most areas of the planet. There is also a cooling of the tropical troposphere with attendant global changes of atmospheric circulation reminiscent of those observed during La Niña or cold events in the Southern Oscillation. The strengthening of the cloud albedo feedback only occurs over warm tropical oceans (e.g., the western Pacific warm pool), where there is increased albedo, decreased absorbed solar radiation at the surface, stronger surface westerlies, enhanced westward currents, lower temperatures, and decreased precipitation and evaporation. However, the weakened convection over the tropical western Pacific Ocean alters the large-scale circulation in the tropics such that there is increased upper-level divergence over tropical land areas and the tropical Indian Ocean. This results in increased precipitation in those regions and intensified monsoonal regimes. The enhanced precipitation over tropical land areas produces increased clouds and albedo and wetter and cooler land surfaces. These additional contributions to decreased absorbed solar input at the surface combine with similar changes over the tropical oceans to produce the global cooling associated with the stronger cloud albedo feedback. Increased low-level moisture convergence and precipitation over the tropical Indian Ocean enhance slightly the super greenhouse effect there. But the stronger cloud albedo feedback is still the dominant effect, although cooling of SSTs in that region is less than in the tropical western Pacific Ocean. The sensitivity experiment demonstrates how a regional change of radiative forcing is quickly transmitted globally through a combination of radiative and dynamical processes in the coupled model. This study points to the uncertainties involved with the parameterization of cloud albedo and the major implications of such parameterizations concerning the maximum values of SST, global climate sensitivity, and climate change.Support is provided by the Office of Health and Environmental Research of the U.S. Department of Energy, as part of its Carbon Dioxide Research Program.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

15.
Summary This work describes a new algorithm to characterize sky condition in intervals of 5 min using four categories of sun exposition: apparent sun with cloud reflection effects; apparent sun without cloud effects; sun partially concealed by clouds; and sun totally concealed by clouds. The algorithm can also be applied to estimate hourly and daily sky condition in terms of the traditional three categories: clear, partially cloudy and cloudy day. It identifies sky conditions within a confidence interval of 95% by minimizing local climate and measurement effects. This is accomplished by using a logistic cumulative probability function to characterize clear sky and Weibull cumulative probability function to represent cloudy sky. Both probability functions are derived from frequency distributions of clearness index, based on 5 minutes-averaged values of global solar irradiance observed at the surface during a period of 6 years in Botucatu, Southeastern of Brazil. The relative sunshine estimated from the new algorithm is statistically comparable to the one derived from Campbell-Stocks sunshine recorder for both daily and monthly values. The new method indicates that the highest frequency of clear sky days occurs in Botucatu during winter (66%) and the lowest during the summer (38%). Partially cloudy condition is the dominant feature during all months of the year.  相似文献   

16.
Clouds are a dominant modulator of the energy budget. The cloud shortwave radiative effect at the surface (CRE) is closely related to the cloud macro- and micro-physical properties. Systematic observation of surface irradiance and cloud properties are needed to narrow uncertainties in CRE. In this study, 1-min irradiance and Total Sky Imager measurements from 2005 to 2009 at Xianghe in North China Plain are used to estimate cloud types, evaluate cloud fraction (CF), and quantify the sensitivities of surface irradiance with respect to changes in CF whether clouds obscure the sun or not. The annual mean CF is 0.50, further noting that CF exhibits a distinct seasonal variation, with a minimum in winter (0.37) and maximum in summer (0.68). Cumulus occurs more frequently in summer (32%), which is close to the sum of the occurrence of stratus and cirrus. The annual CRE is –54.4 W m–2, with seasonal values ranging from –29.5 W m–2 in winter and –78.2 W m–2 in summer. When clouds do not obscure the sun, CF is a dominant factor affecting diffuse irradiance, which in turn affects global irradiance. There is a positive linear relationship between CF and CRE under sun-unobscured conditions, the mean sensitivity of CRE for each CF 0.1 increase is about 1.2 W m–2 [79.5° < SZA (Solar Zenith Angle) < 80.5°] to 7.0 W m–2 (29.5° < SZA < 30.5°). When clouds obscure the sun, CF affects both direct and diffuse irradiance, resulting in a non-linear relationship between CF and CRE, and the slope decreases with increasing CF. It should be noted that, although only data at Xianghe is used in this study, our results are representative of neighboring areas, including most parts of the North China Plain.  相似文献   

17.
Accurate information about the solar irradiance at the soil surface is essential for many agricultural, hydrological and environmental models that take into account the surface energy balance. The main goal of present study was to evaluate the solar irradiance predictions from the Advanced Research Weather Research and Forecasting (ARW) model for both clear sky and cloudy conditions. An extended observational dataset from the Georgia Automated Environmental Monitoring Network (AEMN) provided hourly solar irradiance at the surface and other collocated surface level measurements. The radiation bias (determined from the difference between the ARW predictions and AEMN observations) showed a linear relationship with the cloud optical depth and the cirrus cloud amount from the moderate resolution imaging spectroradiometer (MODIS). For cloud-free days, the ARW model had a positive radiation bias that exceeded 120 W m?2 over coastal and urban areas of Georgia. The model radiation and air temperature bias increased with increasing aerosol optical depth derived from the MODIS observations during the cloud-free days, attributed to fire events that lasted intermittently throughout the study period. The model biases of temperature, mixing ratio, wind speed, and soil moisture were linearly dependent on the radiation bias.  相似文献   

18.
Abstract

Irradiance data obtained over a long period at Vancouver and Toronto, Canada, and covering a range of slope orientations are used to validate four models that estimate either the direct or diffuse solar irradiances for inclined surfaces. Evaluations are initially performed for daily and hourly time integrals. A simple parametrization of the diffuse sky radiance dramatically improves estimates of the diffuse irradiance. Both of the direct irradiance models have difficulty accommodating the diurnal characteristics of the irradiance, and consequently modelling errors are substantial for slopes not directly facing the equator. For equator‐facing slopes a saving in data requirements and computational effort through the use of daily integrals can be achieved with little additional error. A substantial portion of the differences between the measured and estimated irradiances is non‐systematic in nature and is therefore reduced through temporal averaging.  相似文献   

19.
《大气与海洋》2013,51(3):129-139
Abstract

Both the earth‐reflected shortwave and outgoing longwave radiation (OLR) fluxes at the top of the atmosphere (TOA) as well as surface‐absorbed solar fluxes from Canadian Regional Climate Model (CRCM) simulations of the Mackenzie River Basin for the period March 2000 to September 2003 are compared with the radiation fluxes deduced from satellite observations. The differences between the model and satellite solar fluxes at the TOA and at the surface, which are used in this paper to evaluate the CRCM performance, have opposite biases under clear skies and overcast conditions, suggesting that the surface albedo is underestimated while cloud albedo is overestimated. The slightly larger differences between the model and satellite fluxes at the surface compared to those at the TOA indicate the existence of a small positive atmospheric absorption bias in the model. The persistent overestimation of TOA reflected solar fluxes and underestimation of the surface‐absorbed solar fluxes by the CRCM under all sky conditions are consistent with the overestimation of cloud fraction by the CRCM. This results in a larger shortwave cloud radiative forcing (CRF) both at the TOA and at the surface in the CRCM simulation. The OLR from the CRCM agrees well with the satellite observations except for persistent negative biases during the winter months under all sky conditions. Under clear skies, the OLR is slightly underestimated by the CRCM during the winter months and overestimated in the other months. Under overcast conditions the OLR is underestimated by the CRCM, suggesting an underestimation of cloud‐top temperature by the CRCM. There is an improvement in differences between model and satellite fluxes compared to previously reported results largely because of changes to the treatment of the surface in the model.  相似文献   

20.
Desert targets for solar channel calibration of geostationary satellites in the East Asia — Australian region were selected and their qualities were assessed with aid of Moderate Resolution Imaging Spectroradiometer data (i.e., white-sky surface albedo, aerosol optical thickness, and cloud fraction) from 2002 to 2008. The magnitude, spatial uniformity, and temporal stability of the white-sky surface albedo are examined in order to select bright and stable targets. Subsequently those selected targets over China, India, and Australia are further checked for their qualities in terms of data yielding ratio, aerosol optical thickness, cloud fraction, satellite viewing angle, and solar zenith angle. Results indicate that Chinese targets are found to be not adequate as calibration targets in spite of excellent surface conditions because of high percentage of cloud, possibly heavy aerosol loading, and lower solar elevation angle in particular during winter time. Indian site should be take care about relatively high temporal variation of surface condition and heavy aerosol loading. On the other hand, Australian desert targets are considered to be best when surface brightness, spatial and temporal stability, data yielding ratio, aerosol, and cloud are counted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号