首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
高空气象探测业务是大气探测工作的重要组成部分,是我国气象业务的基础工作之一。近十多年来,高空站的业务虽然取得了较大发展,推广使用了PC-1500双机联用技术(图1),但与现时计算机技术的飞速发展仍有差距。特别是高空记录月报表的制作和报文传输方面进展缓慢。制表基本还是以手工抄录、统计等方式,报文传输采用电话传送,使报文的传送速度等受到限制。为改变手工传输报文状况,作者进行了探索,并研制成功TKCF通信技术系统,已于1997年6月1日01时正式投入使用。该系统的运用,结束了几十年手工制作报表的历史,…  相似文献   

2.
针对探空业务系统自带的数据传输软件存在着无法下载报文回执、不直观等缺陷,设计开发一个基于C#的高空探测数据,增添了新的数据(BUFR报文与XML报文)传输功能,适合台站业务的探空数据传输软件,并已经投入业务使用,为业务顺利开展提供了保障。  相似文献   

3.
王海深 《气象科技》2015,43(5):844-848
高空报文的质量监控和评估工作对高空气象观测的研究具有重要影响,是气象科技人员迫切需要解决的重要问题。本文介绍了报文质量研究方法,对报文资料的完整性、时效性、准确性进行检验,从报文原始数据进行质量监控;依据国家气象中心初估场对各高空站每月各要素分别进行平均偏差和标准差的计算和统计,结合平均偏差得到超差界限,对非气象意义的误差或错误情况进行统计分析,形成客观定量化的观测质量信息。该方法实现并应用于实际业务中,能够全方位评价高空报文质量,能够间接发现数据处理方法及仪器设备中存在的各种问题,有利于探空仪器的改进和算法的完善。  相似文献   

4.
山东省气象通信网络业务运行及监控系统   总被引:2,自引:0,他引:2  
赵福祥 《山东气象》2005,25(4):30-30,33
介绍了山东省气象信息网络业务运行和监控系统的构成及其主要功能,该系统可以完成地面和高空气象信息、加密观测、气象灾情、紫外线、空气质量以及地面观测月报等报文的发送、转发,并对报文发送转发运行情况的实时自动监控.  相似文献   

5.
对使用L波段气象探测雷达的探讨   总被引:2,自引:0,他引:2  
周处强 《贵州气象》2004,28(3):42-44
介绍了使用L波段新一代高空气象探测雷达的三个新方法:①如何解决L波段新一代高空气象探测雷达丢球的问题;②L波段新一代高空气象探测雷达及配套系统所测得的高空气象资料进行统计检验问题;③对高空气象信息资料及报文编报形式及资料传输方式的创新。  相似文献   

6.
该文简要介绍了如何利用SMS(ShortM essage Service)短信业务技术实现对台站气象报文的实时监控和自动报警。同时,提出通过临近24 h值守国家基准站、基本站和上级业务主管部门组建监控网络,严密掌握区域内的所有气象报文传输状况,能够达到最快发现报文传输状态异常,有效降低报文缺报率的目的。  相似文献   

7.
蒋立 《吉林气象》2010,(2):42-44
现代化气象业务要求高质量的网络传输,对网络传输出现的问题早发现、早处理是网络管理的重要环节,其实际意义重于事后的补救手段。自动化、模块化的高时效的监测网络报文传输监控系统是实现网络报文传输情况监控的重要手段。本文介绍了吉林省气象信息传输质量发布系统中的一部分(自动站传输质量发布系统)的设计思路、系统结构与功能实现,及主要的设计开发方法。  相似文献   

8.
按照中国气象局推行的以“高空探空和测风报文的到报情况”、“报文资料达到最高标准层情况”、“报文资料与初估场均偏差情况”等几方面对高空气象观测报文质量进行系统性评估的方法,对百色站高空气象观测报文的质量进行统计、分析。从中得出制约高空气象探测报文质量提高的关键问题,并提出相应的有针对性的解决方法。  相似文献   

9.
目前 ,全国高空台站均使用杭州市气象局编制的高空控测软件《高空气象探测“5 9— 70 1”微机数据处理系统》,内蒙古气象局所属高空台站从 1999年 8月开始在高空探测业务中陆续使用该软件。这套软件实现了从数据采集、记录整理到编发报文、报表制作的计算机自动化 ,在业务使用中运行稳定、操作便捷 ,极大地提高了探空业务质量。但这套软件在处理一些特殊记录时出现不符合规范的问题 ,就这些问题笔者在实践中总结了一些解决方法 ,以下具体列出 ,供探空人员在工作中参考。1 雷达从开始到终止均无斜距 ,观测终止编发报文时 ,(PPBB)、(PPDD…  相似文献   

10.
徐晓琳 《山东气象》2008,28(3):38-39
为了提高通信业务的自动化程度,提高气象报文的上传及时率,开发研制了非常规气象资料上行传输实时监控系统,实现了对各种非常规气象资料上行传输的实时监控、查询、告警等功能。主要介绍了非常规气象资料上行传输实时监控系统的平台概况、功能及其实现方法、开发技巧。  相似文献   

11.
为了分析2008年初浙江省电网大面积覆冰事故发生的原因,在缺乏有代表性电线结冰观测的条件下,利用气象探空观测资料统计分析低空各个海拔高度上气温、湿度条件,发现低温与高湿度的配置条件出现状况与输电线路覆冰事故调查结果有较好的对应,可将这样的配置条件视作覆冰气象基本条件,并可通过对比历史上严重冰雪天气灾害发生期间的低空覆冰气象条件,分析评估电网覆冰事故。分析指出:2008年1月中旬至2月初,浙江内陆海拔100 m以上高度出现持续性较严重的覆冰气象条件,是有系统气象记录以来最严重的时段,覆冰条件随着海拔高度的增高而加强,其主要原因是大气层低空低温与高湿配置条件较好,持续时间长。  相似文献   

12.
卢萍  杨康权  李英 《大气科学》2017,41(6):1234-1245
本文利用中国气象局成都高原气象研究所西南涡加密观测试验获取的探空资料及地面台站资料,对比分析了高原东侧的四川省境内不同海拔高度台站的边界层特征,结果表明:高海拔地区地表大气受陆面的影响更为剧烈,日变化幅度更大,且极值出现时间更早。温度/比湿/风速的差异都主要体现在低层边界层大气中,越靠近地面,差异越显著。其中,温度递减率在02:00(北京时,下同)最小,14:00最大,高海拔测站受陆面影响的大气层厚度比低海拔测站大,低海拔测站在近地层300 m以下大气中存在明显的逆温现象。14:00近地层大气的比湿最小,午夜02:00近地层大气的比湿最大,高海拔地区低层大气的平均比湿递减率小于低海拔地区。高海拔地区风速日变化幅度大,4个时次的风速廓线形态差异也大;低海拔地区风速变化幅度小,4个时次的风速廓线形态也比较一致。高海拔台站地表大气的日变化幅度大,极值出现时间略早。  相似文献   

13.
信息空地传输显示系统及试用   总被引:5,自引:3,他引:5  
针对人工影响天气作业时空中、地面信息交换的实际需求,建立了人影作业信息空地传输系统,采用远程无线通讯技术实现飞机作业的空地信息实时双向、多点、较大数据文件的远距离传输,利用MICAPS系统作为基础平台,建立了一套用于人影作业指挥的信息显示系统,以实现地面气象信息、空中探测信息的数据共享。  相似文献   

14.
祁连山冰川消融与高空气温变化的关系   总被引:13,自引:5,他引:13  
程瑛  李栋梁  胡文超  沈福 《高原气象》2002,21(2):217-221
利用1986年6-9月冰川实地考察资料及酒泉站的高空探测资料,分析了1986年6-9月祁连山冰川消融随高空气温的变化特征和高空气温与河西地区托来河流量之间的关系。得出两者之间存在较好的相关关系。  相似文献   

15.
基于ECMWF再分析数据的大气波导分布规律研究   总被引:2,自引:0,他引:2  
王华  马贲  焦林  唐海川 《气象学报》2021,79(3):521-530
大气波导对电磁波传播有显著的影响,大气波导特征参量分布研究对于分析电磁波传播乃至雷达、通信等电子设备效能具有重要意义,利用ERA-Interim数据计算大气波导特征参量,并用海洋调查期间的低空探空火箭数据计算的大气波导进行了验证,在此基础上用2011—2016年ERA-Interim温度、湿度分层数据统计分析了全球大气波导的发生概率、强度、高度,得出的结论是:大洋东部、大陆西部的信风带是大气波导的高发区,大洋上大气波导的高发区(发生概率>50%)主要有6个,分别是北太平洋海区、南太平洋海区、北大西洋海区、南大西洋海区、北印度洋海区、南印度洋澳大利亚西部海区;同时,存在3个大气波导低发区或无大气波导区(热带辐合带区、北半球中高纬度区、南半球中高纬度区)。这些大气波导高发和低发区的位置、范围、发生概率具有季节变化,北半球MAM季(3—5月)发生概率最高,出现的范围最大,SON季(9—11月)概率最低,出现的范围最小,DJF(12、1、2月)、JJA(6—8月)季节介于两者之间;南半球SON季发生概率最高,出现的范围最大,MAM季概率最低,出现的范围最小。北半球大气波导强度总体上强于南半球大气波导强度,北半球MAM季大气波导较强海域范围最大,强度最强,其次为JJA季,SON季大气波导较强海域范围最小,强度最弱;南太平洋大气波导强度季节变化不明显,强度与北太平洋比均较弱,南大西洋SON季大气波导较强海域范围最大,强度最强,DJF季大气波导较强海域范围最小,强度最弱;北印度洋MAM季大气波导强度强,是大洋上波导最强的海域,大气波导较强海域范围大,JJA季基本没有大气波导。大气波导高度在信风带靠近大陆西岸海域高度较低,随着向西离岸距离增大高度升高,大气波导高发区的波导高度季节变化特征是:北半球在SON、DJF季高度高,波导高度高的区域面积大,MAM、JJA季高度低,波导高度高的区域面积小;南半球在MAM、JJA季高度高,波导高度高的区域面积大,SON、DJF季高度低,波导高度高的区域面积小;其他中低纬度近岸海域大气波导高度较低,大陆包围的内海大气波导高度最低。   相似文献   

16.
采用二相回归方法并结合台站历史沿革信息,在对中国中部典型高山站南岳和庐山1960-2017年平均风速资料进行均一性检验和订正的基础上,分析其变化特征及其与周边低海拔台站的差异,并利用NCEP/NCAR再分析风速资料对其差异进行验证。结果表明:南岳站平均风速序列存在一个由测风仪器变更而导致的非均一点,而庐山站不存在非均一点;南岳和庐山年及四季平均风速均显著高于周边台站,且高山站以春季和夏季风速最大,而低海拔台站各季节风速差异较小;近58 a高山站及周边低海拔台站的年及四季平均风速均呈显著的减小趋势,但高山站的减小速率显著高于低海拔台站;同区域NCEP/NCAR的1000 hPa和850 hPa平均风速变化的差异与高山站和低海拔台站的差异基本一致,说明中低空和地面风速的这种差异在中国中部地区具有一定的普遍性。  相似文献   

17.
本文利用常规观测资料、多普勒天气雷达资料、自动站观测资料等多种资料,对2019年4月9日发生在四川东北部的一次飑线大风天气进行了分析。结果表明:本次飑线大风天气过程为低层暖平流强迫类型,低层西南急流和暖脊使得热力不稳定增长,配合低槽东移影响,加强了大气层结的不稳定性,在地面辐合线的作用下,最终触发了本次飑线天气过程。飑线后部存在的中尺度雷暴高压和超强冷池,造成了强冷池密度流,利于产生大风;后向入流和低层显著干区加强了降水粒子的蒸发、冷却,形成了强烈的下沉气流;高空动量下传,对地面大风有增幅作用;飑线移动迅速,前向传播明显,有利于大风的产生。  相似文献   

18.
利用青海高原上两个不同海拔高度区农业气象观测站1980—2007年的观测资料,就低海拔地(民和)和高海拔地(诺木洪)的气候变化及其对春小麦生长发育和产量的影响差异进行研究。结果显示:28年来民和和诺木洪两站均存在变暖趋势,且高海拔地区的线性增暖幅度大于低海拔地区。春小麦对气候变暖的响应表现在低海拔地区播种期提前,成熟期基本没有变化,生育期延长,产量下降;高海拔地区播种期推迟,成熟期提前,生育期缩短,产量波动较大。春小麦生长期内日平均气温每升高1℃,高海拔地区春小麦生育期缩短11.7 d,而低海拔地区无显著变化。分蘖期是两地小麦生育时期变化的转折点,是环境与群体的“缓冲者”。  相似文献   

19.
董丹宏  黄刚 《大气科学》2015,39(5):1011-1024
本文利用中国740个气象台站1963~2012年均一化逐日最高温度和最低温度资料,分析了中国地区最高、最低气温和日较差变化趋势的区域特征及其与海拔高度的关系。结果表明:近50年气温的变化趋势无论是年或季节变化,最低温度的增温幅度都高于最高温度,且其增温显著区域都对应我国高海拔地区。除了春季,其他季节最高、最低温度及日较差的升温幅度随着海拔高度的升高而增大,其中最高温度的变化趋势与海拔高度的相关性最好。同一海拔高度上,最高、最低温度在不同年代的增幅具有不一致性:20世纪80年代,二者变化幅度最小;20世纪90年代,二者增幅最大,尤以低海拔地区最为明显。2000 m以上高海拔地区:最高温度和最低温度的变化趋势在20世纪90年代以前变化较小,而在近十年增幅十分明显;日较差季节变化大:夏季减小,冬季增加。20世纪90年代以前,最高、最低温度随海拔高度变化不大,而近20年随海拔高度升高,最高、最低温度的变化趋势几乎都是先减小后增加。高海拔地区比低海拔地区对全球变化反应更明显。  相似文献   

20.
广西区是我国南方电网西电东送输电的重要通道, 2015年1月26日—2月8日期间广西区北部桂林地区发生了一次大范围超高压输电线路的连续覆冰事件, 其最大覆冰厚度可达24.83 mm。利用ERA5再分析资料和气象观测资料结合南方电网超高压输电线路覆冰观测资料, 从天气形势、温湿垂直层结、局地气象要素以及大气环流指数等方面综合分析了此次电线覆冰的天气学成因。结果表明, 东亚大槽偏强, 阻塞高压引导脊前偏北气流南下, 冷空气入境与西太平洋副热带高压带来的暖湿气流汇合, 在北方寒潮与南方水汽的共同作用下, 地处高海拔的输电线塔杆易出现覆冰。冷暖气团在桂林北部山区上空相互对峙形成准静止锋时出现两种覆冰变化特征: 当冷空气强盛且水汽充沛时, 过冷却雨滴冻结或者雾滴凝华形成电线积冰; 而在暖气团主导下电线覆冰则自然融化。准静止锋的锋区移动在很大程度上影响着电线的覆冰增长过程, 特别地, 冷暖空气的交替主导是电线反复积冰的主要原因。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号