首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 37 毫秒
1.
乌鲁木齐河流域参考作物蒸散量时空变化特征   总被引:5,自引:0,他引:5  
根据乌鲁木齐河流域5个气象站近30a的地面气象观测资料.应用1998年FAO最新推荐的Penman-Monteith公式计算了各月参考作物蒸散量ETo,在此基础上,分析了ETo的月际和年际变化特征,并探讨了各气候要素和海拔高度与ETo的相关关系。结果表明,乌鲁木齐河流域ETo空间变化较大。从山前冲洪积平原的人工绿洲区到高寒地带的乌鲁木齐河源头ETo多年平均值呈明显递减趋势,平均垂直递减率为17.3mm.(100m)-1;30a来,流域各站的年参考作物蒸散量ETo均呈递减趋势,递减速率为-0.05mm.a-1~-5.21mm.a-1;ETo与平均气温、平均最高气温、平均最低气温、空气相对湿度、风速、日照时数、降水量和小型蒸发皿蒸发量均具有较好的相关性;造成近30a乌鲁木齐河流域参考作物蒸散量呈递减趋势的气候原因是:气温、空气相对湿度升高和降水增多以及风速、日照时数减小等气候变化综合作用的结果。  相似文献   

2.
1.利用蒸渗计获取的蒸散(ET)资料和开式器皿蒸发仪获取的总蒸发(PAN)资料,估算印度哥印拜陀冬灌棉花的作物因子(KC值)。在营养生长期、开花棉桃期和收获期,KC 值分别是0.81、1.10和0.57。已知作物生长期间(8月—1月)ET 的日平均和月平均值,用每周 ET 值、50%概率的预计降水和土壤的净持水量,建立计划灌溉模式。棉花的耗水量是616mm,其中213mm 为预计降水。这个模式对于泰米尔纳德冬季 Combodia 棉田的计划灌溉是有用的。  相似文献   

3.
本文引用作物水份系数分析了南宁地区水稻、玉米各生育期的需水量,并对比同期降水,探讨各作物各生长期的水份盈亏状况,确定水份亏缺时期的灌溉量。一、作物水份盈亏的分析方法作物一生所需水份,主要由以下几个方面组成:(1)植物同化过程耗水和植物体内包含的水份;(2)蒸腾耗水,蒸腾大小受植物的种类和品种类型、植株的年龄、气象条件的综合影响;(3)农田植株表面的蒸发;(4)土壤蒸发。由于(1)、(3)两部份耗水占总需水量的比例很小,通常可以忽略不计,所以,常以蒸腾耗水与土壤蒸发之和(蒸散)作为作物的需水量。  相似文献   

4.
分别用茎杆热量平衡和鲍思比法来估算无水分亏缺时的大豆田间的蒸腾(T)和蒸散(ET)。从ET中减去T就直接得到了大豆冠层下土壤蒸发的估算值。T/ET比值的日变化可用一条午间值最低、早晨和傍晚值较高的拋物线来表征。这种变化是由冠层吸收太阳直接辐射的日变程而决定的。结果表明,在土壤水分充足的条件下,大豆生育早期冠层稀疏时的田间蒸发,几乎与生育后期冠层稠密时田间的蒸散量相等。冠层下面的土壤日蒸发量随叶面积指数(LAI)增加而非线性下降。将估算蒸散的Makkink太阳辐射模式和冠层太阳总辐射的传输函数结合起来,形成一个估算冠层蒸腾的简单模式。由此模式估算的蒸腾量随叶面积指数的增加而非线性地增大,这种关系可由叶面积指数的负指数函数很好地逼近。  相似文献   

5.
参考作物蒸散量是表征气候干湿程度、植被耗水量、生产潜力及水资源供需平衡的重要指标之一。以海口和敦煌两个气候相差较大的站点为例,利用Irmark-Allen、Hargreaves、Jensen-Haise 3种基于温度的ET 0计算方法,计算了 2013 2015 年两个站点的参考作物蒸散量,以FAO98 Penman-Monteith方法计算所得结果为标准,依据相关系数(R)及其显著性(P)、均方根误差(RMSE)和平均偏差(MBE)等量化指标,分别对3种方法计算结果在两个站点月和日序列的适用性进行评价,并对这3种方法进行本地化修正优化和检验。结果表明:本地化前,Irmark-Allen方法在海口的计算与Penman-Monteith的偏差最小且相关性好( R =0.97, P <0.01,RMSE=0.38 mm/d,MBE=-0.01 mm/d),其他两种方法均高估。3种基于温度的ET 0方法在敦煌都有很大的误差,其中Irmark-Allen方法在夏季偏低,在冬季偏高;Hargreaves方法整体偏高;Jensen-Haise方法在冬季不适用,出现无效负值,而在其他时段偏高。本地化后,3种基于温度的ET 0方法在两个地区都得到明显改善,其中Jensen-Haise方法在海口效果最好( R =0.96, P< 0.01,RMSE=0.61 mm/d,MBE=0.003 mm/d),在敦煌效果也是最好的( R =0.96, P <0.01,RMSE=0.69 mm/d, MBE=-0.02 mm/d)。  相似文献   

6.
本文从田间实验资料入手,逐一分析了土壤、植物、大气因子对蒸散计算的影响。通过对彭曼-蒙蒂斯(Penman-Monteith)方法的修正和简化,确定了计算潜在蒸散和作物系数的模式。经验证,说明所建模式的效果是好的。从而提供了一种简单实用的作物需水量和实际蒸散量的计算方法,并对潜在蒸散和作物系数等概念提出了新的见解。  相似文献   

7.
高素华  康玲玲 《气象》2005,31(6):74-76
采用最大可能蒸散、作物实际蒸散、水分盈亏、水分订正系数评价了黄土高原多沙粗沙区主要作物(春小麦、冬小麦、春玉米、夏玉米和棉花)和草地生长季水分供需状况,结果表明,需水量:冬小麦>棉花>春玉米>春小麦>夏玉米;水分订正系数:春玉米>夏玉米>棉花>春小麦>冬小麦。草地需水量为350~450mm,水分订正系数0.95以上,水分供需矛盾小,实施退耕还牧无论对缓解水资源短缺,还是改善生态环境,在黄土高原多沙粗沙区都是十分有效的措施。  相似文献   

8.
本文从田间实验资料入手,逐一分析了土壤、植物、大气因子对蒸散计算的影响。通过对彭曼-蒙蒂斯(Penman-Monteith)方法的修正和简化,确定了计算潜在蒸散和作物系数的模式。经验证,说明所建模式的效果是好的。从而提供了一种简单实用的作物需水量和实际蒸散量的计算方法,并对潜在蒸散和作物系数等概念提出了新的见解。  相似文献   

9.
我国参考作物蒸散的空间分布和时间趋势   总被引:23,自引:1,他引:23  
根据我国616个地面气象台站1975-2004年的观测资料,利用联合国粮农组织推荐的Penman-Monteith公式计算各年逐日、逐月参考作物蒸散值(ET0)和年总量.结果表明,我国参考作物蒸散多年平均值大多界于800~1 100 mm之间,西北地区高,东北地区低.1978年出现最大值,1993年出现最低值,青藏高原以东地区波动小,西北地区波动大.参考作物蒸散变化率在-30~30 mm·(10 a)-1之间,西部和长江流域地区显著下降,东部沿海、黄河中上游和东北显著上升.造成我国参考作物蒸散出现先降后增趋势的主要因素是日照时数(净辐射)和饱和差.  相似文献   

10.
汪永钦 《气象》1982,8(1):25-28
关于农田蒸散力(ETP)的计算和测定方法以及作物需水量的研究,长期以来,一直是农业气象科学研究的重要课题之一。从水分平衡的观点来看,鉴定一个地区的水分资源,确定农田干湿程度及其对农作物生长发育的利弊,不仅要研究作为水分主要收入量的降水量,而且还要研究作为水分主要支出项的蒸散量。就农田来说,后者包括作物的蒸腾和株间的土壤蒸发。  相似文献   

11.
利用2014年6—10月夏玉米全生育期试验数据和气象数据,采用LG型称重式蒸渗仪分析了在充分供水条件下陕西关中地区夏玉米全生育期最大耗水量及不同生育期的作物系数。结果表明:夏玉米在试验地段从播种到收获共119 d,充分供水条件下夏玉米全生育期最大耗水量599.9 mm。玉米实际蒸发蒸腾量(ET)与参考蒸散量(ET0)的逐日变化趋势倾向率除三叶—七叶期以外,其余时间段呈现出一致性;全生育期日平均ET为5.0 mm/d,抽雄—乳熟期的ET最大,占全生育期的33.2%。夏播玉米各生育期(播种—三叶、三叶—七叶、七叶—拔节、拔节—抽雄、抽雄—乳熟、乳熟—收获)作物系数分别为0.64,0.76,0.80,1.38,1.47,1.58。  相似文献   

12.
渭北旱塬农田蒸散规律初探杨必仁(咸阳市气象局咸阳·712000)农田蒸散是土壤蒸发与作物蒸腾的总和。在无作物覆盖的裸地,仅表示土壤水分蒸发量。在自然条件下,农田蒸散除受气象条件影响外,还受土壤水分含量、土壤物理特性和作物种类等多种因素制约。即使在相似...  相似文献   

13.
利用运城市13个气象站1974—2019年作物生长季(4—10月)降水和气温统计数据,采用线性回归、气候倾向率和旱涝指数等方法,分析运城市近46年作物生长季降水量、需水量和农业旱涝的时空变化特征。结果表明:(1)作物生长季降水量呈弱减少趋势,变化倾向率为-1.55 mm/10 a;春、秋季为弱增加趋势,夏季明显减少;各月分布不均,7月最多,4月最少,7—9月降水量占作物生长季总降水量的59.8%;在空间上,表现为从东南向西北的递减式分布。(2)需水量呈明显增加趋势,变化倾向率为9.12 mm/10 a;春、夏、秋三季需水量均呈明显的增加趋势,春季增加最快,而夏季需水量占比最大达52%;空间上表现为自西向东递减。(3)旱涝指数平均为0.64,总体属于中度干旱气候类型;年际变化较大,但变化趋势不明显;5月和9月旱涝指数呈弱增加趋势,其余月份均呈弱减小趋势;干旱发生频率为95%;旱灾以春旱为主,涝灾以秋涝为主;旱涝指数自西向东逐渐增大。(4)平均水分亏缺250.1 mm,其中夏季亏缺最多,秋季亏缺最少;水分亏缺自西向东减少,亏缺最严重的是西北地区;平均积分湿度指标为65%,为可旱作农业区,但整体表现为下降趋势,干旱有增多趋势。  相似文献   

14.
北疆地区参考作物蒸散量时空变化特征   总被引:1,自引:0,他引:1  
为明确北疆地区在全球气候变暖背景下合理的灌溉制度,利用北疆地区22个气象站49 a(1962~2010年)的逐日气象资料,运用Penman-Monteith公式计算北疆地区1962~2010年的参考作物蒸散量ET0(reference crop evapotranspiration),并用Mann-Kendall方法对其进行突变检验,基于Arc GIS9.3空间分析功能模块对北疆参考作物蒸散量进行了空间变化分析。结果表明:研究区域的ET0在1983年发生向下突变,ET0在时间分布上整体呈下降趋势,主要受该地区相对湿度和风速的影响;ET0从北疆的东北部和西南部向中间逐渐升高,东南部和西部表现略高,具有明显的区域差异;4~10月ET0对全年ET0的分布具有显著影响。  相似文献   

15.
基于吉林省50个气象站1960—2014年逐日最高气温、最低气温、日照时数、风速数据,采用Penman-Monteith算法,计算各站逐日参考作物蒸散量,进而计算各站及全省四季和年平均参考作物蒸散量,利用数理统计方法,结合地理信息系统软件,分析参考作物蒸散量的时空变化特征及主要气候影响因子。结果表明:近55 a,吉林省年平均参考作物蒸散量为876 mm,年参考作物蒸散量呈显著下降趋势(p <0. 01);空间分布差异显著,由东南向西北逐级递增,56%的站点呈显著下降趋势(p <0. 05)。参考作物蒸散量夏季最大、春季次之、冬季最小,且均呈下降趋势,但只有春季的下降趋势显著(p <0. 01);春、夏、秋、冬季与年平均参考作物蒸散量在空间分布上基本一致,但气候倾向率为负值以及通过显著性检验的站点数依次减少。全省四季和年参考作物蒸散量均与降水呈显著负相关,与日照时数、风速、最高气温呈显著正相关;其中年、春、夏、秋季与气温日较差以及春、夏、秋季与平均气温也呈显著正相关;冬季与最低气温、平均气温呈显著正相关;而典型站点参考作物蒸散量各季节影响因素及影响大小略有差异,各气象因子的共同作用导致了参考作物蒸散量的变化。  相似文献   

16.
阿克苏河灌区是中纬度干旱区典型的绿洲灌溉系统,同时也是新疆第二大灌区,了解灌区作物需水量可为灌区种植结构调整、水资源优化配置提供科学依据。本研究基于联合国粮农组织(FAO)的Penman-Monteith蒸散发模型,结合作物系数法估算了阿克苏灌区作物需水量的时空变化及其对气候因子和作物种植结构的敏感性。结果表明,1960—2015年阿克苏灌区多年平均作物需水量为586 mm,且呈显著上升趋势,上升速率为38.43 mm/10 a。随着气候变化和作物种植结构的改变,1990—2015年间作物需水量急剧增加,增加速率高达99.37 mm/10 a。对于不同作物类型,果林的需水量最大,高达829.8 mm,其次是棉花、水稻和玉米,小麦需水量最低。阿克苏灌区的作物需水量对日最高气温和日照时数较为敏感,而对最低气温、风速和水汽压的敏感度较低。当日最高气温升高2℃时,作物需水量增加4%,当日照时数增加10%时,作物需水量将增加3.2%。另外,作物需水量对作物种植结构非常敏感,当果林的种植面积比例增加10%时,作物需水量增加了12.1%。  相似文献   

17.
法国的无线电技术工业公司制造的蒸散量测定装置,适用于农学与农业气象研究。这个装置可以测量通过直接蒸发、植物本身蒸发从地面进入大气的水汽量,它还可以测量渗入土壤的水量(渗水量)。因此可以说,蒸散量测定装置模拟着某一地域地表与大气交换的自然关系。蒸散量测定装置有一个或几个大容量的池子,池子底部有排水管。设置排水管是为了模拟渗水。通过测量池子的重量、掺水量、降水量可以发现,无降水时,由于蒸发和渗水,池  相似文献   

18.
利用1961-2019年延边州8个气象站的观测数据,采用线性倾向估计、突变分析等方法,研究了延边州农业气候资源的时间变化特征.结果表明:1961-2019年延边州作物生长季(5-9月)平均气温呈显著上升趋势(P<0.01),气候倾向率为0.21℃/10a;平均气温在1997年发生了突变,突变后平均气温较突变前上升了0.8℃;活动积温呈显著上升趋势(P<0.01),气候倾向率为32.5(℃·d)/10a;平均气温和活动积温均在20世纪70年代最低;日照时数呈逐年下降趋势,气候倾向率为-6.7h/10a,在20世纪60年代最高,80年代最低;降水量呈上升趋势变化,气候倾向率为0.68 mm/10a;ET0呈下降趋势变化,气候倾向率为-1.51mm/10a;20世纪90年代降水量最高,ET0最低.  相似文献   

19.
基于MOD16产品的科尔沁草原地表蒸散时空变化特征   总被引:1,自引:0,他引:1  
草原是科尔沁地区的主体生态系统,定量研究该地区地表蒸散发对掌握科尔沁草原的生态效应具有重要意义。基于2000—2019年MOD16地表蒸散数据集和气象站点观测数据,探讨分析科尔沁草原地表蒸散的时空变化特征及其气象影响因素。结果表明:(1)MOD16地表蒸散产品在科尔沁草原地区具有较好的适用性,其地表潜在蒸散产品数据与蒸发皿实测数据的决定系数达0.9以上。(2)近20 a科尔沁草原ET与PET均呈现"先升后降"的单峰型月际分布特征,ET的年际波动较PET明显,且ET整体以28.86 mm·(10 a)~(-1)的速率显著增加,增加区域超过研究区的75%,而PET整体则以13.35 mm·(10 a)~(-1)的速率显著减小,但速率增加的区域大于减小的区域。(3)ET高值区集中在科尔沁草原西北部,PET高值区则集中在中部地区,且二者存在一定的反向空间分异特征;不同土地利用类型下地表蒸散不同,ET自林地、草地、农田依次减小,而PET则相反。(4)近20 a科尔沁草原ET分别在2003年和2011年发生由弱至强的突变,而PET则在2015年发生由强至弱的突变,且未来约20%的区域地表实际蒸散可能持续目前的变化趋势。(5)科尔沁草原ET、PET与各气象因子的相关性一致,均与降水量、日照时数呈显著正相关,而与气温、相对湿度、风速等相关性不明显。  相似文献   

20.
蒸散量是内陆水循环的重要环节,探索西北干旱半干旱区气候因素对蒸散量的影响,有助于深入研究内陆水循环对气候变化的响应。本文利用玛纳斯河流域1964—2010年6个气象台站的日气温、风速、相对湿度等气候资料,通过Penman-Monteith公式估算玛纳斯河流域的参考作物蒸散量(RET),利用回归分析、Mann-Kendall等方法分析研究参考作物蒸散量的时空变化特征。结果表明:(1)玛纳斯河流域参考作物蒸散量空间差异明显,除石河子外南部绿洲区参考作物蒸散量均大于北部绿洲边缘区,季节变化趋势也较北部明显。从季节上来看,玛纳斯河流域参考作物蒸散量季节变化差异显著,夏季是参考作物蒸散量变化的主要贡献者,其次是秋季大于春季,冬季的变化最小。(2)南部绿洲区平均风速的减小是参考作物蒸散量减少的主要原因,北部绿洲边缘区相对湿度的增加是参考作物蒸散量减少的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号