首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
The concentrations of submicron aerosols in the size range 10−7 to 10−5 cm, also called Aitken nuclei (AN) were measured over the Indian Ocean enroute India-Antarctica-India within the 10°E–70°E longitude zone from about 10°N to 70°S latitude on board MV Thuleland during the period from November 26, 1986 to March 18, 1987 as part of the scientific activities on the Sixth Indian Antarctic Expedition. Our analyses showed that only in about 25% of the cases, AN count fell below 1000 cm−3. Throughout the tropical trade wind region, the concentrations of AN were relatively stable with an average of about 3000 cm−3 (medians of 2600 and 1700 cm−3 in Northern and Southern Hemispheres, respectively). Large AN concentrations were found to be associated with higher sea surface temperatures and stronger surface winds in this region. In contrast, the scatter of single observations was found to be remarkable over South Indian Ocean and in Antarctic waters. The average AN concentration over the Indian Ocean to the south of 30°S was of the order of 1500 cm−3. No definite correlation could be established between large AN concentration and sea surface temperature, wind speed or wave height. Period with very low concentrations were, however, associated with clear sky conditions and calm winds or light breeze. Many events of sudden short-lived but large increase in AN concentrations were observed over the south Indian Ocean and in Antarctic waters and these were always associated with the approach of frontal systems. It is likely that particle production by bursting bubbles and sea spray as well as photochemical reactions and gas-to-particle conversions play important role in the observed high concentration of AN over South Indian Ocean.  相似文献   

2.
During the spring of 2005, the total particle concentrations and the submicron aerosol size distributions were measured on board the research vessel over the south sea of Korea and the Korean sector of the Yellow Sea. Similar measurements were made over the East China Sea in autumn 2005. The aerosol properties varied dynamically according to the meteorological conditions, the proximity to the land masses and the air mass back trajectories. The average total particle concentration was the lowest over the East China Sea, 4335 ± 2736 cm 3, but the instantaneous minimum, 837 cm 3, for the entire ship measurement was recorded during the Yellow Sea cruise. There was also a long (more than 6 h) stretch of low total particle concentrations that fell as low as 1025 cm 3 during the East China Sea cruise when the ship was the farthest from the shores and the air mass back trajectories resided long hours over the sea. These observations lead to the suggestion of ~ 1000 cm 3 as the background total particle concentration over the marine boundary layer in the studied region of the Yellow Sea and the East China Sea, implying significant anthropogenic influence even for the background value. In the mean time, average aerosol size distributions were unimodal and the mode diameter ranged between 52 and 86 nm, excluding the fog periods, which suggests that the aerosols measured in this study experienced relatively less aging processes within the marine boundary layer.  相似文献   

3.
On February 8, 1993, the NASA DC-8 aircraft profiled from 10,000 to 37,000 feet (3.1–11.3 km) pressure altitude in a stratified section of tropical cyclone “Oliver” over the Coral Sea northeast of Australia. Size, shape and phase of cloud and precipitation particles were measured with a 2-D Greyscale probe. Cloud/ precipitation particles changed from liquid to ice as soon as the freezing level was reached near 17,000 feet (5.2 km) pressure altitude. The cloud was completely glaciated at −5°C. There was no correlation between ice particle habit and ambient temperature. In the liquid phase, the precipitation-cloud drop concentration was 4.0 × 103 m−3, the geometric mean diameter Dg=0.5−0.7 mm, and the liquid water content 0.7−1.9 g m−3. The largest particles anywhere in the cloud, dominated by fused dendrites at concentrations similar to that of raindrops (2.5 × 103 m−3) but a higher condensed water content (5.4 g m−3 estimated) were found in the mixed phase; condensed water is removed very effectively from the mixed layer due to high settling velocities of the large mixed particles. The highest number concentration (4.9 × 104 m−3), smallest size (Dg=0.3−0.4 mm), largest surface area (up to 2.6 × 102 cm2 m−3 at 0.4−1.0 g m−3 of condensate) existed in the ice phase at the coldest temperature (−40°C) at 35,000 feet (10.7 km). Each cloud contained aerosol (haze particles) in addition to cloud particles. The aerosol total surface area exceeded that of the cirrus particles at the coldest temperature. Thus, aerosols must play a significant role in the upscattering of solar radiation. Light extinction (6.2 km−1) and backscatter (0.8 sr−1 km−1) was highest in the coldest portion of the cirrus cloud at the highest altitude.  相似文献   

4.
As a component of the Canadian Arctic Haze Study, held coincident with the second Arctic Gas and Aerosol Sampling Program (AGASP II), vertical profiles of aerosol size distribution (0.17 m), light scattering parameters and cloud particle concentrations were obtained with an instrumented aircraft and ground-based lidar system during April 1986 at Alert. Northwest Territories. Average aerosol number concentrations range from about 200 cm–3 over the Arctic ice cap to about 100 cm–3 at 6 km. The aerosol size spectrum is virtually free of giant or coarse aerosol particles, and does not vary significantly with altitude. Most of the aerosol volume is concentrated in the 0.17–0.50 m size range, and the aerosol number concentration is found to be a good surrogate for the SO4 = concentration of the Arctic haze aerosol. Comparison of the aircraft and lidar data show that, when iced crystal scattering is excluded, the aerosol light scattering coefficient and the lidar backscattering coefficient are proportional to the Arctic haze aerosol concentration. Ratios of scattering to backscattering, scattering to aerosol number concentration, and backscattering to aerosol number concentration are 15.3 steradians, 1.1×10–13 m2, and 4.8×10–15 m2 sr–1, respectively. Aerosol scattering coefficients calculated from the measured size distributions using Mie scattering agree well with measured values. The calculations indicate the aerosol absorption optical depth over 6 km to range between 0.011 and 0.018. The presence of small numbers of ice crystals (10–20 crystals 1–1 measured) increased light scattering by over a factor of ten.  相似文献   

5.
Surface measurements of cloud condensation nuclei (CCN) number concentration (cm−3) are presented for unmodified marine air and for polluted air at Mace Head, for the years 1994 and 1995. The CCN number concentration active at 0.5% supersaturation is found to be approximately log-normal for marine and polluted air at the site. Values of geometric mean, median and arithmetic mean of CCN number concentration (cm−3) for marine air are in the range 124–135, 140–150 and 130–157 for the two years of data. Analysis of CCN number concentration for high wind speed, U, up to 20 m s−1 show enhanced CCN production for U in excess of about 10–12 m s−1. Approximately 7% increase in CCN per 1 m s−1 increase in wind speed is found, up to 17 m s−1. A relationship of the form log10CCN=a+bU is obtained for the periods March 1994 and January, February 1995 for marine air yielding values a of 1.70; 1.90 and b of 0.035 for both periods.  相似文献   

6.
Coastal nucleation events and behavior of cluster ions were characterized through the measurements of air ion mobility distributions at the Mace Head research station on the west coast of Ireland in 2006. We measured concentrations of cluster ions and charged aerosol particles in the size range of 0.34–40 nm. These measurements allow us to characterize freshly nucleated charged particles with diameters smaller than 3 nm. The analysis shows that bursts of intermediate ions (1.6–7 nm) are a frequent phenomenon in the marine coastal environment. Intermediate ion concentrations were generally close to zero, but during some nucleation episodes the concentrations increased to several hundreds per cm3. Nucleation events occurred during most of the measurement days. We classified all days into one of seven classes according to the occurrence and type of new particle formation. Nucleation events were observed during 207 days in 2006, most prominently in the spring and summer months. Rain-induced events, in turn, were observed during 132 days. Particle formation and growth events mostly coincided with the presence of low tide. Also small cluster ions (0.34–1.6 nm) were characterized. Average concentrations of small ions were 440 cm− 3 for the negative ions and 423 cm− 3 for the positive ions. Average mean mobilities of small ions were 1.86 cm2V− 1s− 1 and 1.49 cm2V− 1s− 1 for the negative and positive polarities, respectively. Concentrations of small ions were observed to be strongly dependent on the variations of meteorological parameters including wind speed and direction.  相似文献   

7.
Direct physical measurements of particle mass and number concentration indicate an increase in overall aerosol mass resulting from cloud processing, most likely through aqueous-phase chemistry (e.g., SO2 oxidation). Measurements conducted in the Pennines of Northern England reveal an average increase of 14 to 20% in dry aerosol mass (0.003<particle diameter<0.9 μm) after aerosol passage through an orographic cloud. The rate of in-cloud mass production is most sensitive to changes in upwind particle size distributions, SO2 concentration, and cloud water acidity. Newly-formed mass appears in size range between 200 and 600 nm and enhances the bimodality of the particle number distribution after cloud processing. Furthermore, the cloud-produced mass is estimated to increase total light scattering, bsp, by 18 to 24%. The scattering efficiency of the dry, cloud-generated aerosol is 5.0±0.3 m2 g−1 and increases to 7.4±0.7 m2 g−1 when adjusted to 90% relative humidity by incorporating particle hygroscopicity data.  相似文献   

8.
The diffusion aerosol spectrometer for the measurements of particle size spectra and concentration levels is described. It includes three principal parts: (i) a block of diffusion batteries for measuring the particles, whose size does not exceed 0.15 μm, (ii) the particle amplifier for growing the particles passing through the diffusion batteries up to optically distinguishable sizes and (iii) the laser aerosol spectrometer, which counts the amplified particles and may also serve for independent measurements of particle size spectra within submicron size range. The tandem including: diffusion batteries+laser aerosol spectrometer allows for detecting particles of radius >3 nm at maximal concentration up to 2×104 particles/cm3. The tandem is managed either by PC or manually. The instrument is designed for studying aerosols in the atmosphere and for ecological measurements.  相似文献   

9.
Gas and particle phase concentrations of atmospheric polychlorinated biphenyls (PCBs) were measured at an urban/industrial site in the city of Bursa, Turkey. PCB concentration levels were presented between July 2004 and May 2005. Average particle and gas phase concentrations of individual PCB congeners ranged from 0.08 (PCB-183) to 6.86 (PCB-49) pg m− 3 and from 0.01 (PCB-209) to 47.2 (PCB-33) pg m− 3, respectively. The mean concentration of total (gas + particle) PCBs varied between 24.27 and 666.21 pg m− 3 with an average of 287.27 ± 174.80 pg m− 3. PCB concentrations at the sampling site were higher than the concentrations reported at non-urban sites. PCBs partitioned between gas and particle phases and the partitioning was examined according to different approaches such as logKp–logPLo, logKp–logKOA and the Junge–Pankow model. In order to present possible interactions, a correlation matrix based on PCB congeners and meteorological parameters was constructed. Application of the Clausius–Clapeyron equation yielded a low slope value indicating possible emissions from local and regional sources originating mainly from urban/industrial areas, landfill and waste incineration plant. Then, likely dry deposition fluxes were estimated depending on reported dry deposition velocity and atmospheric concentration values.  相似文献   

10.
Analyses of cloud condensation nuclei (CCN) number concentrations (cm− 3) measured at the Mace Head Atmospheric Research Station, near Carna, County Galway, Ireland, using a DH Associates Model M1 static thermal diffusion cloud chamber over the period from March 1994 to September 2002 are presented in this work. Air masses are defined as being ‘marine’ if they originate from a wind direction of 180–300° and ‘continental’ air masses are defined as originating from a wind direction of 45–135°. Air masses without such filtering were classified as ‘undefined’ air masses. Air masses were found to be dominated by marine sector air, re-affirming Mace Head as a baseline atmospheric research station. CCN levels for specific air masses at Mace Head were found to be comparable with earlier studies both at Mace Head and elsewhere. Monthly averaged clean marine (wind direction of 180–300° and black carbon absorption coefficient < 1.425 Mm− 1) CCN and marine CCN varied between 15–247 cm− 3 and 54–670 cm− 3, respectively. As expected, significant increases in number concentration were found in continentally sourced CCN over that of marine CCN and were found to follow a log-normal distribution significantly tighter than that of clean marine air masses. No significant trend was found for CCN over the 9-year period. While polluted continental air masses showed a slight increase in CCN concentrations over the winter months, most likely due to increased fuel usage and a lower mixed boundary layer, the dominance of marine sector air arriving at Mace Head, which generally consists of background CCN concentrations, reduced seasonal differences for polluted air. Marine air showed a distinct seasonal pattern, with elevated values occurring over the spring and summer seasons. This is thought to be due to enhanced biogenic aerosol production as a result of phytoplankton bloom activity in the North Atlantic.  相似文献   

11.
In this paper, the basic composition of fog and low cloud water are presented, resulting from the analyses of water samples from 111 fog/cloud events. The samples were collected at five sites located in various regions of the Czech Republic. Two sampling sites are in mountainous regions and three sites represent various urban areas. The mountain stations are located in two regions of the Czech Republic with different industry types. At all the sites, active fog collectors were employed. In the water samples, the conductivity, acidity (pH), cations (H+, Na+, K+, NH4+, Mg2+, Ca2+) and anions (F, Cl, NO3, SO42−) were determined.A mean pH value of about 4.5 was obtained at mountain sites whereas the measurements in urban areas showed mean pH values from 4.9 to 6.4. The mean conductivity values in the samples from the two mountain stations were 137 and 191.5 μS cm−1. The samples from urban sites showed mean values between 127.7 and 654.4 μS cm−1. The maximum concentration means for the three dominant pollutants (expressed by the ratio mountain sites/urban sites) are 32.9/99.6 mg l−1 for NO3, 32.5/192.9 mg l−1 for SO42− and 18.5/52.7 mg l−1 for NH4+. As expected, we found higher ion concentrations in the northern part of the Czech Republic where larger numbers of lignite-burning power plants, chemical factories and opencast lignite mines are located. A decrease in ion concentrations was observed at higher altitude sites, probably reflecting at least in part higher liquid water contents at these locations.  相似文献   

12.
Black carbon aerosols plays an important role in the earth's radiative balance and little is known of their concentrations, distributions, source strength, and especially the aerosol chemistry of the developing world. The present study addresses the impact of back carbon aerosols on different atmospheric species like CO and tropospheric ozone over an urban environment, namely Hyderabad, India. Ozone concentration varies from 14 to 63 ppbv over the study area. Diurnal variations of ozone suggest that ozone concentration starts increasing gradually after sunrise, attaining a maximum value by evening time and decreasing gradually thereafter. Black carbon (BC) aerosol mass concentrations varies from 1471 to 11,175 ng m−3. The diurnal variations of BC suggest that the concentrations are increased by a factor of 2 during morning (06:00–09:00 h) and evening hours (18:00 to 22:00 h) compared to afternoon hours. Positive correlation has been observed between BC and CO (r2=0.74) with an average slope of 6.4×10−3 g BC/g CO. The slope between black carbon aerosol mass concentration and tropospheric ozone suggests that every 1 μg m−3 increase in black carbon aerosol mass concentration causes a 3.5 μg m−3 reduction in tropospheric ozone. The results have been discussed in detail in the paper.  相似文献   

13.
Columnar observations of liquid water and of radar echo intensity in cloud were carried out, using a microwave radiometer and a vertically pointing radar respectively, in Ny-Ålesund, Svalbard. Chemical concentrations were also measured in aerosols, gases and snowfalls. Clouds with a large proportion of liquid water moved over the site after snow clouds, with a much lower liquid water content, had been present for about 16 h. The mass concentrations of most chemical species in snowfalls were lower from the first set of clouds than the second. The NO3 and SO42− concentrations in gases and aerosols associated with the first set of clouds were higher than in the second set, but Cl concentration was less for the first set than the second.  相似文献   

14.
The physical and chemical properties of aerosol particles were investigated at Plan d'Aups, one of the ESCOMPTE sites located in the St. Baume mountain area (700 m a.s.l.), 50 km east of Marseilles (France). The site is ideally located for assessing the vertical and horizontal extent of the pollution plume from the Marseilles–Berre area.Our study showed that polluted air masses from the Marseilles–Berre area are advected to Plan d'Aups in the early afternoon. Average daily concentration of particles reaches up to 40 μg m−3 while 1-h average particle number concentration is greater than 30,000 cm−3. Most of the particle mass is composed of SO42− and organic carbon (OC). The chemical properties of the particles revealed that an additional source, possibly from the industrial area of Gardanne, contributes to the aerosol mass. This last source is characterised by significant emissions of elements, such as Zn, V, Al and Si.In addition to transport, we found that gas-to-particle conversion takes place at the interface between the free troposphere and the boundary layer. We estimated that on average, 30% of the particle number is accounted for by direct nucleation. This is potentially a major aerosol source to the free troposphere.  相似文献   

15.
PM10 and heavy metal measurements in an industrial area of southern Italy   总被引:1,自引:0,他引:1  
Atmospheric particulate concentrations and heavy metal content are measured from March to July 2001 at an industrial site located in a rural zone of the southern Italy. PM10 samples are collected by a low-volume sampler and each sample is analysed by AAS techniques for its content of Cd, Cr, Cu, Fe, Mn, Ni, Pb and Zn. We measure also temperature, atmospheric pressure and relative humidity, and we collect anemometric data. The study purpose is the investigation of pollutant levels in an industrial area located in a rather unpolluted region and the characterization of the correlation structure among particulate concentrations, heavy metal content and local meteorological parameters. Data analysis is carried out by means of univariate and multivariate statistical methods. In the investigated period, the average value of PM10 daily concentrations (24 μg Nm− 3) does not exceed the national standard of 40 μg Nm− 3 and only nine values are higher than the European daily limit value of 50 μg Nm− 3. Particularly, the occurrence of two anomalous values (183 μg Nm− 3 in 3 March and 94 μg Nm− 3 in 22 June) seems to be related to no-local events as confirmed both by in situ data measured in the AQM network of Potenza city (about 10 km far from the study area) and by remote measurements performed in the same days. Regarding the heavy metal levels, we observe high levels of Cr (34 ng Nm− 3), Ni (85 ng Nm− 3) and Zn (214 ng Nm− 3) in agreement with the local industrial source pattern. The multivariate analysis, carried out using meteorological parameters as exogenous variables, allow to evaluate the role of the different variables as driving factors of the correlation structure among the metals.  相似文献   

16.
Deposition of atmospheric particulate PCBs in suburban site of Turkey   总被引:2,自引:1,他引:2  
Dry deposition and air concentration samples were collected from July 2004 to May 2005 at a suburban site in Turkey. A water surface sampler (WSS) was used to measure directly the dry deposition flux of particulate polychlorinated biphenyls (PCBs) while a high volume air sampler (HVAS) was employed to collect air samples. Particulate PCB concentrations accounted for 15% of total PCBs (gas + particle phase) at the site. The overall particulate phase PCB flux ranged from 2 to 160 ng m− 2 d− 1 with an average of 46.3 ± 40.6 ng m− 2 d− 1. Forty one PCB congeners were targeted in the samples while twenty one congeners were found to be higher than detection limits in deposition samples. Fluxes for homolog groups ranged between 0.9 (7-CBs) and 21.0 (3-CBs) ng m− 2 d− 1. Measured dry deposition fluxes were lower than the ones usually reported for urban sites. Average PCB dry deposition velocity, calculated using flux values and concurrently measured atmospheric concentrations, was 1.26 ± 1.86 cm s− 1 depended on size distribution of particles, atmospheric PCB concentrations and meteorological conditions.  相似文献   

17.
In November 2004–January 2005, a micro orifice uniform deposit impactor (MOUDI) and a Nanometer (nanometer)-MOUDI were used in the center of Taiwan to measure particle size (18 nm particle size 18 μm) distributions of atmospheric aerosols at a traffic site during the winter period. The average Mass in Media Aerodynamic Diameter (MMAD) of suspended particles is 0.99 μm this study. As for the ultra fine and nanometer (nanometer) particle mode, the composition order for these major ions species was SO42− NH4+ NO3 Mg2+ Ca2+ Na+ K+ Cl. An ion Chromatography (DIONEX-100) was used to analyze major anion species, Cl, NO3, SO42− and cation species, NH4+Na+, K+, Ca2+Mg2+. Their concentrations were also extracted from various particles size modes (nanometer (nanometer), ultra fine, fine and coarse). The results obtained in this study also indicated that the average portions for the major ionic species (SO42−, NH4+ and Mg2+) in the nanometer (nanometer), ultra fine, fine and coarse particulate modes are about 34%, 37%, 63% and 30%, respectively at this traffic sampling site during the winter period.  相似文献   

18.
Physical experiments designed to explore the potential of rain augmentation through airborne glaciogenic seeding on small, isolated non-precipitating cumuliform clouds near Red Deer, Alberta were carried out during the period 1982–1985. The microstructure of 90 cumulus congestus clouds have been documented through repeated in-situ sampling using a cloud physics instrumented aircraft platform. Observations from the inspection passes of 57 clouds seeded with either dry ice pellets or silver iodide pyrotechnics, and all the passes of 33 natural clouds are presented.Measurements of the cloud droplet concentration indicate that Alberta cumulus clouds are typically continental in nature, with an average droplet concentration of 535 cm−3 and an average droplet diameter of 10.6 μm. Alberta clouds have average liquid water contents of 0.57 g m−3, with a peak 1-sec value of 3.17 g m−3. The 1-km average liquid water contents are 0.83 g m−3, with a peak value of 2.81 g m−3. Cloud lifetimes vary between 11 and 20 minutes. Concentrations of naturally occurring ice crystals are found to be low. The average maximum 1-km ice concentration was 31−1, and the peak 1-km concentration was 73.11−1 in the natural cloud dataset. Evidence of precipitation-sized particles was detected in 21% (7 of 33) of the clouds, and precipitation below cloud base was detected in 6% (2 of 33) of the clouds.A comparison of the Alberta cloud characteristics to the cumulus clouds from different locations showed that there are some distinct differences between Alberta clouds and the clouds from the other regions.  相似文献   

19.
The second Arctic Gas and Aerosol Sampling Program (AGASP-II) was conducted across the Alaskan and Canadian Arctic in April 1986, to study the in situ aerosol, and the chemical and optical properties of Arctic haze. The NOAA WP-3D aircraft, with special instrumentation added, made six flights during AGASP-II. Measurements of wind, pressure, temperature, ozone, water vapor, condensation nuclei (CN) concentration, and aerosol scattering extinction (bsp) were used to determine the location of significant haze layers. The measurements made on the first three flights, over the Arctic Ocean north of Barrow and over the Beaufort Sea north of Barter Island, Alaska are discussed in detail in this report of the first phase of AGASP II. In the Alaskan Arctic the WP-3D detected a large and persistent region of haze between 960 and 750 mb, in a thermally stable layer, on 2, 8, and 9 April 1986. At its most dense, the haze contained CN concentrations >10,000 cm–3 and bsp of 80×10–6 m–1 suggesting active SO2 to H2SO4 gas-to-particle conversion. Calculations based upon observed SO2 concentrations and ambient relative humidities suggest that 104–105 small H2SO4 droplets could have been produced in the haze layers. High concentrations of sub-micron H2SO4 droplets were collected in haze. Ozone concentrations were 5–10 ppb higher in the haze layers than in the surrounding troposphere. Outside the regions of haze, CN concentrations ranged from 100 to 400 cm–3 and bsp values were about (20–40)×10–6 m–1. Air mass trajectories were computed to depict the air flow upwind of regions in which haze was observed. In two cases the back trajectories and ground measurements suggested the source to be in central Europe.  相似文献   

20.
Aerosol size distributions were measured with Micro Orifice Uniform Deposit Impactor (MOUDI) cascade impactors at the rural Angiola and urban Fresno Supersites in California's San Joaquin Valley during the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) winter campaign from December 15, 2000 to February 3, 2001. PM2.5 filter samples were collected concurrently at both sites with Sequential Filter Samplers (SFS). MOUDI nitrate (NO3) concentrations reached 66 μg/m3 on January 6, 2001 during the 1000–1600 PST (GMT-8) period. Pair-wise comparisons between PM2.5 MOUDI and SFS concentrations revealed high correlations at the Angiola site (r > 0.93) but more variability (r < 0.85) at the Fresno site for NO3, sulfate (SO4=), and ammonium (NH4+). Correlations were higher at Fresno (r > 0.87) than at Angiola (r < 0.7) for organic carbon (OC), elemental carbon (EC), and total carbon (TC). NO3 and SO4= size distributions in Fresno were multi-modal and wider than the uni-modal distributions observed at Angiola. Geometric mean diameters (GMD) were smaller for OC and EC than for NO3 and SO4= at both sites. OC and EC were more concentrated on the lowest MOUDI stage (0.056 µm) at Angiola than at Fresno. The NO3 GMD increased from 0.97 to 1.02 µm as the NO3 concentration at Angiola increased from 43 to 66 µg m− 3 during a PM2.5 episode from January 4–7, 2001. There was a direct relationship between GMD and NO3 and SO4= concentrations at Angiola but no such relationships for OC or EC. This demonstrates that secondary aerosol formation increases both concentration and particle size for the rural California environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号