首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
风速仪校验器作为自动气象站风速传感器的现场校准仪器,已配备在新的移动计量检定车上使用.为确保风速传感器现场校准的准确、可靠,本文从风速仪校验器的工作原理、误差来源和风速校准参数的确定方法等方面加以探讨,并对风速仪校验器标准风速进行了可溯源性验证,证明了风速仪校验器作为现场风速传感器标准器的可行性.  相似文献   

2.
任燕  孙嫣  韩广鲁 《山东气象》2014,34(3):56-58
pH(酸度)计检定装置是省级气象计量酸雨类检定项目中一项新建计量标准,在标准考核筹备中对计量标准考核规范和检定规程容易出现理解偏差和模糊点。根据酸度计工作原理,对新建标准准备中在标准器及配套设备、量值溯源及检定实验等方面易出现的技术问题进行了讨论分析,并提出了具体的解决方法。  相似文献   

3.
姚爱国  杨清玲 《青海气象》2007,(F06):67-67,70
1引言 正确使用测量仪器、定期对仪器进行周期检定(量值溯源),确定标准的不确定度,减小或避免各类因素产生的误差获得准确湿度测量值。按照《JJF1033-2001计量标准考核规范》对新配置的计量检定标准必须进行不确定度的评定的要求,  相似文献   

4.
该文主要在电导率仪检定装置对电导率仪进行检定时,通过电计引用误差的各分量标准不确定度和仪器配套引用误差检定时产生的各分量标准不确定度,对电导率仪检定装置在建标过程中测量结果的扩展不确定度进行评定。  相似文献   

5.
徐金宝 《气象》1982,8(10):27-28
相对日射仪的换算系数必须由标准日射仪检定而得出,并需定期重复进行。标准日射仪分相对和绝对两种。相对标准为同类型的日射仪与绝对日射仪相比较,求得其换算系数,随后将它作为相对标准仪器,备作检定同类型日射仪之用;绝对标准日射仪有埃斯川姆补偿式、水注式、空腔式,这些仪器均列为国际绝对标准,它们作为绝对日射仪相互比较或检定相对  相似文献   

6.
为确保各要素观测数据的准确、可靠并具有可比性,须定期开展自动气象站校准。自动气象站现场校准不同于实验室的检定检测,受客观条件的影响,校准结果具有明显的不确定性,气压要素表现尤为明显。为了保证量值传递准确可靠,减小这种不确定性对校准结果造成的误判,对气压现场校准提出了改进方法。基于2012—2014年"移动气象计量检定校准核查技术集成"项目的实验资料,采用实验室检定和现场校准气压传感器对比的方法,找出现场校准中影响气压值变化的因素。结果表明:实验室检定合格的气压传感器在现场再次进行校准中有12.5%不合格。经研究试验,这种结果是由于现场校准时的环境因素影响造成,其主要影响因素为气温和风速。选择适当的校准时间,即避开最高气温和最低气温出现时段及外界风速不大于5 m/s时进行气压现场校准,能较好地减少气压传感器的测量误差,提高气压测量数据的准确性。  相似文献   

7.
李建宇 《气象科技》2019,47(5):752-756
针对目前业务上风速传感器现场校准方法存在的不足,通过改进气象部门广泛使用的杯式风速传感器现场校准设备,利用启动风速校验仪对风速传感器进行低风速段的校准,从而解决风速校验仪无法检测风速传感器整体性能的问题,实现了杯式风速传感器到实验室风洞标准的量值溯源。利用改进后的现场校准方法对风速传感器校准后,拟合出的线性回归方程与风洞检定结果进行比对发现,改进后的方法基本上能满足风速传感器现场校准的需要。  相似文献   

8.
1 产生不合格检测、校准因素不合格检测、校准工作贯穿于气象计量检定实验室质量工作的各个环节,产生不合格检测、校准工作的因素很多,除了文件化的质量体系外,最主要的是实施过程中产生的不合格,应包括人员、设备、消耗材料、方法、设施和环境、检定的溯源性、被检仪器的处置等。1.1 人员差错人力资源配置与质量体系的要求不相适应,岗位缺乏足够数量和足够质量、管理与技术水平的人员,岗位任职资格不明确,或缺乏质量意识与工作责任心,或检测、校准工作根本未按质量手册和程序文件的要求去做。1.2 检定设备使用未经检定或校准的检定设备,…  相似文献   

9.
EN型系列测风数据处理仪简介和维护   总被引:1,自引:0,他引:1  
EN型系列测风数据处理仪简介和维护解喜琪(甘肃省气象计量检定站兰州730020)EN型系列测风数据处理仪,是1985年山东能源所根据国家气象局装备司和科教司提出的技术要求研制的一项测风数据处理仪器。1991年3月,国家气象局发文将其列为气象业务用仪器...  相似文献   

10.
陈涛  张虎  郑亮  胡苍龙  黄小静 《气象科技》2016,44(6):923-927
现阶段自动气象站风速现场校准量值无法进行溯源,从而导致风速现场校准数据的准确性和可靠性得不到保证。究其原因,是由现行的现场校准方法和现场校准设备工作原理决定的。为了解决这一问题,使用"量传"风速传感器和叶轮风表进行中间数据传递,在校准时用叶轮风表作为校准的标准设备,并利用了三杯式风速传感器的线性特点,把台站风速传感器的现场校准量值溯源到了大型风洞皮托管上,并且通过大量试验证明了该方法的正确性,为新的自动气象站风速现场校准规范制定和校准设备的完善提供有力的理论依据。  相似文献   

11.
国内民航机场主要使用的雨量观测设备为芬兰维萨拉公司生产的RG13型雨量传感器,为保证雨量测量数据的真实可靠,对其测量结果的不确定度分析很有必要。根据自动气象站现场校准方法,分别进行大雨强和小雨强的重复测试,并依据JJF1059.1-2012测量不确定度的评定与表示要求,进行A类不确定度评定。分析测量过程中的B类不确定度来源,进行B类评定,最终给出扩展不确定度。结果表明:在小雨强下,测量不确定度为U95=0.17mm,包含因子k=2。在大雨强下,测量不确定度为U95=0.16mm,包含因子k=2。该研究完善了雨量传感器的现场校准工作流程,对雨量传感器测量结果的可信度评定具有参考价值。  相似文献   

12.
利用雷达资料对自动雨量计实时质量控制的方法研究   总被引:4,自引:1,他引:3  
自动雨量计资料是对降水的直接测量,在流域面雨量计算、气候研究、气象服务等方面具有重要意义。但是,由于风力、蒸发、灌溉、校准、漏斗堵塞、机械故障、信号传输等原因往往造成其存在不同类型的系统误差和随机误差, 自动雨量计数据在定量使用前需要进行质量控制。目前,天气雷达以其高时空分辨率的优势已经成为监测降水的重要手段,本文首先采用两步校准法改善雷达估测降水,然后对雷达—雨量计对之间的差异进行统计学的分析,确定自动雨量计质量控制的一些标准,从而对雨量计进行质量控制。最后用两个降水过程对自动雨量计质量控制的结果进行了检验,结果表明:两步校准法改善了雷达估测降水的系统性偏差,并减小了雨量计站点上的相对误差;可以利用雷达估测降水实现对自动雨量计的实时质量控制,就整个数据集而言,约0.1%的数据被怀疑为误判,误判的自动雨量计主要位于雨带的边缘。但该质量控制算法同时也存在一定的局限性:在雨带的边缘或没有天气雷达覆盖的区域,以及雷达资料存在数据质量问题的情况下,往往会造成对雨量计的误判。  相似文献   

13.
自动与人工观测降雨量的差异及相关性   总被引:8,自引:3,他引:8       下载免费PDF全文
利用全国627个基准、基本站2005年自动与人工雨量业务观测资料, 分析了业务上自动与人工观测的降雨量的差异以及引起差异的原因, 并分析了自动观测与人工观测的降雨量的相关性。结果表明:自动观测比人工观测的日降雨量平均偏高0.12 mm, 标准差为0.70 mm, 相对偏高1.42%。627个站中, 80%的站自动与人工观测的年降雨量差值在5%以内; 近4%的站年降雨量差值在10%以上。年降雨量相对差值较大的站, 其年降雨量均较小。空间采样差、20:00 (北京时) 定时观测中人工与自动观测时间的不一致以及其他突发事件均会导致自动与人工测量的日降雨量的差异, 甚至显著差异。由于观测仪器不同引起的降雨测量系统误差差别, 导致自动与人工观测降雨量的系统偏差。自动观测与人工观测的日降雨量呈线性相关, 相关系数为0.9988。  相似文献   

14.
Results of measurement of rainfall intensity and accumulated amounts with an automated tipping-bucket rain gauge based on an updated DZhO M96-8 precipitation gauge are presented. The measurement were carried out in the town of Dolgoprudny (Moscow region) in 2002–2005. The design, data processing algorithm, and calibration of the tipping-bucket rain gauge are described, and estimates of the measurement error are calculated. Examples of tipping-bucket rain gauge measurements in shower and widespread precipitation are given, along with results of analysis of the statistical structure of precipitation by intensity gradations. The measurement results are compared with those of precipitation gauges, the P-2 recording rain gauge, and the AKSOPRI radar complex.  相似文献   

15.
《Atmospheric Research》2010,95(4):534-543
The first Field Intercomparison of Rainfall Intensity (RI) gauges was organised by WMO (the World Meteorological Organisation) from October 2007 to April 2009 in Vigna di Valle, Rome (Italy). The campaign is held at the Centre of Meteorological Experimentations (ReSMA) of the Italian Meteorological Service. A group of 30 previously selected rain gauges based on different measuring principles are involved in the Intercomparison. Installation of the instruments in the field was preceded by the laboratory calibration of all submitted catching-type rain gauges at the University of Genoa. Additional meteorological sensors (ancillary information) and the observations and measurements performed by the Global Climate Observing System/Global Atmosphere Watch (GCOS/GAW) meteorological station of Vigna di Valle were analyzed as metadata. All catching-type gauges were tested after installation using a portable calibration device specifically developed at the University of Genoa, simulating an ordinary calibration inspection in the field.This paper is dedicated to the summary of preliminary results of the Intercomparison measurements. It offers a view on the main achievements expected from the Intercomparison in evaluating the performance of the instruments in field conditions. Comparison of several rain gauges demonstrated the possibility to evaluate the performance of RI gauges at one-minute resolution in time, as recommended by the WMO Commission for Instruments and Methods of Observations (WMO-CIMO). Results indicate that synchronised tipping-bucket rain gauges (TBR), using internal correction algorithms, and weighing gauges (WG) with improved dynamic stability and short step response are the most accurate gauges for one-minute RI measurements, since providing the lowest measurement uncertainty with respect to the assumed working reference.  相似文献   

16.
Calibration of tipping bucket rain gauges in the Graz urban research area   总被引:2,自引:0,他引:2  
The Institute of Urban Water Management and Landscape Water Engineering of the Graz University of Technology (Austria) operates a hydrological research area in the City of Graz. In this urban research area precipitation and runoff data are collected by order of the municipality of Graz. At present precipitation data are measured by seven tipping bucket rain gauges. Comparative measurements have shown a deviation between the recorded and the actual precipitation intensity. This made the institute calibrate the rain gauges periodically. In the middle of the 1990s, the development of a field calibration kit was started. Based on the experiences with the first field calibration kit, a microprocessor controlled device was developed. With this calibration device, the tipping bucket rain gauges are calibrated at regular intervals. In this paper the calibration process and the current results for seven rain gauges are discussed. The calibration process is dynamic calibration and uses a peristaltic pump. Not all of the tipping buckets investigated underestimate the rain intensity in the whole measuring range. Several rain gauges have a positive relative deviation, not exceeding 22%, in the low intensity range up to 0.5 mm/min. Positive deviation can be explained by retention of water in the buckets between tips. The reason for the negative deviation is the loss of water during the tips. It leads to the underestimate of the actual intensity. The largest relative deviation in the range of underestimate exceeds 30%. In the range of extreme intensities, the larger buckets (5 cm3) show a lower relative deviation than the smaller (2 cm3) buckets. The gauge characteristic can change in favourable or unfavourable directions after several years. Therefore, the calibration of tipping buckets is recommended at least every 2 to 3 years.  相似文献   

17.
《Atmospheric Research》2010,95(4):555-563
The WMO Field Intercomparison of Rainfall Intensity (RI) Gauges started on October, 1st 2007 at Vigna di Valle (Italy) and was concluded in May 2009. Those catching type instruments, out of the selected rain gauges based on various measuring principles, and the four rain gauges selected as reference instruments to be installed in a pit, were preliminarily calibrated in the laboratory before their final installation at the Field Intercomparison site. The recognized WMO laboratory at the University of Genoa was involved in this task, using the same standard tests adopted for the previously held WMO Laboratory Intercomparison of RI gauges. Further tests were performed to investigate the one-minute performance of the involved instruments.The present paper deals with basically Tipping-Bucket Rain gauges (TBRs) and Weighing Gauges (WGs), using results from tests performed under constant flow rates in laboratory conditions. The objective of this initial phase of the Intercomparison was to single out the counting errors associated with each instrument, so as to help the understanding of the measured differences between instruments in the field during the second phase. Results and comments on the preliminary laboratory calibration exercise are reported in this paper together with their implications for the analysis of the outcome of the Intercomparison in the Field.  相似文献   

18.
19.
20.
As a part of a Local Area Weather Radar (LAWR) calibration exercise 15 km south of Århus, Denmark, the variability in accumulated rainfall within a single radar pixel (500 by 500 m) was measured using nine high-resolution rain gauges. The measured values indicate up to a 100% variation between neighbouring rain gauges within the pixel over a 4-day period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号